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Abstract: Nanoparticles are explored as drug carriers with the promise for the treatment of dis-
eases to increase the efficacy and also reduce side effects sometimes seen with conventional drugs.
To accomplish this goal, drugs are encapsulated in or conjugated to the nanocarriers and selectively
delivered to their targets. Potential applications include immunization, the delivery of anti-cancer
drugs to tumours, antibiotics to infections, targeting resistant bacteria, and delivery of therapeutic
agents to the brain. Despite this great promise and potential, drug delivery systems have yet to
be established, mainly due to their limitations in physical instability and rapid clearance by the
host’s immune response. Recent interest has been taken in using red blood cells (RBC) as drug
carriers due to their naturally long circulation time, flexible structure, and direct access to many
target sites. This includes coating of nanoparticles with the membrane of red blood cells, and the
fabrication and manipulation of liposomes made of the red blood cells’ cytoplasmic membrane.
The properties of these erythrocyte liposomes, such as charge and elastic properties, can be tuned
through the incorporation of synthetic lipids to optimize physical properties and the loading ef-
ficiency and retention of different drugs. Specificity can be established through the anchorage of
antigens and antibodies in the liposomal membrane to achieve targeted delivery. Although still at
an early stage, this erythrocyte-based platform shows first promising results in vitro and in animal
studies. However, their full potential in terms of increased efficacy and side effect minimization still
needs to be explored in vivo.

Keywords: nanoparticles; red blood cell liposomes; erythrocyte liposomes; targeted drug delivery;
infectious diseases; antibiotics; immunization; neurodegenerative diseases

1. The Status Quo: Current Day Use of Nano Carriers in Drug Delivery

Nanocarriers have been introduced as a solution to the barriers of random distribution,
low bioavailability, toxic side effects, and rapid degradation of current drug formulations.
The goal of drug delivery technologies is to improve patient health by enhancing the deliv-
ery of a therapeutic to its target site, minimizing off-target accumulation, and facilitating
patient compliance [1]. A few decades ago, small-molecule drugs were the primary class of
therapeutics. Over time, new generations of therapeutics, including proteins and peptides,
monoclonal antibodies, nucleic acids, and live cells have provided new therapeutic func-
tions. For all drugs, the goal of delivery is to maximize therapeutic efficacy by transporting
and releasing the drug (passively or actively) to the target site in the body and by mini-
mizing off-target accumulation of the drug. These systems include hydrogels, polymeric
implants, microparticles, and nanoparticles, which allow for particle-surface modifications
to enhance drug half-life and the targeting of particular tissues through specific interactions
with the microenvironment.

Nanoparticle drug delivery systems have been used in the clinical setting since the
early 1990s. More than 30 nanoparticles platforms have been approved by the Food and
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Drug Administration (FDA) or European Medicines Agency (EMA) and more than 120 sys-
tems are in or have entered clinical trials [2,3]. Oral, local, topical, and intravenous admin-
istration have been approved by the FDA for the delivery of nanoparticles/microparticles.
Intravenous administration of nanoparticles is the most promising as nanoparticles de-
livered systemically have direct access to nearly all parts of the body and have the most
potential to influence clinical care [4]. However, systemically delivered nanoparticles
also face exceedingly difficult challenges with regards to both the delivery aspect and
the regulatory aspect and approval challenges. Nanoparticles possess advantages over
many intravenously administered pharmaceuticals and biologics. Many of the currently
approved and clinically investigated nanoparticles are polyethylene glycol (PEG) termi-
nated or PEGylated which limits interactions with, and rapid clearance by, immune cells.
In doing so, nanoparticles can remain in circulation for longer periods of time and increase
their chances of reaching and entering target sites.

