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Machine learning (ML) methods are being used in almost every conceivable area of electronic structure theory
and molecular simulation. In particular, ML has become firmly established in the construction of high-
dimensional interatomic potentials. Not a day goes by without another proof of principle being published on
how ML methods can represent and predict quantum mechanical properties – be they observable, such as
molecular polarizabilities, or not, such as atomic charges. As ML is becoming pervasive in electronic structure
theory and molecular simulation, we provide an overview of how atomistic computational modeling is being
transformed by the incorporation of ML approaches. From the perspective of the practitioner in the field, we
assess how common workflows to predict structure, dynamics, and spectroscopy are affected by ML. Finally,
we discuss how a tighter and lasting integration of ML methods with computational chemistry and materials
science can be achieved and what it will mean for research practice, software development, and postgraduate
training.

Keywords: electronic structure theory, quantum chemistry, artificial intelligence, molecular dynamics simula-
tion, materials discovery

I. INTRODUCTION

Atomistic and electronic structure simulations based
on quantum theoretical calculations form a central aspect
of modern chemistry and materials research. They en-
able the prediction of molecular and materials properties
from first-principles as well as the simulation of atomic-
scale dynamics. On this basis, computational chemists
and physicists in academia and industry contribute to
fundamental mechanistic understanding of chemical pro-
cesses, to the identification of novel materials, and the
optimization of existing ones. Over the last few decades,
computational molecular simulation has been firmly es-
tablished in the chemical sciences as an important part of
the method portfolio. This was accompanied by a move
to streamline and optimize common workflows for model
building and simulation (see Figure 1). Algorithms for
molecular geometry optimization, efficient molecular dy-
namics simulations, and electronic structure calculations
perform highly specialized tasks while being massively
scalable and parallelized across a diverse range of hard-
ware architectures.1,2 Simultaneously, PhD graduates in
the field have been trained to be expert users of exist-
ing and developers of new simulation workflows. This is
the status quo at the time when machine learning (ML)
methods enter the stage.

The application of ML to atomistic simulation and
electronic structure theory has been developing rapidly
since its earliest works in a modern context.3–11 A num-
ber of excellent reviews have recently been written to

a)Electronic mail: r.maurer@warwick.ac.uk

highlight progress in various contexts including the role
of ML in catalyst design,12,13 in the development of force-
fields and interatomic potentials for ground state prop-
erties14–19 and excited states, 20–22 in quantum chem-
istry,23,24 in finding solutions to the Schrödinger equa-
tion,25 and the role of unsupervised learning in atomistic
simulation26 (see Table I for a non-exhaustive list).

An excellent retrospective of the last decade of ML in
the context of chemical discovery has recently been pub-
lished by von Lilienfeld and Burke,27 predicting a bright
future in the context of ML for quantum chemistry that
lies ahead. Indeed, not a day goes by without another
novel ML approach being published, which promises to
predict atomic and electronic properties of molecules and
materials at ever greater accuracy and efficiency. A main
goal of many ML models is the parametrization of ana-
lytical models to represent electronic structure. These
ML models can then be evaluated extremely fast. Thus
ML models can speed up simulations to achieve longer
time and length scales. Their efficiency depends strongly
on the design of descriptors or neural network architec-
tures that optimally chart the vast space of chemical com-
pounds and materials.28,29 These approaches have the
potential to fundamentally change day-to-day practices,
workflows and paradigms in atomistic and quantum sim-
ulation as they become more tightly integrated with ex-
isting tools. But how exactly will ML affect the
method portfolio of future computational scien-
tists working in electronic structure theory and
molecular simulation? How will this affect a practi-
tioner who wants to determine the equilibrium structure
and ground-state energy of a molecular system using elec-
tronic structure theory? How will it change the required
expertise and demands on PhD graduates?
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FIG. 1. Schematic depiction of the key workflow steps in com-
putational molecular and materials modeling: Model building
and method choice, electronic structure calculations, struc-
ture exploration and dynamics, and connection to experiment.
All of these steps can benefit from ML models. In many cases
ML methods do not just enhance existing approaches, but
also open avenues toward new workflows.

For the uninitiated, it is easy to get lost in the vast
array of ML models, which might soon be comparable
to the zoo of exchange-correlation functionals available
in density functional theory (DFT).30 What will become
the ML equivalent of go-to DFT functionals for practi-
tioners? At the moment, there are relatively few exam-
ples where ML models have become generally applicable
to researchers outside the immediate circle of develop-
ers. In this perspective, we are discussing recent advances
through the lens of their potential benefit to a wide com-
munity of computational molecular scientists who are not
ML experts. Our goal is to identify future possibilities
of permanent integration of ML-based approaches into
workflows and electronic structure and simulation soft-
ware packages. This can for example involve a common
code base and data structure for ML and simulation algo-
rithms or bidirectional data exchange between workflows
based on ML or physical simulation. Central to this
perspective is the question how ML can effectively ad-
dress the computational bottlenecks and capability gaps
in electronic structure calculations and molecular simu-
lations and what are the steps needed to make ML an
integral part of the method portfolio of this field.

Our goal is to make this account as accessible as pos-
sible and to highlight applications and approaches that
the community might want to keep track of in the future.
We stress that our aim is not to provide a comprehensive

Year References Topic of ML Review

2017 Behler 14 Interatomic Potentials
2018 Goldsmith et al. 31 ML in Catalysis
2019 Carleo et al. 32 ML in Physical Sciences
2019 Yang et al. 33 Drug Discovery
2019 Elton et al. 13 Molecular Design
2019 Schleder et al. 34 ML in Materials Science
2019 Ceriotti 26 Unsupervised Learning
2020 Dral 23 ML in Quantum Chemistry
2020 Noé et al. 35 Molecular Simulation
2020 von Lilienfeld et al.24 Chemical Space
2020 Mueller et al.15 Interatomic Potentials
2020 Manzhos et al.16 Small Molecules and Reactions
2020 P. Gkeka et al. 17 Force Fields & Coarse Graining
2020 Unke et al. 18 Force Fields
2020 Toyao et al. 36 Catalysis Informatics
2020 Manzhos 25 ML in Electronic Structure
2020 Westermayr et al.20 ML for Excited States
2021 Behler 37 Neural Network Potentials

TABLE I. Overview of recent reviews of machine learning
methods in electronic structure theory and atomistic simula-
tion. This is not intended to be a complete list of all reviews
on the subject, but a selection of suggested further reading.

review of existing ML descriptors, representations, and
approaches, which is beyond the scope of this perspec-
tive and well covered by further reading material in Table
I. Following the key steps of molecular modeling shown
in Figure 1, each section focuses on how ML methods
can benefit a central workflow or aspect of computational
molecular and material science (cf. highlighted sentences
in each paragraph). We place a particular focus on ap-
proaches that have the potential to augment existing or
introduce new prevalent approaches.

II. MACHINE LEARNING PRIMER

We start by introducing basic terminology and con-
cepts of ML that will be used in the remaining sections
of the perspective. ML is concerned with algorithms that
improve with increasing amount of available data under
some performance measure. Statistical learning theory
offers a general framework to find predictive functions
f : X → Y mapping an input space X to a target space
Y.38 In contrast to conventional physical models, where
one often starts with clear assumptions about the system
to be modelled, ML focuses on universal approximators.
These are able to represent any function with arbitrary
accuracy, when given enough training data and param-
eters. Examples for this class of models are Gaussian
processes (GPs) or neural networks (NNs).39 GPs are de-
fined by linear combinations of the covariances between
data points. These are given by a suitable (nonlinear)
kernel function. NNs consist of a sequence of multiple
linear transforms, alternated with nonlinear activation
functions. This is also referred to as deep learning, where
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each set of transform and nonlinearity is called a layer.