While nanomedicine holds potential to improve anticancer therapy, patients often
only benefit from nanomedicines in clinical practice because of reduced or altered side
effects. Despite the approval of an increasing number of nanomedicinal anticancer drugs,
the success rate of clinical translation remains relatively low [5]. There is a striking imbal-
ance between the ever-increasing number of preclinical studies reporting the development
of ever more complex nanomedicines on the one hand, and the relatively small number
of nanomedicine products approved for clinical use on the other. Of the nanomedicines
that are approved, few are recommended as first- line treatment options, and many show
improvements in only a small subset of patients. This is due, in part, to the underex-
plored heterogeneity both in the biological underpinnings of diseases and among patients,
which alters efficacy because the growth, structure, and physiology of diseased tissue alter
nanoparticle distribution and functionality [6].

Applications of synthetic drug delivery systems can be limited due to inefficiency,
cytotoxicity and/or immunogenicity [7]. When carried by a delivery system, the clearance
and tissue distribution profile of a therapeutic are mainly governed by the characteristics
of the vehicle rather than the physicochemical properties of the drug molecule. In this
respect, biomimetic drug delivery system mimic the unique structures, functions, and
biosynthetic pathways of biological systems (whole cells, structures or composition of
cell membrane, and the natural budding processes of exosomes) [8]. Advantages are
their high biocompatibility, low immunogenicity, long systematic circulation, and lesion
targeting. Systems include cell membrane-camouflaged nanoparticles, extracellular vesicles,
lipoprotein-coated nanoparticles, and virus-like nanoparticles. The aim of this perspective
is to discuss endogenous, red blood cell based carriers and their potential advantages over
existing synthetic and biomimetic platforms. In theory they should have the potential to
overcome some of their limitations in terms of biocompatibility, delivery efficiency and
heterogeneity, which has yet to be proven in clinical trials.

2. The Problem: Limitations of Synthetic Nanocarriers

Nanocarriers show promise as molecules can be conjugated to their surface or encapsu-
lated inside to achieve improved drug stability, targeted delivery, and uniform distribution
in the target organ to reduce side effects [9–11]. Moreover, ligands or proteins can be conju-
gated to the surface to achieve targeted delivery thereby reducing the random distribution
of the therapeutic molecule throughout the body. If the desired drug is retained in the
nanocarrier efficiently, sustained release can be established; the drug can be retained in the
nanocarrier for long periods in circulation, allowing for greater doses to be administered to
the target. The two main nanocarriers widely accepted in clinical settings are nanoparticles
and liposomes.

Nanoparticles can be further classified according to their physical and chemical
properties, and fall mainly under the two categories: inorganic or organic nanoparticles.
They can be optimized by modifying the size, shape, charge, and hydrophobicity to achieve
the most efficient delivery system [3]. Nanoparticle-incorporated Natural killer T cell
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ligands have shown potential as an immunoadjuvant in the formulation of vaccines [12].
Their versatile properties allow for a wide range of applications such as creating contrast
in ultrasound and MRI imaging, cancer treatment, and triggered release delivery systems.
Despite their potential, one of the major concerns regarding nanoparticles is related to their
toxicity. Inorganic nanoparticles, in particular, have been shown to accumulate in areas
such as the spleen, liver, and kidney where they may initiate cell lysis and inflammation,
DNA damage, and oxidative stress [13].

Liposomes are composed of phospholipids that form one or more bilayers that can
accommodate hydrophobic or lipophilic drugs, and an internal aqueous phase where
hydrophilic drugs can be encapsulated. The different systems are sketched in Figure 1.
They can be designed using lipids abundant in cellular membranes to improve biocompati-
bility and to enhance the interaction between liposome and target cell. In this sense, the
ability to mimic biological membranes makes liposomes superior to nanoparticles as they
do not have to be extensively modified to achieve biocompatability and have minimal toxic-
ity. Phospholipids with varying degrees of charge can further be used to enhance retention
of charged molecules by making them attractive to the lipid membrane. By using phospho-
lipids with different properties, the size, composition, and fluidity of the liposome can be
modified to obtain the most optimal drug carrier. Through incorporation of a tetrapeptide,
Tuftsin-bearing liposomes demonstrated greater immunogenicity by increasing the T cell
proliferation and antibody secretion [14]. Immunoliposomes can be produced through
the incorporation of antibodies to the liposome’s exterior to achieve targeted delivery.
Additionally, incorporation of particular ligands can produce liposomes responsive to cer-
tain environmental stimuli, allowing for drug release in specific environmental conditions
throughout the body.