The functional relationship to be found is specified by
choosing a suitable loss function. If the loss ℓ(f(x), y)
requires knowledge of the targets y ∈ Y, this is called
supervised learning. This includes classification and
regression for categorical and continuous target spaces Y,
respectively (see also Fig. 2). ML force fields are exam-
ples of regression tasks (see section IV),40 where often
the squared error is used as loss function. For instance,
classifiers can be used to automatically select appropriate
quantum chemistry methods for a given system (see sec-
tion III). In contrast, unsupervised ML aims to find
patterns in the data that are specified by a loss func-
tion without having access to the ground truth targets y.
Tasks falling under this category include clustering, di-
mensionality reduction, or density estimation of the data
distribution. In the context of computational chemistry,
unsupervised ML finds application in post-processing and
analysis of molecular simulation data, e.g., in identifying
collective variables (CVs)and reaction pathways that will
be discussed in section VI (see also Fig. 2).

The optimal predictive function minimizes the expected
risk, i.e., the expectation of the loss function weighted by
the probability distribution over the data.41 However, the
data distribution is usually unknown and, in supervised
learning, the loss requires access to the targets. Thus, one
instead optimizes the empirical risk, i.e., the expectation
over a training set sampled from the data distribution.
This could for example consist of electronic structure cal-
culations of systems x ∈ X with properties y ∈ Y. Since
there typically exist many possible approximates that fit
a finite training set, one introduces regularizer terms to
the optimization problem, which punish complex solu-
tions. This avoids overfitting, i.e., an increased error on
unseen data due to approximating a simple functional re-
lationship with an overly complex function on the train-
ing set.

Another important aspect to consider is the selection of
training examples, which should be representative of the
distribution encountered when applying the ML model.
This requires not only a sufficient number of training ex-
amples, but also sufficient coverage of the input space. If
an ML model is applied outside of its training domain,
i.e., if it is used for extrapolation, its predictions quickly
become unreliable. Active learning aims to detect this
and acquire additional training data in the correspond-
ing regions. Similarly, Bayesian optimization is an ap-
proach for global search that obtains additional exam-
ples where there is a high probability to optimize a given
criterion based on the current model and its uncertainty.
ML models are typically evaluated on a separate test set
that is not used during the training process, i.e., also not
for controlling overfitting. To get a better measure of
the reliability of ML models in different regions and to
detect holes, additional sampling of data can be carried
out with e.g. enhanced sampling techniques.42,43 Alter-
natively, when using two NNs, minima of their negative
squared difference surface can be used to detect sparse

FIG. 2. Schematic depiction of different ML model cate-
gories. Unsupervised learning techniques use unlabeled data
and are often used for dimensionality reduction or clustering,
whereas supervised ML models perform regression or classifi-
cation tasks on labelled data.

conformational regions.44

To design accurate and data-efficient ML models, it is
important to be aware of the structure of the input space
and how it is represented. Encoding prior knowledge in
the model reduces the effective space to cover and, thus,
the required amount of training data. Examples include
the use of convolutions to encode roto-translational in-
variances45 or delta learning, where only the difference to
a baseline is learned.46. Beyond that, transfer learning
studies how knowledge contained in models trained on
one task can be reused for related tasks. This also means
that, the question of whether a prediction is an extrapo-
lation depends not only on the given training data, but
also on the prior knowledge built into the ML model.

By employing a probabilistic input space and a struc-
tured target space, one obtains a model that can, e.g., be
used to generate novel molecular structures. The proba-
bility distribution over molecular space can be modeled
explicitly, for example using variational autoencoders,47

or implicitly, e.g., by generative adversarial networks48

that provide access to the distribution only through sam-
pling. In a supervised setting, generative models can
facilitate inverse design by learning a probability distri-
bution of chemical structures conditioned on a desired
target range of one or multiple properties.

Finally, reinforcement learning is concerned with
learning the optimal action in a given state to maximize
a specified, future reward. An example for this is an un-
folded protein (state), where one applies changes to the
geometry (action) in order to come closer to the folded
structure with minimum energy (future reward).49 Rein-
forcement learning includes an exploration strategy such
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that more data is collected during the training process.
Therefore, it can, for example, be used for molecular de-
sign without requiring a representative set of reference
structures before training.

III. ML IMPROVES MODEL BUILDING, METHOD

CHOICE, AND OPENS NEW MULTI-SCALE APPROACHES

The first task one faces when investigating a chemical
problem in silico is to determine a suitable computational
model. The modeling process involves the design of the
atomistic structural model and the choice of computa-
tional method for calculating the properties of interest.
Both choices traditionally are based on achieving a bal-
ance between a sufficiently accurate description of the
chemical phenomena to be studied and limited computa-
tional effort that renders the calculations feasible.

Computational methods can range from electronic
structure theory methods (e.g., correlated wavefunction
or density functional approaches) to more approximate
empirical force fields. Depending on the level of approx-
imation, a method can be appropriate for modeling cer-
tain phenomena, while being less reliable for others. One
example are classical empirical force fields, which sac-
rifice the ability to model chemical bond breaking in
favor of computational speed, but yield excellent pre-
dictions for ensemble averages of macromolecular sys-
tems. Different applications also place different accu-
racy requirements on the reference method. A concept
often mentioned in the context of ML in chemistry is
chemical accuracy, which originally specified that the en-
ergy error of a computational method deviates at most
1 kcal/mol from experiment. This accuracy requirement
was coined by Pople in his Noble lecture50 for thermo-
dynamic properties, where it allows reliable comparison
with experiment.51 However, other applications may ne-
cessitate significantly more rigorous error limits. In the
field of high-resolution vibrational spectroscopy for ex-
ample, reliable predictions require so-called spectroscopic
accuracy, which corresponds to an energy error smaller
than 1 cm−1 or 0.003 kcal/mol.52 The model building
stage furthermore involves a range of decisions on how
to represent the system, for example, how to treat envi-
ronments such as solvents, what size the simulation cell
should have, or which atoms to model explicitly. All these
decisions can influence the quality of results at a funda-
mental level and hence need to be considered carefully.

Unfortunately, choices are often ambiguous and differ-
ent strategies can still yield similar results or may only
work in certain combinations. The associated design
choices typically require a mix of expertise and chemi-
cal intuition of experienced practitioners. This makes it
hard to see how ML could help to automate this pro-
cess. Nevertheless, ML models can, e.g., learn to infer
decision rules or categorize complex patterns in a purely
data driven fashion. This makes them a promising tool
to provide support during the model building stage, mak-

ing balanced model building choices more widely avail-
able and potentially achieving fully automated decision
making in the future.

Transparent method selection protocols can be based
on uncertainty quantification.53,54 Currently, theo-
retical predictions tend to be reduced to a single num-
ber, without considering the spread due to, e.g., method-
specific modeling errors. Access to confidence intervals
can provide several key advantages beyond determining
how well a particular method is suited for a task. Trends
in method predictions can be analyzed in a more general
manner, going beyond the snapshots provided by tradi-
tional benchmark studies. When combined with exper-
iment, uncertainties assigned to theoretical predictions
allow for a better separation of error sources and inter-
pretation of results. Recently, some progress has been
made in tackling this problem with ML algorithms and
Bayesian approaches in particular. Bayesian error es-
timation has been successfully used to construct mul-
tiple density functionals. Wellendorff et al. 55 reported
a Bayesian functional with a non-local van der Waals
(vdW) correlation term. This so-called BEEF-vdW func-
tional provides predictions as well as computational er-
ror estimates. They demonstrated the utility of BEEF-
vdW based on two surface science problems, modeling
graphene adsorption on a Ni(111) surface and the bind-
ing of CO to Pt(111) and Rh(111) substrates. Bayesian
frameworks for density functionals were also developed
by Aldegunde, Kermode, and Zabaras 56 and Simm and
Reiher 57 . All these approaches allow for the construction
of specialized density functionals which yield confidence
intervals for computed energies. This makes it possible to
automatically probe the reliability of the method for dif-
ferent compounds and structures and identify problem-
atic situations. Simm and Reiher 57 used their approach
to estimate the errors associated with different reaction
barriers along the catalytic cycle of Yandulov–Schrock
catalyst, where they demonstrated that even similar reac-
tion steps can exhibit very different confidence levels due
to shortcomings of the computational method. By apply-
ing this approach to chemical reaction networks, Proppe
et al. 58 demonstrated how this method can further be
used to provide uncertainty estimates for chemical reac-
tion rates.

Beyond error estimates, ML has been employed to au-
tomatically construct basis sets for electronic structure
methods.59 Usually, pre-defined basis sets are used for
electronic structure computations, which aim to provide
reasonable accuracy over a wide range of compounds. As
such they use higher radial and angular resolution than
might be necessary for certain molecules. Schütt and
VandeVondele 59 have shown how ML can be used to gen-
erate an adaptive basis set tailored to a specific system
based only on local structural information. Using liq-
uid water as example, their adaptive basis set was able
to reduce computational cost by up to a factor of 200.
Similarly, local pseudopotentials have been constructed
based on kernel ridge regression.60 Another important
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decision in method selection is whether the problem of
interest exhibits strong electron correlation (also referred
to as multi-reference character or static correlation). In
this case, a single antisymmetric product wave function
is no longer sufficient to describe the electronic system
and single-reference methods (e.g., semi-local approxi-
mations to DFT, single-reference coupled-cluster (CC)
theory) yield inconsistent performance across configura-
tional space and fail to describe bond breaking. Duan
et al. 61 have proposed a semi-supervised ML approach
to automatically classify chemical systems according to
their multi-reference character in an efficient manner.
This makes it possible to identify problematic systems
without the need to carry out expensive high-level cal-
culations and thus aid in the method selection process.
In some situations, it can be advantageous to rely not
on a single method, but instead employ a combina-
tion of electronic structure theories and basis set levels.
Such composite methods have a long history in computa-
tional chemistry, with the Gaussian methods for thermo-
chemistry (G2-G4)62–64 being some of the most promi-
nent examples. All composite methods have in common,
that they profit from the cancellation of errors at differ-
ent levels of theory and can offer improved accuracy at
lower computational cost. Zaspel et al. 65 have leveraged
ML and combination techniques to derive a composite
method in a data driven fashion. They could demon-
strate that their method achieved CC accuracy using only
lower levels of theory.

The model building process encompasses many other
aspects apart from method selection. This includes de-
cisions on which structural aspects of the system need
to be considered explicitly or only accounted for in their
implicit effect on the system (e.g., implicit versus explicit
solvation models), whether periodic boundary conditions
are required or which boundary box shapes and sizes are
appropriate. Other aspects concern the electronic struc-
ture, especially in the context of multi-reference methods.
Most of these approaches require decisions on which par-
ticular electronic reference configurations, often referred
to as active space, to include in the description of a sys-
tem. This problem is highly nontrivial, as it not only
depends on the intrinsic electronic structure of a system
but also on the chemical reaction to be studied. As a
consequence, these methods (e.g., Complete Active Space
Self Consistent Field (CASSCF)) have been hard to use
by non-expert users in a black box manner in the past.
Jeong et al. 66 recently introduced a ML protocol based
on decision trees for active space selection in bond disso-
ciation studies. Their approach is able to predict active
spaces able to reproduce the dissociation curves of di-
atomic molecules with a success rate of approximately
80 percent precision compared to random selection. This
constitutes an important step toward black box applica-
tions of multi-reference methods.

ML approaches further show great potential in the
context of multi-scale modeling. Multi-scale ap-
proaches combine information from different levels of the-

ory to bridge different physical scales. Examples in-
clude hybrid quantum mechanics/molecular mechanics
(QM/MM) simulations67. For example, Zhang, Shen,
and Yang 68 have shown how a simple ∆-learning based
model can improve the accuracy of solvent free energy
calculations, where they could reach hybrid DFT accu-
racy using a semi-empirical DFTB baseline. A similar
scheme has been employed by Böselt, Thürlemann, and
Riniker 69 to simulate the interactions of organic com-
pounds in water. Gastegger, Schütt, and Müller 70 used
a ML/MM approach where a ML model completely re-
placed the QM region to model solvent effects on molec-
ular spectra and reactions. This made it possible to
achieve an acceleration of up to four orders of magni-
tude, while still retaining the accuracy of the hybrid func-
tional reference method. Combining fragment methods
with ML techniques, Chen, Fang, and Cui 71 were able to
investigate excited states in extended systems in an effi-
cient manner by only treating the photochemically active
region with a multi-reference method while the environ-
ment is modeled with ML. Finally, Caccin et al. 72 have
introduced a general framework for leveraging multi-scale
models using ML to simulate crack propagation through
materials, thus enabling simulations which would other-
wise be impossible using either classical force-fields or
electronic structure methods alone.

Future directions: While a complete automation of
the model building stage has not yet been achieved,
ML based algorithms have nevertheless led to significant
progress toward this endeavor. Due to the complexity of
the model building process, there still is a large number
of untouched subjects which may serve as fruitful sub-
strate for future ML research. Potential avenues include
the automated selection of suitable levels of correlation
methods for specific problems and using ML to automat-
ically generate partitions in multi-scale approaches.

IV. ML IN ELECTRONIC STRUCTURE THEORY

The solution to the electronic Schrödinger equation can
be approximated in various ways, where a tug-of-war be-
tween accuracy and computational efficiency is crucial to
any choice of method. The bottlenecks that need to be
addressed to achieve more efficient electronic structure
calculations are mainly:

(1) the evaluation of multi-centre and multi-electron
interaction integrals, which requires optimally-
tuned basis representations to construct Hamilto-
nians and sets of secular equations and

(2) the (iterative) solution of coupled sets of equations
to predict total energies, wave functions, electron
densities, and other properties derived thereof.

To overcome these bottlenecks, developments of corre-
lated wave-function-based methods, exchange-correlation
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functionals within DFT, and methods based on many-
body perturbation theory must go hand in hand with al-
gorithmic advances. Progress on challenge (2) has been
propelled by algorithmic ingenuity and a collective com-
munity effort to develop massively scalable linear algebra
algorithms to be collected in central libraries such as the
Electronic Structure Library (ESL1) and the Electronic
Structure Interface (ELSI2). It is challenge (1), where
ML methods can potentially have the biggest impact in
eliminating computational bottlenecks while maintaining
high predictive power.

Currently, the most pervasive application of ML is
to replace ab-initio electronic structure calcu-
lations with ab-initio-quality interatomic poten-
tials. In doing so, ML methods also significantly improve
the predictive capabilities of molecular dynamics (MD)
simulations by enabling ab-initio-accuracy at computa-
tional costs comparable to classical force fields (cf. sec-
tion VI). In principle, ML models can parametrize any
smooth function, such as the ground-state total energy,
the forces, and other derived properties obtained from a
first-principles calculation. Related ML models for inter-
atomic potentials have already been reviewed extensively
(see Table I for example). We therefore focus on ML
representations of electronic structure quantities beyond
ground-state energies and forces in the following.

Many ML representations of excited state prop-
erties, such as HOMO-LUMO gaps,73–75 excited-state
energies,21,76–78 or band gaps79–82 have been proposed
and were mainly based on NNs or kernel methods. Re-
cently, ML models have also been applied to derive
excited-state or response properties explicitly by learn-
ing the density of states83 or orbital energies,74,78 respec-
tively. These models have further been applied to obtain
excitation spectra. However, a main challenge that is
frequently encountered when fitting many energy levels
is the non-smoothness of the target functions, which is
true for orbital energies as well as adiabatic potential
energy surfaces (PESs).61,84 Avoided crossings at coni-
cal intersections in adiabatic potential energy landscapes
represent a good example for this behaviour: When two
potential energies become degenerate and form a cusp,
the respective coupling values become singular at this
point in the conformational space. Consequently, a direct
learning of such properties is prohibited in many cases,
making a smoothing of the target property or novel fit-
ting approaches preferable. Approaches to achieve bet-
ter learning behaviour strongly depend on the purpose
of the ML model. For instance, in case of spectroscopic
predictions it is sufficient to learn the spectral shape di-
rectly instead of the energy levels. This has been done
with Gaussian Approximation Potentials for the density-
of-states83 and with NNs for X-ray spectroscopy85,86 or
for excitation spectra.74 In the latter case, NNs could de-
scribe spectral intensities with deviations of 0.03 arb.u..
The same authors also fitted orbital energies of the QM9
data set comprising 134k organic molecules with a mean
average error of 0.186 eV.74 Alternatively, a diabatic87 or

latent Hamiltonian matrix78 can be learned and used to
obtain orbital energies or adiabatic energies as eigenval-
ues of the matrix, respectively. The latter approach was
shown to improve the accuracy of orbital energy predic-
tions by a factor of 2 compared to direct learning.78