Hydrophilic Molecules

Molecule Association Surface Modification

Charged Liposome Pegylated Liposome

Charged Molecules Hydrophobic Molecules
Immunoliposome

Environment Sensitive

           Liposome

+

+

+

+

+

-

+-
-

-

-

-

-

Figure 1. (Left) Liposomes can be loaded with molecules of different properties. Hydrophilic
molecules are preferably located in the aqueous core, hydrophobic molecules localize within the
membrane, and charged molecules may associate with the membrane surface. (Right) Surface
properties can be tuned by charged lipids, lipids with a bound polymer, e.g., polyethylene glycol
(PEG), lipids functionalized with ligands (yellow), and incorporated proteins (green).

Despite the advantages that liposomes offer in drug-delivery, liposomes are still highly
susceptible to rapid clearance through the reticuloendothelial system (RES), and their
accumulation in the liver and spleen that limits the dose that reaches the target site [7].
Researchers have found that coating the liposome in polyethylene glycol (PEG) produces
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long-circulating drug-carriers with increased stability. Additional known limitations of
liposomal drug delivery are chemical instability during storage, physical instability under
physiological conditions that potentially lead to drug leakage and low encapsulation
efficiencies [15].

3. Erythrocyte-Based Carriers Have Advantages (If They Work)

Red blood cells (RBCs) should have a high potential as drug carriers, as they have
high biocompatibility and can prolong the life of drugs in circulation for weeks [16].
The challenge with modifying RBCs is that they may be taken up by macrophages in the
spleen and liver, where they undergo lysosomal degradation. Drugs and nanocarriers
can be coupled to the RBC surface to allow for hitch-hiking to target sites accessible by
the RBCs and further redistribution from blood to plasma. The conjugation of drugs to
the RBC surface shows promise, as it reduces damage, retains high RBC biocompatibility,
and enhances pharmacokinetics. Small drugs that can diffuse through the membrane
tend to be more active when they are coupled to the surface, and RBCs were found to
effectively deliver drugs to intravascular targets and targets in the reticuloendothelial
system. However, delivery of RBCs to other tissues is limited due to inaccessibility [17,18].
For instance, thrombomodulin (TM) conjugated to RBCs can effectively inhibit clot for-
mation with improved pharmacodynamics and bioavailability compared to free TM [19].
Many therapeutic proteins are limited by the humoral immune response and are thus not
used in clinical settings. However, by binding to erythrocytes, the immunological tolerance
to Escherichia coli L-asparaginase-II (ASNase) was increased [20], indicating that enzyme
conjugation to erythrocytes can enhance pharmocodynamics.

Further studies have investigated the use of erythrocyte membranes themselves in
drug delivery by coating the synthetic nanocarriers. RBCs’ blood groups serve as pro-
tection from the body’s immune system, making unnecessary the addition of molecules
such as polyethylene glycol (PEG) to increase the drug carrier lifetime in circulation [17].
Even with the addition of PEG, synthetic liposomes only exhibit a half-life in blood of
3–6 h, significantly less than the RBC half-life of 10–15 days. Thus, if membrane extraction
is performed properly, all of the proteins providing RBC immunity should be preserved
and therefore nanocarriers coated with RBC membranes should maintain similar levels
of immune protection. Biodegradable polymeric nanoparticles coated with erythrocyte
membranes showed an increase in half-life to 39.6 h compared to the 15.8 h achieved with
the PEGylated formulations [21].