ML parametrization of excited states is especially chal-
lenging when multi-reference methods are required, be-
cause states can switch their character along certain reac-
tion paths, which leads to jumps in the PESs. While this
can also be the case for ground-state PESs, this prob-
lem is more pronounced for higher-lying excited states
in regions where the density of states is high, leading to
significant higher noise in excited-state PESs and conse-
quently, more difficult learning.84

While ML parametrization of electronic structure data
is well established, it is intrinsically limited in its applica-
tion range by the unfavorable scaling associated with bot-
tleneck (1), i.e., many highly accurate electronic struc-
ture methods are too computationally costly to gener-
ate sufficiently large training datasets that enable re-
liable parametrization. Sometimes, better accuracy
can be achieved with ∆-ML approaches. This ap-
proach is based on the assumption that the difference
in energy between two electronic structure methods - a
low-level one and a high-level one - is easier to repre-
sent than either one of the two methods.46 An alterna-
tive to the ∆-learning approach is transfer learning,88

where a model is trained on data from a low level of
theory and retrained with less data points of a more ac-
curate method. A rule for determination of the num-
ber of data points needed in consecutive ∆-learning ap-
proaches that takes computational cost and prediction
accuracy into account is proposed by Dral et al. 89 . Many
studies use about 10% of the original training data for
∆-learning76,78,90,91 and transfer learning.92–96 In both
cases, the ML model ideally yields an accuracy that is
comparable to the higher-level theory. The prediction
of energies with CC accuracy for the QM data sets was
shown by Smith, Isayev, and Roitberg 97 using trans-
fer learning and mostly range-separated semi-local DFT
data (5 million DFT data points compared to 500,000
CC data points). Very recently, Bogojeski et al. 98 have
demonstrated that with ∆-ML a model with CC accuracy
was generated by using mostly semi-local DFT reference
data and only a few data points calculated with CC the-
ory. For instance, MD of resorcinol (C6H4(OH)2) could
be achieved with 1004 data points at DFT and CC ac-
curacy. While the DFT ML model had mean absolute
errors of 2-3 kcal/mol compared to CC, the ∆-ML model
could achieve already 1 kcal/mol accuracy with respect
to CC with as few as 25 data points.98

Data efficiency can also be improved by designing NN
architectures that implicitly satisfy symmetry constraints
(i.e., rotational equivariance and permutational invari-
ance) and, as a consequence, require much fewer data
points to achieve a given accuracy.99,100 This is only
one of many possible strategies to include more phys-
ical information into ML model architectures.

   
 T

hi
s 

is
 th

e 
au

th
or

’s
 p

ee
r 

re
vi

ew
ed

, a
cc

ep
te

d 
m

an
us

cr
ip

t. 
H

ow
ev

er
, t

he
 o

nl
in

e 
ve

rs
io

n 
of

 r
ec

or
d 

w
ill

 b
e 

di
ffe

re
nt

 fr
om

 th
is

 v
er

si
on

 o
nc

e 
it 

ha
s 

be
en

 c
op

ye
di

te
d 

an
d 

ty
pe

se
t. 

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
1
0
.1

0
6
3
/5

.0
0
4
7
7
6
0



7

Including the mathematical structures and the physi-
cal boundary conditions relevant to electronic structure
methods into deep learning models leads to a further
boost of data efficiency and model transferability. This
has recently been shown with reproducing kernels opti-
mized for long-range intermolecular forces101 and with an
ML-based parametrization of Density Functional Tight-
binding (DFTB). The latter model provided error re-
ductions of up to 67% for test molecules containing 8
heavy elements compared to existing DFTB parametriza-
tions.102 Similarly, the MOB-ML approach uses localized
2-electron interaction integrals from Hartree-Fock calcu-
lations as input to construct a highly accurate and trans-
ferable GPR model. This is applied to the prediction of
CCSD correlation energies for a diverse range of molecu-
lar systems.103–105 The MOB-ML approach for instance
reaches chemical accuracy by using three times fewer
training data points for organic molecules with up to 7
heavy atoms compared to ∆-ML approaches. Transfer-
ability was tested with molecules with up to 13 heavy
atoms and MOB-ML could achieve chemical accuracy
with 36 times fewer data points compared with ∆-ML.104

Alternatively, rather than circumventing the solution
of iterative equations of correlated wavefunction meth-
ods, ML models may also be used to facilitate faster con-
vergence. On average about 40% reduction of the number
of iterations for different basis sets could be achieved by
Townsend and Vogiatzis 106 . They trained an ML model
to facilitate the convergence of CC methods based on
lower-level theory electronic structure data. Besides ML
models being powerful to accelerate the computation of
target properties, they can also be used to predict corre-
lated total energies of molecules based on Hartree-Fock
or DFT results. Examples are NeuralXC,107 DeepHC,108

and OrbNet109 which provide NN representations based
on atomic orbital features.

ML becomes increasingly important as an in-
tegrated element of solving quantum many-body
problems. First attempts to solve non-homogeneous or-
dinary and partial differential equations using ML algo-
rithms6,110–112 already date back to more than 20 years
ago for model systems and have recently been applied
to solve the quantum many-body problem for small or-
ganic molecular systems.113–120 These efforts have re-
cently been summarized in a comprehensive review16

and perspective.25 While they are conceptually exciting
and potentially transformative in solving the many body
problem, their integration into existing, widely accessible
electronic structure software may not be fully practicable
yet as existing models are limited to small system sizes
and not yet transferable.

Rather than using ML methods to learn a represen-
tation of quantum states, they can also be used to
parametrize electronic structure in an already known
representation that is compatible with well-established
electronic structure packages. Such ML models are
on their way to becoming an integrated element
of electronic structure codes. The resulting surro-

gate models, thereby, provide not only predictions of to-
tal energies and their derivatives, but further enable the
derivation of many additional properties. One such ex-
ample is the SchNOrb model (SchNet for Orbitals),75

which is based on the deep tensor NN SchNet.121,122

SchNOrb predicts Hamiltonians and overlap matrices in
local atomic orbital representation compatible with most
quantum chemistry software packages. Thus, it can be
trained with data from quantum chemistry codes and its
prediction can directly enter further quantum chemical
calculations, e.g., as an initial guess of the wave func-
tions in self-consistent field calculations or to perform
perturbation theory calculations of correlation energies.
Self-consistent field iterations could be reduced by an av-
erage of 77% when using the SchNOrb wave function as
an initial guess. Beyond that, it has been shown that the
model can represent interaction integrals in localized ef-
fective minimal basis representations, which benefits the
prediction accuracy for larger systems.123

ML suite

Database

I/O

Structure

Algebra
& MPI

Dynamics

Analysis

Modular hybrid ML/QM code

Integral engine

prediction

Property

FIG. 3. Electronic structure software is increasingly becoming
more modular. By moving away from monolithic (all-in-one)
code models to a modular design, atomistic ML toolkits and
data repositories, together with other standardized libraries,
can be more tightly integrated into electronic structure work-
flows.

Alternatively, an ML model may predict the elec-
tron density or a density functional.16,83,107,124 A
recent example of a deep learning framework to predict
the electronic density or properties related to the density
of a reference DFT method is DeepDFT.125 A symmetry-
adapted method that considers geometrical covariance
was proposed by Fabrizio et al. 126 and Grisafi et al. 127

to learn the charge density of different organic molecules
via Gaussian Process Regression (GPR) models.126,127

This model is physically inspired and learns the charge
density via a sum of atom-centered basis functions with
the coefficients of these functions being predicted by the
ML model. The authors achieve linear scaling with re-
spect to the number of atoms and allow for size-extensive
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transferability. The latter was showcased by training the
density of butadiene and butane and predicting the den-
sity of octa-tetraene and octane.127 Fabrizio et al. 128

have further shown on the example of organic molecules
that ML can be used to predict the on-top pair density in
combination with a newly developed basis set. The on-
top pair density can be used to assess electron correlation
effects of a target compound, which most often cannot be
described accurately using DFT. However, its evaluation
requires post-HF or multi-reference calculations, which
could be avoided due to the use of ML.