The fact that nanocarriers coated with erythrocyte membranes show improved bio-
compatibility suggests that the erythrocyte membrane itself can be used as a liposome.
The erythrocyte liposomes can be further optimized for molecule encapsulation by in-
corporating small amounts of synthetic lipids to produce hybrid erythrocyte membranes.
Methods have been developed to allow for efficient incorporation of synthetic lipids
by drying and incubating the hybrid membranes to allow membrane fusion from both
synthetic and RBC domains to produce homogeneous membranes with no indication
of phase separation [22–24]. Two examples are presented below to highlight particular
erythrocyte liposomes for application in immunization and infectious diseases.

The RBCs’ outer shell consists of a spectrin network tethered to a cytoplasmic
membrane [25] (RBCcmRBCcm). The cytoskeleton forms a triangular filament network
parallel to the RBCcm. The distance between tethers is ∼80 nm [25]. The RBCcm is
typically described by the fluid mosaic model [26], which describes this structure as a
two-dimensional fluid-like lipid bilayer with embedded proteins. More than 50 of these
membrane proteins have been characterized for the RBCcm [27]. The lipid bilayer is a
∼5 nm [24] thick membrane formed by two layers (leaflets) of lipid molecules (Figure 2A).
Membrane lipids are amphiphilic, i.e., they consist of a hydrophilic and a hydrophobic
part. The molecules orient themselves such that the hydrophobic parts of both leaflets face
towards each other while the hydrophilic parts are exposed to the aqueous environment.
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There is a large number of different types of lipids in this mammalian membrane mostly
represented by glycerophospholipids (PL), sphingomyelin (SM), and cholesterol.
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Figure 2. (A) A lipid membrane is formed by two layers (leaflets) of lipids molecules. Most mem-
branes are built asymmetrically. (B) Glycerophospholipids and sphingomyelin consist of a hydrophilic
head group and two hydrophobic tails. (B–E) Chemical structures of glycerophospholipids, sphin-
gomyelin, and cholesterol. Common head groups are: choline, ethanolamine, serine, glycerol, inositol,
and hydrogen. (E) Lipid distribution of the RBC cytoplasmic membrane. Figure adapted from [28].

PLs are built around a glycerol moiety. Two of the carbon atoms are esterified to
two fatty acids chains (tails) with the third carbon atom bound to a polar head group
(see Figure 2B) [29]. Common head groups include choline, ethanolamine, serine, glycerol,
inositol, and hydrogen. The fatty acid tails can vary in length, i.e., the number of carbon
atoms per tail, and in the degree of saturation, i.e., the number of double bonds between
the carbon atoms in the tail [29]. SM is built around sphingosine with an attached fatty acid
chain and a phosphocholine head group (Figure 2C). PL and SM, cholesterol consists of a
rigid structure formed by hydrocarbon rings (Figure 2D). Cholesterol is highly abundant in
eukaryotic cell membranes, with typical molar ratios between 20 mol% and 50 mol% [30].

The lipid composition (lipidomics) of the RBCcm has been determined by mass spec-
troscopy [31,32]. The abundance of PL and SM is shown in Figure 2E. Phosphatidylcholine
(PC) and Phosphatidylethanolamine (PE) glycerophospholipids are the most abundant
species in the membrane, followed by SM. Phosphatidylserine (PS), Phosphatidylglycerol
(PG), Phosphatidic Acid (PA); Phosphatidylinositol (PI) lipids account for ∼20 % of the
membrane. Importantly, these lipids are asymmetrically distributed between the two
leaflets [27]. PC and SM lipids are predominantly found in the outer leaflet of the mem-
brane while the majority of PE and PI lipids as well as all PS and PG lipids are located
on the inner leaflet [27]. The cholesterol content of the RBCcm has been reported to be
∼50 mol% [33,34]. The composition of this biological membrane is far more complex
than synthetic membranes, which are typically composed of a couple of different lipid
species, only, which is reflected in their complex structural and mechanical properties [28].
The advantages of RBC-based carriers are their high biocompatibility, low immunogenicity,
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and long systematic circulation. While synthetic liposomal carriers have lifetimes of some
hours, RBC-based systems have shown to circulate for several weeks [35].

4. Implications for Immunology

Foreign particles introduced into the body’s circulation are typically rapidly degraded
by the mononuclear phagocyte system (MPS) through phagocytosis. Nanoparticles in partic-
ular, will be tagged by MPS for uptake through opsinization [36]. As a result, nanoparticles
are rapidly eliminated in the body with only a small fraction of the administered dose
reaching the target cell. Efforts have been made to increase their longevity through the
addition of polyethylene glycol (PEG) polymers on the nanoparticle’s exterior to produce
a hydration layer that makes them no longer recognizable by the MPS [36]. Despite the
potential of using PEG in these nanoparticle formulations, PEGylated liposomes are still
limited in their life span.

The body’s immune system additionally consists of natural killer (NK) cells that
function in eliminating target cells in response to particular ligands presented on their
exterior [37]. Red blood cells, however, express the integrin-associated protein CD47 that
serves as a marker-of-self to provide protection against the immune system. As a result,
red blood cells can survive in circulation for up to 120 days. Moreover, scientists have
been investigating the incorporation of CD47 as a replacement or addition to PEGylated
synthetic nanoparticles with the hopes of increasing their circulation time. Studies have
shown that nanoparticles conjugated to self-peptides designed from CD47 show a delay in
macrophage-mediated clearance [38]. Incorporation of CD47 into synthetic nanoparticles
requires additional optimization to ensure that the right levels of CD47 are incorporated to
achieve the highest level of immune protection possible. In this sense, erythrocyte-based
carriers present an advantage, as they already express natural levels of CD47 and thus
maximum immune protection is established.

5. Erythrocte-Based Virus-like Particles

The outbreak of the coronavirus disease 19 (COVID-19) has challenged and still
challenges the world in an unprecedented manner. It has led to over 640 million infections
and more than 6.6 million deaths globally [39] (as of November 2022). The adverse effects of
this global crisis, which has permeated all aspects of day-to-day living, including personal
life, economy, and health care systems, substantiates an urgent need for novel diagnostics,
therapeutics, and vaccines.

The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is mainly trans-
mitted via respiratory droplets [40,41]. In the lung, both SARS-CoV-2, as well as its
precursor SARS-CoV, primarily infect the ciliated bronchial epithelial cells and type 2
pneumocytes [42–44] through the angiotensin converting enzyme 2 (ACE-2). This triggers a
cascade of reactions leading to the fusion of the virus with the host cell and its reproduction,
ultimately causing COVID-19. Of the three protein components on the viral envelope,
the spike (S-)protein binds to the human ACE-2 receptor with a high affinity [45–48] and
catalyses the viral and host membrane fusion to initiate the infection [48,49]. It is a densely
glycosylated transmembrane protein that forms the characteristic surface spikes of the
corona virus [48]. The protein also induces neutralizing antibody and T-cell responses,
and is, therefore, an important target for vaccine development [50]. The structure and
conformations of the SARS-CoV-2 S-protein have been elucidated, however, this is still
a highly active field of research [45,47,49]. The basic structure consists of an ectodomain
trimer that includes the receptor binding domain (RBD), a trans-membrane domain (TMD),
and a cytoplasmic domain (CPD).

Several SARS-CoV-2 vaccines have been developed [51,52]. Gene-based vaccines
deliver gene sequences that encode protein antigens that are produced by host cells. These
include recombinant vaccine vectors (including AstraZeneca, Johnson & Johnson), or
nucleic acid vaccines (including Pfizer/BioNTech, Moderna) [53]. The mRNA vaccines
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have shown a high potency [54] and typically require carriers, such as nanoparticles, as
mRNA is quickly degraded by cellular processes.