A universal density functional provided by an
ML model could potentially eliminate the need for ex-
haustively comparing different types of functionals for
a given chemical problem. So far, ML has been used
to generate new DFT functionals or to adjust the en-
ergy functional, bypassing the need to solve the iterative
Kohn-Sham equations and accelerating simulations for
the ground state104,107,129–134 and excited states135 sig-
nificantly. These models further promise better transfer-
ability for different types of molecular systems. Orbital-
free DFT is another effort that allows for more reli-
able DFT calculations, but it requires the kinetic en-
ergy density functional.136 However, various approaches
have been put forward to parametrize the kinetic energy
density functional with different kernel-based and deep
learning methods.137–140 Li et al. 124 recently presented
an approach that integrates the iterative self-consistent
field algorithm into an ML model to construct a learned
representation of the exchange-correlation potential for
1D model systems of H2 and H4.

The concept of ML-based Hamiltonian and density-
functional surrogate models directly leads to the con-
struction of approximate electronic structure mod-
els based on ML. Recently reported approaches
include an ML-based Hückel model,141 parametrized
Frenkel102,142–145 and Tight-binding (TB) Hamiltoni-
ans146 as well as semi-empirical methods with ML-tuned
parameters.147,148. Beyond that, several groups have
proposed to combine established DFTB Slater-Koster
parametrizations with kernel ridge regression or NN rep-
resentations of the repulsive energy contributions to im-
prove the accuracy and transferability of DFTB.149,150

On the example of the QM7-X data set151, a mean ab-
solute error of 0.5 kcal/mol could be achieved on the at-
omization energies of the DFTB-ML model compared to
hybrid DFT reference values.149

Future directions: We expect a vivid development re-
garding the tight integration of ML within electronic
structure software - an approach that some package de-
velopers already pursue (e.g., in the case of entos152 and
DFTB+153). Already in recent years, electronic struc-
ture software has started to move away from monolithic
(all-in-one) software to more modular designs with inter-
faces to general-purpose standalone libraries154 (see Fig.
3). These developments will be helpful in the future to
achieve integrated ML/QM solutions in computational
workflows. As can be seen in Fig. 3, existing atomistic

ML packages such as AMP,155 sGDML156 or SchNet-
Pack45,121 could be interfaced with electronic structure
packages that heavily expose internal routines (e.g., FHI-
aims,157 PSI4,158 or PySCF159) and be used alongside
dynamics packages such as i-Pi160 and SHARC,161,162 as
well as algebra and electronic structure libraries such as
ELSI2 and ESL.1 The structure generation, workflow and
parser tool Atomic Simulation Environment (ASE)163 is
for example already interfaced with the above examples
of AMP and SchNetPack. This could also involve a closer
integration with existing data repositories such as NO-
MAD,164,165 the Materials Project,164,165 the MolSSI QC
Archive166 or the Quantum Machine repository.167 Uni-
versal data communication standards between quantum
chemistry and ML will play an important role in the fu-
ture. Efficient and scalable multi-language interoperabil-
ity would further be needed to pursue the goal of tight
integration of ML in electronic structure theory. In the
future, we believe that ML will be part of many electronic
structure codes to enable highly accurate electronic struc-
ture predictions at generally low computational costs. In
this regard, data-efficient ML models are highly benefi-
cial. Many recent works have shown that incorporation of
symmetries and physical information into ML representa-
tions improves data efficiency, e.g., via the use of features
derived from efficient low-level methods such as Hartree-
Fock or MP2 theory to predict observables at high level
of theories.103 Existing electronic structure software may
further benefit from latent ML representations to mit-
igate existing bottlenecks in integral evaluations or to
efficiently represent scalar and vector field quantities.

V. ML WILL IMPROVE OUR ABILITY TO EXPLORE

MOLECULAR STRUCTURE AND MATERIALS

COMPOSITION

A key objective of computational chemistry and ma-
terials science is the prediction of new stable structures
and viable reaction pathways to synthesize them. Be-
yond the significance to the discovery of new drugs and
materials, finding stable equilibrium geometries and ac-
cessible transition states is a crucial element of compu-
tational molecular and materials discovery that typically
involves tailored workflows.168 As shown in Fig. 4, opti-
mization problems in atomistic simulation span different
scales from searching stable molecules across chemical
space to charting the global energy landscape spanned
by the chemical coordinates of a given molecule down
to local structure relaxation and transition state search.
Even without considering the computational cost of elec-
tronic structure calculations, high-dimensional structure
search is uniquely challenging and can be greatly facili-
tated by ML methods.

Efficient chemical exploration methods need to be
able to identify CVs in high-dimensional spaces that are
associated with relevant reaction events that occur at
vastly different time scales ranging from the femtosec-
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9

FIG. 4. Exploration methods can target different scales of molecular and material space. At the highest level, chemical
space, both chemical composition and structure are varied. Global exploration targets a single PES with constant chemical
composition and explores different structural conformations and their relative stability. At the lowest level, local details of the
PES such as reaction pathways and transition states are investigated.

ond regime (electron transfer and vibrational motion)
to multiple nanoseconds (configurational dynamics of
biomolecules)169. It is therefore not surprising that the
use of a variety of methods that fall under the umbrella
of ML, has led to a significant boost in the capability to
explore chemical structure space.

Even a task that is nominally as simple as finding
the nearest equilibrium structure, i.e., the local
minimum of the potential energy landscape, can benefit
from ML approaches. The most common geometry op-
timization algorithms are based on quasi-Newton meth-
ods that determine trial steps based on an approximate
Hessian. Finding optimal initial guesses and precondi-
tioners for the Hessian is key to minimizing the number
of geometry optimizations that are required. Recently,
several more sophisticated preconditioning schemes have
been proposed based on GPR that, compared to es-
tablished quasi-Newton algorithms, significantly reduce
the required number of geometry optimization steps for
molecules and transition metal complexes170–172, for cor-
related quantum chemistry methods that require nu-
merical differentiation173, and for bulk materials and
molecules adsorbed at surfaces.174,175 Furthermore, un-
supervised ML can be used to automatically identify if
geometry optimization has failed or led to an irrelevant
outcome as recently shown for transition metal com-
plexes.61

ML methods have also recently been used to ac-
celerate the search of first-order saddle points or
transition states. Denzel and Kästner have used GPR
to speed-up gradient-based transition state search start-
ing from an equilibrium structure (one-ended search) by
a factor of 2 compared to conventional methods.170,176 Si-
multaneously, several approaches have been proposed to
incorporate aspects of ML into double-ended transition
state search based on the Nudged Elastic Band (NEB)
method.177–179 Garrido Torres et al. 179 have proposed a

surrogate GPR model to accelerate a NEB method, lead-
ing to a factor of 5 to 25 fewer energy and force evalua-
tions when compared to the conventional NEB method.

One of the most challenging tasks, namely identifying
the global minimum of a potential energy land-
scape associated with the most stable structure,
can be significantly facilitated by the use of ML. Estab-
lished methods to perform global optimization are often
evolutionary algorithms or stochastic methods. Exam-
ples for the former are genetic algorithms180 and for the
latter random structure search181 or basin hopping.182,183

A prominent example of a global optimisation problem
on a complex high-dimensional energy landscape is pro-
tein folding. Here, the alphaFold184 and alphaFold2185

deep NN models were recently able to show what can
be achieved when ML and structure optimisation meth-
ods are combined. In alphaFold, the ML model predicts
residue distances and torsional angle distributions. On
the basis of this, a coarse-grained potential is constructed
to perform a sequence of random structure search and
optimization cycles. Hammer and coworkers have pro-
posed a global structure prediction algorithm, called
ASLA, based on image recognition and reinforcement
learning.186,187 The use of image recognition to identify
structural characteristics removes the need for encoding
strings such as SMILES or descriptors of the atomic en-
vironment. The approach is applicable to molecules as
well as materials and has been showcased on graphene
formation, and oxide surface reconstructions.188 In the
case of graphene, the method is able to generate graphene
as the most stable two-dimensional phase starting from
initially random atom placement. Bayesian optimisation
has become a common tool to achieve efficient structure
prediction for crystals,189,190 surface reconstructions,191

and hybrid organic/inorganic interfaces to name just a
few examples.192,193 They often outperform evolutionary
algorithms in terms of efficiency.
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As shown in Figure 4, one level above the search for
stable structures in energy landscapes lies the search for
possible stable molecular compositions in chemical space.
Generative ML models have recently shown great util-
ity to predict molecules with tailored properties194,195,
for example using SMILES representation196 or molec-
ular graphs197. While these are supervised approaches
that require reference data for training, several related
approaches have been proposed that use reinforcement
learning.198,199 These models can further be constrained
to only predict SMILES strings that are chemically
valid.200,201 Well beyond providing stability ranking, this
approach can be used to generate molecules with arbi-
trary target properties to be used in drug and materials
discovery. Unfortunately, molecular graph-based genera-
tive models are limited in their applicability, since they
can not distinguish between different conformations that
lead to the same graph. However, for applications such as
protein folding, optimizing reaction environments or find-
ing reaction paths, it is paramount to have full access to
conformation space. Mansimov et al. 202 proposed a gen-
erative model to sample 3d conformations from SMILES.
This approach suffers from the same limitations as the
graph representation it is built upon when properties are
directly related to the 3d structure. There have been sev-
eral recent efforts to directly generate 3d molecular struc-
tures: Köhler, Klein, and Noé 203 proposed equivariant
normalizing flows, which are able to estimate a probabil-
ity density over many-particle systems. This has been ap-
plied to finding meta-stable states of large Lennard-Jones
systems. Gebauer, Gastegger, and Schütt 204 introduced
G-SchNet that places atoms successively, incorporating
rotational and translational symmetries. The model can
be fine-tuned to generate molecules with properties in a
specified target range.

Future directions: With ML methods affecting every
aspect of our ability to explore molecular configurations
and compositions, their routine application to facilitate
continuous exploration across composition space is not
far, which would allow for the variation of the number
and type of atoms in the system via ML-enabled al-
chemical optimization. So-called alchemical poten-
tials have long been applied to rational drug design205,206

and changing of reaction barriers.207 ML methods, such
as NNs, have shown to be capable of modeling alchemi-
cal potentials208,209 as well as to produce smooth paths
through alchemical space.210 We expect a lot of activity
in this area in the future with ML methods enabling the
continuous variation of elemental composition in materi-
als to optimize their properties.

VI. ML ENABLES CLASSICAL AND QUANTUM

DYNAMICS FOR SYSTEMS OF UNPRECEDENTED SCALE

AND COMPLEXITY

The dynamical motion of atoms is a central target of a
large part of computational research. In molecular sim-

ulation, we study the time evolution of electrons and
atoms to predict static and dynamic equilibrium prop-
erties of molecules and materials at realistic temperature
and pressure conditions, but also to understand nonequi-
librium dynamics and rare events that govern chemical
reactions. Dynamics methods range from classical MD,
via mixed quantum-classical dynamics (MQCD) methods
(incorporating electronic quantum effects) to quantum
dynamics in full quantum or semi-classical formalisms. In
all cases, equations of motion need to be integrated over
time, which involves numerous evaluations of forces and
other properties that govern the dynamics. ML methods
can address bottlenecks in such simulations on various
levels: Their most prevalent use is to speed up energy,
force, and property evaluations in each time step by pro-
viding ML-based force fields and interatomic potentials.
Other ML approaches directly target MD by supporting
coarse-graining and the use of larger time steps, or by
replacing MD completely with a direct prediction of dy-
namical properties, expectation values, and correlation
functions.

The most obvious way in which ML can facilitate
MD simulations is the use of ML-based interatomic
potentials instead of on-the-fly ab-initio MD.
Many early applications of ML in molecular simulation
were mostly focused on ML parametrization of elec-
tronic structure data for the benefit of MD simulation.
ML-based interatomic potentials that replace electronic
structure evaluation during dynamics are by now com-
monly established, see, e.g., Refs. 211, 18, and 212, and
have since enabled simulations of unprecedented com-
plexity and scale. For example, a recent breakthrough
by Deringer et al. 213 showed that Gaussian Approxima-
tion Potentials7,209 could be used to predict phase tran-
sitions and electronic properties of systems containing
more than 100,000 atoms. Jiang, Li, and Guo 214 have
recently reviewed the transformative role that ML-based
high-fidelity PESs play in gas-surface dynamics simula-
tions.

In principle, approaches can be distinguished between
those that sample molecule deformations around an equi-
librium geometry, e.g. for optimizations,215 or those that
consider "reactive" potential energy surfaces.214,216–220

An alternative approach is to directly predict targeted
simulation properties such as reaction yields.221,222 A
key factor in building ML force fields for MD simula-
tions is the efficient and comprehensive sampling of rele-
vant data points. Active learning schemes have been pro-
posed84,223–227 to efficiently sample the relevant configu-
ration space that a molecule visits during an MD simula-
tion. These schemes are based on an uncertainty measure
during ML dynamics, which can be used to detect un-
explored or undersampled conformational regions. The
uncertainty measure could be for instance the deviation
of two NNs or the statistical uncertainty estimate of the
inferences made with, e.g., GPR. One way to measure
the accuracy and interpolative regime of ML models is
to use the previously mentioned adaptive sampling tech-
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niques also during the production runs. This allows to
detect holes in the potential energy surfaces on-the-fly.84

By using gradient-domain ML models that are trained
on gradients rather than energies, energy-conserving ML
force fields can be obtained with high accuracy and little
amount of training data required.156,228,229 ∆-ML mod-
els, in the context of MD simulations, have also proven to
be very powerful in providing a data-efficient representa-
tion of CC accuracy from DFT data98 or DFT accuracy
from mostly DFTB data in the context of QM/MM sim-
ulations90, to name two recent examples. Beyond the use
of ML to facilitate accurate force evaluations in MD, ML
methods have been used to enable the simulation of rare
events that occur on time scales inaccessible to conven-
tional MD. A perspective review that recently arose from
a CECAM conference on "Coarse-graining with ML in
molecular dynamics" provides a comprehensive overview
of ML for free energy sampling, coarse-graining, and
long-time MD17.

ML methods help to identify CVs, which char-
acterize long-time dynamics of molecular systems.
This is important to identify long-lived attractor states
in phase spaces and to find strategies to efficiently explore
dynamics in complex hierarchical energy landscapes, e.g.,
for the isomerization of alanine dipeptide230 or for protein
folding.231 ML methods in this domain based on principal
component analysis232 date back to over 20 years ago.233

More recent approaches include kernel principal compo-
nent analysis234–236, diffusion maps,237–239, the Sketch
map method,240,241 Markov state models242,243 and var-
ious types of autoencoders.244,245

Several ML models have been developed that aim to
achieve bottom-up coarse-graining by representing
the potential of mean force or free energy surface as
a function of coarse grained variables. This has been
done for instance using NNs to infer conformational
free energies for oligomers246 or to construct a coarse-
grained liquid water potential247 or using a Gaussian
approximation-based coarse-grained potential for alanine
dipeptide248 and molecular liquids.249

MQCD, i.e., classical dynamics of nuclei coupled to the
time-dependent quantum mechanical evolution of elec-
trons, are commonly used to simulate light-induced nona-
diabatic dynamics of molecules,250–252 as well as cou-
pled electron-nuclear dynamics in extended systems.253

While on-the-fly MQCD simulations have become feasi-
ble in the last decade, the accessible time scale and the
number of non-equilibrium trajectories that can realisti-
cally be simulated on-the-fly is too limited to enable com-
prehensive statistical analysis and ensemble averaging.
ML shows great promise in nonadiabatic excited-
state simulations20,21 as documented by recent works
using NNs to construct excited-state energy landscapes
to perform fewest-switches surface hopping MD at longer
time scales or with more comprehensive ensemble aver-
aging than would otherwise be possible with on-the-fly
dynamics.84,254,255 Similar progress has been achieved
in nonadiabatic dynamics at metal surfaces, where NNs

have been used to construct excited-state landscapes4,256

and continuous representations of the electronic friction
tensor257 used in MD with electronic friction simula-
tions.258,259

Even full quantum dynamics simulations have re-
cently seen an increasing uptake of ML methodology to
push beyond longstanding limitations in the dimension-
ality of systems that can be simulated. The main bottle-
neck in quantum dynamics simulations is not the evalu-
ation of the temporal evolution of the electrons, but the
temporal evolution of the nuclear wavefunction, which in-
volves computations that (formally) scale exponentially
with the number of atoms in the system. Potential en-
ergy landscapes in quantum dynamics are typically rep-
resented in a diabatic basis rather than the adiabatic
representation (directly outputted by electronic structure
codes) in a process called (quasi-)diabatization.260,261

However, quasi-diabatization requires expert knowledge
and is highly complex for more than two coupled elec-
tronic states. The construction of diabatic representa-
tions with deep NNs has recently shown great potential to
simplify and automate this laborious task.87,262–266 Be-
sides the PES generation itself, recent works use GPR to
fit the diabatic PESs in reduced dimensions.267–270 One
of the largest ML-enhanced quantum dynamics simula-
tion was recently performed on a 14-dimensional energy
landscape for a mycosporine-like amino acid271.

The computational efficiency of ML models is an im-
portant point to consider. MD simulations based on ML
models are considerably more efficient than ab initio MD,
yet still relatively slow compared to empirical force fields.
For example, 100 femtosecond MQCD MD of CH2NH+

2

on a single compute core take 24 seconds with ML po-
tentials compared to 74,224 seconds with the reference
method (MR-CISD/aug-cc-pVDZ).254 The simulation of
100 femtosecond classical MD of the same molecule in the
gas phase with an empirical force field takes 0.005 sec-
onds with Amber.272 The computational efficiency of ML
models can become a bottleneck if long time scales or en-
semble averages over many thousands of reaction events
are required. Similar memory and CPU efficiency bottle-
necks can arise during model training of kernel methods
and deep neural networks if large training data sets and
complex high dimensional models are involved.

Future directions: ML-based interatomic potentials
and continuous regression models already play an impor-
tant role across almost all domains of MD simulations
and we expect that the use of ML in MD will further in-
crease in the coming years. As larger and more complex
systems are targeted and longer time scales are needed, a
future challenge that needs to be tackled is the computa-
tional efficiency of ML models, especially for MD simu-
lations. The concept of sparsity in terms of ML methods
and data representation can lead to better computational
efficiency. Recently, explicit atomic high body order ex-
pansions in permutationally invariant polynomials (e.g.
aPIPs273, ACE274) have emerged as appealing alternative
to kernel and deep learning methods as they accurately
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FIG. 5. Depiction of how ML methods can act as a bridge be-
tween theory and experiment. ML models trained on theory
predict spectra with realistic lineshapes. At the same time,
ML models can be used to infer structural information from
experimental measurements.

allow high-dimensional parametrization as a function of
atomic coordinate spaces and can be trained by linear
regression. As a result, both training and evaluation are
highly efficient with evaluation times on the order of few
milliseconds per atom.275 While most approaches focus
on assisting MD by providing highly-accurate interatomic
potentials and force fields, they have also shown great
potential in predicting dynamical properties directly and
skipping the MD simulation completely or in assessing
the validity of different approximations in dynamical sim-
ulations. The latter has only recently been shown by
Jasinski et al. 276 with a Bayesian model to estimate er-
rors due to different approximations in quantum scat-
tering simulations. Going forward, complex dynamical
simulation methods will become more accessible to non-
expert users with the help of ML and will open avenues to
tackle complex systems in solvent environments71 or dy-
namics at hybrid organic-inorganic interfaces.259 It is ev-
ident that ML methods will play an important role in ex-
tending the range of applications for MQCD methods in
the coming years. A recent work by Brieuc et al. 277 em-
ploying ML methods to achieve converged path-integral
MD simulations of reactive molecules in superfluid he-
lium under cryogenic conditions is an exemplary show-
case of what the synergy of ML and quantum dynamics
methods can achieve.

VII. ML HELPS TO CONNECT THEORY AND

EXPERIMENT

The ultimate goal of computational molecular and ma-
terials simulation is to connect theory and experiment.
This could mean supporting the explanation of experi-
mental outcomes or finding new theoretical rules in obser-
vations, in both cases leading to a better understanding
of the physical world and its laws. Forming this con-
nection is a hard task. A plethora of different effects
need to be considered in even the simplest atomistic sys-
tems, making it very difficult to faithfully reproduce ex-
perimental conditions in silico. On the other hand, ex-
perimental observations can be obscured by a variety of
influences or by the sheer complexity of the measured
signal. As we have seen in the preceding sections, ML
approaches can increase the accuracy of predic-
tions and the speed with which they can be ob-
tained. This makes it possible to carry out computa-
tional studies which close the gap between theory and
experiment by more efficiently incorporating experimen-
tal parameters such as finite temperature, measurement
conditions, and solvent effects. Moreover, ML techniques
can also provide invaluable support in extracting infor-
mation from experimental observations and uncovering
trends that are not directly apparent to the practitioner.

One field which has greatly profited from these devel-
opments is computational spectroscopy. The pre-
diction of spectroscopic properties is a central aspect of
computational modeling, as it provides results which can
be directly compared against experiments. Examples
of successful ML applications include the prediction of
different vibrational spectra, combined with different re-
sponse properties of the electric field. Gastegger, Behler,
and Marquetand 226 have combined a latent charge dipole
model with interatomic potentials in order to efficiently
simulate infrared spectra (IR) of organic molecules in gas
phase without having to resort to electronic structure
computations of the molecular dipole. This approach has
further been applied to model absorption spectra.77,144

Raimbault et al. 278 introduced a kernel approach for pre-
dicting the Raman spectra of organic crystals based on
molecular polarizabilities. Using a NN based approach,
Sommers et al. 279 have demonstrated that ML can also
be used to simulate Raman spectra of extended systems
such as liquid water, which would be computationally
unfeasible when done with DFT. In addition to vibra-
tional spectra, ML models are also capable of model-
ing response properties, allowing the simulation of elec-
tronic excitations using, e.g., MQCD approaches (see
Section VI). For example, Zhang et al. 144 use NN mod-
els to obtain transition dipole moments, which in turn
could be used to predict UV and visible light spectra.
ML approaches have further been used to predict nu-
clear magnetic resonance (NMR) spectra from molecular
simulations. Paruzzo et al. 280 , for example, have used
the kernel model from Ref. 278 to predict the chem-
ical shifts in molecular solids. Recently, Christensen et
al. have introduced an electric field dependent descriptor
in the FCHL Kernel framework281. Based on this, they
have derived molecular dipole moments as a general re-
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sponse to the electric field, which can be used to simulate
IR spectra of small organic molecules. Gastegger, Schütt,
and Müller 70 have applied a response theory approach in
combination with a deep NN architecture which explic-
itly depends on electric and magnetic fields. They could
show that, in this manner, a single ML model can predict
IR, Raman and NMR spectra. Moreover, by introducing
the field generated by a molecular environment they were
able to model the effect of solvents on the resulting spec-
tra.

Beyond that, ML offers the possibility to directly ex-
tract information from experimental observations
and relate them to fundamental chemical concepts. One
example is the use of ML to interpret different types of
spectroscopic measurements to determine structural or
electronic properties of molecules and materials. Fine
et al. 282 have recently presented a ML approach to ex-
tract data on functional groups from infrared and mass
spectroscopy data, while Kiyohara et al. 283 have success-
fully applied a ML scheme to obtain chemical, elemental,
and geometric information from the X-ray spectra of ma-
terials. Another application where ML shows promise is
the automated interpretation of nuclear magnetic reso-
nance spectra with respect to atomic structure, which
typically relies heavily on experience.284

However, ML can also be used to leverage infor-
mation contained in large collections of scientific
data. The majority of chemical knowledge is collected
in the form of publications. ML approaches such as nat-
ural language processing and image recognition offer the
possibility to directly distill functional relationships and
chemical insights from the massive body of scientific liter-
ature. For instance, Tshitoyan et al. 285 have used natural
language processing to extract complex materials science
concepts, such as structure property relationships, from a
large collection of research literature. They could further
demonstrate, that their model was able to generalize on
the learned concepts and recommend materials for differ-
ent functional applications. Raccuglia et al. 286 recently
trained a ML model using information on failed experi-
ments extracted from archived laboratory notebooks to
predict the reaction success for the crystallization of tem-
plated vanadium selenites. Their model was able to learn
general reaction conditions and even revealed new hy-
potheses regarding the conditions for successful product
formation.

Finally, ML offers new ways in which theory
can guide experiment. Two fields where ML has
played a transformative role are molecular/materials
discovery and computational high-throughput
screening, with several reviews summarizing re-
cent advances.13,31,33,34,36,287 The combination of high-
throughput screening with accurate and efficient ML
models has proven to be highly valuable, as it allows to
substitute most of the required electronic structure cal-
culations288. Examples of what is possible in this space
include the objective-free exploration of light-absorbing
molecules,289 drug design,290 the computational search

for highly active transition metal complexes that catal-
yse C-C cross coupling reactions,291 or the discovery of
new perovskite materials292 or polymers for organic pho-
tovoltaic applications.293,294

Still, chemical space is estimated to cover more
than 1060 molecules295, hence exhaustive computational
screening remains infeasible – even with fast and ac-
curate ML models. In this context, ML-enabled in-
verse design offers a promising alternative by reversing
the usual paradigm of obtaining properties from struc-
ture296,297. Instead, the aim is to create structures ex-
hibiting a range of desired properties. Since such ML
models readily provide analytic gradients, an application
to property-based structure optimization is straightfor-
ward. First steps of applying ML in these areas have re-
cently been achieved. Examples include the optimization
of the HOMO-LUMO gap as demonstrated by Schütt
et al. 75 and relaxation for crystal structure prediction as
investigated by Podryabinkin et al. 298 . While ML only
provides gradient-based local optimization in these ex-
amples, it can be combined with genetic algorithms298 or
global optimization methods such as simulated annealing
or minima hopping299.

Future directions: While ML techniques and atomistic
ML potentials in particular have contributed greatly to
closing the gap between theory and experiment, a range
of open issues remains. Problems that have only re-
cently begun to be studied include how to extend ML
simulations to efficiently reproduce different experimen-
tal conditions, such as solvents or electromagnetic fields.
Another frequently encountered issue concerns the data
efficiency of ML models, as well as the availability of
reliable reference data. For example, most generative
models and inverse design approaches to date primarily
target simulated properties rather than experimentally
measured ones. While calculated quantities (e.g. redox
potentials, singlet-triplet gaps) can offer invaluable guid-
ance for design endeavors, they ultimately represent ap-
proximations to the physical characteristics of a system,
which can only be fully captured through experiments
(e.g. full-cell study for redox kinetics and electrochem-
ical stability). Successful design endeavors therefore of-
ten combine theoretical computations with experimental
data or calibrate against them300,301.

VIII. OUTLOOK

We expect that ML methods will soon become an
integrated part of electronic structure and molecular
simulation software pushing the boundaries of existing
techniques toward more computationally efficient simu-
lations. ML methods may for example replace complex
integral evaluations in the construction of Hamiltonians
and secular equations or they can provide improved ini-
tial guesses to iteratively solve integro-differential equa-
tions. ML methods can further help to describe non-
local effects in time and space and provide mechanisms
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for on-the-fly uncertainty quantification and accuracy im-
provements. The beneficial scaling properties of ML al-
gorithms with respect to the size of atomistic systems
will play an important role in extending the range of ap-
plication of existing electronic structure and dynamics
simulation methods. The application of ML to MQCD
simulations will make it possible to reach currently un-
feasible time and length scales beyond few picoseconds
and tens of atoms. This will in turn require the improve-
ment of existing molecular simulation methods to capture
long time dynamics. As we explore systems of increas-
ing size, we will be able to better study the boundary
between quantum effects at the nanoscale as well as col-
lective many-body effects and fluctuations at the meso-
and macroscale.302

A necessary requirement is the establishment and the
distribution of user-friendly and well-maintained sim-
ulation software with tight integration of ML
methodology in chemistry and materials science. Soft-
ware solutions will need to be modular to allow interfac-
ing with well-established deep learning platforms such as
TensorFlow or PyTorch. This should involve the estab-
lishment of common data standards to easily communi-
cate atomistic simulation and electronic structure data
between chemistry and ML packages. In many ways,
this requirement is in line with recent trends of increased
modularity of codes via general libraries such as ESL1

and ELSI2 (see Fig. 3). A recent initiative toward an in-
tegration of ML is the ENTOS quantum chemistry pack-
age and ENTOS AI152.

Another challenge ahead is related to establishing a
culture of openness and willingness to share data
and ML models as the availability of training data is
a crucial aspect of driving advances in this field. While
data sharing is quite common in material science, it is
not yet so common in computational molecular science.
Well defined materials data standards as put forward by
the Fair Data Infrastructure project (FAIR-DI)303 and
ab-initio data repositories such as for example the NO-
MAD repository164,165, the Materials Project304, and the
MolSSI QCArchive166 are needed in all research areas.
The need for open access to vast amounts of data will
need to be balanced against other needs, such as com-
mercial interests that arise from industrial research or
commercial software projects.

Sustainable integration of ML methods into widely-
used software will require long-term community effort
and might be less glamorous than exciting proof-of-
principle applications of ML in chemistry and materials
science. Research funding agencies, reviewers, and indus-
trial stakeholders need to acknowledge this and ensure
that sustained funding for such efforts is put in place.

If achieved, an integration of ML methodology into
electronic structure and molecular simulation software,
will induce lasting change in workflows and capabili-
ties for computational molecular scientists. Furthermore,
it will offer the opportunity to reconsider many of the
underpinning design choices of electronic structure and

molecular simulation software packages which, in many
cases, historically arose from computational efficiency
considerations. For example, Gaussian basis represen-
tations have been chosen decades ago in quantum chem-
istry due to the ease of evaluating multi-centre integrals.
If ML methods can vastly facilitate the evaluation of
multi-centre integrals, are Gaussian basis functions still
the best choice of basis representation?

An integration of ML and molecular simulation will
drastically widen participation in the field and uptake of
our methods and problem solving approaches. If codes
require dramatically fewer computing resources and offer
the ability to directly predict experimentally accessible
quantities, computational simulation will become more
appealing as a complementary tool in synthetic and ana-
lytical labs. In many industrial applications, cost-benefit
analysis requires that a clear correspondence exists be-
tween the cost of delivering predictions and the accuracy
and precision that is required for an application. The
use of ML methods within such workflows will hopefully
also provide a drive toward establishing better measures
of uncertainty in atomistic simulation.

Finally, the method portfolio and skill set of
computational molecular scientists will need to
adapt as a consequence of the growing importance of
ML methods in electronic structure theory and molec-
ular simulation. In many cases, the presence of some
aspects of ML "under the hood" of existing methods and
workflows will not change how we apply these methods.
For example, a DFT functional parametrized by a ML
approach, can be applied as any existing functional (al-
though its range of applicability might be very different).
In other cases, the presence of ML methods will funda-
mentally change basic workflows as we have discussed
across the sections of this perspective. In those instances,
practitioners need a basic understanding of ML concepts
and the different models that they are working with. This
involves knowledge of the capabilities and limitations of
most standard applications to avoid pitfalls. As such,
ML methodology will have to become an integral part
of education in computational chemistry and materials
science.
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