In an alternative approach, the S-protein can be administered by the in vitro function-
alisation of RBCs through directly anchoring the SARS-CoV-2 S-protein into the RBCcm.
Nanocarriers adsorbed on RBCs have been shown to improve delivery for a wide range
of carriers and viral vectors [55,56] and their biocompatibility may be advantageous over
synthetic carriers [57,58]. However, their potential for therapeutic applications, such as
drug delivery [59,60] and immunological functions [61–64] has been started to be exploited
only recently. RBCs have been reported previously to catch immune complexes and bacteria
and present them to Kupffer cells in the liver and Antigen-Presenting Cells (APCs) in the
spleen [65,66]. Through this mechanism, virus-like particles (VLPs) prepared using RBCs
(Erythro-VLPs) can potentially lead to antibody production, higher central memory T cell
levels, and lower regulatory T cell response [67] when delivered to the spleen.

Erythro-VLPs were produced as sketched in Figure 3A. Erythrocyte liposomes were
prepared [24] and incubated with a 3 µM S-protein solution containing 25 mM Triton-X 100
to reconstitute the S-protein in the membrane. The surfactant was afterwards removed by
Amberlite XAD-2 resin beads [68], and subsequent size-exclusion chromatography (SEC).
These techniques have become standard for Triton-X 100 removal [69]. The transport of
the the CPD across the hydrophobic membrane core is essential in this step to anchor
the S-protein in the membrane of the erythrocyte liposomes. The role of the surfactant
is to stabilize the S-protein’s structure in the aqueous environment before insertion and
to facilitate reconstitution of the S-proteins in the erythrocyte membranes, as shown in
Figure 3B–D. From coarse grained Molecular Dynamics (MD) simulations, the surfactant
binds to the protein in solution, particularly to the TMD and CPD and stabilizes the pro-
tein’s secondary structure by shielding the hydrophobic TMD. When the S-protein is close
to the membrane (in Figure 3C), the CPD is the first point of contact. A high surfactant
density is observed around the CPD, which facilitates insertion and passage through the
membrane by lowering the hydrophobic mismatch between CPD and hydrophobic mem-
brane core. Once the protein is fully anchored (Figure 3D), surfactant density around the
TMD is significantly reduced and remains concentrated around the CPD and the surround-
ing inner leaflet. An embedding efficiency of 40% was determined, with an average protein
density of ∼300 proteins/µm2 [35] and an average liposome diameter of 222 nm (polydis-
persity: 0.32). Successful conjugation of the S-protein with the erythrosome liposomes is
shown using fluorescent microscopy and cryo-transmission electron microscopy (TEM).
Figure 3E shows a giant Erythro-VLP, where the membrane was stained with Texas red
1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (TR-DHPE, red) and the S-proteins
were stained using Alexa Fluor 488 maleimide (AF488, green). Membrane and proteins are
then observed in the red and green channel, respectively, and the orange color in the com-
bined channel is the result of the superposition of the red and green dyes and the images
indicate a uniform distribution of the S-proteins in the erythrocyte membranes, while the
RBC liposomes have a size of 100 nm in the cryo-TEM images in Figure 3F, the the Erythro-
VLPs have sizes of ∼230 nm. The high-resolution images show S-proteins anchored with
their TMD in the erythrocyte cytoplasmic membrane. The efficacy of the Erythro-VLPs was
shown in a mouse study over a period of 33 days which showed seroconversion in vivo.
While the mice received Erythro-VLP with the full-length S-protein, antibodies to the
S-protein’s RBD sub-domain were measured, which is relevant for viral entry [70,71].
This implies that the conformation of the S-protein in the Erythro-VLPs is not changed in
such a way that the RBD domain is ‘hidden’ or modified, which is often challenging when
injecting soluble proteins [53]. An interesting point is that IgG production was triggered
without an adjuvant (such as aluminium hydroxide [72,73]), which points to some sort of a
depot effect, likely related to the circulation of the Erythro-VLPs in the blood stream before
they are processed in the spleen.
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Figure 3. (A) Preparation protocol for Erythro-VLPs: Erythrocyte liposomes were prepared from
human RBCs. Erythrocyte liposomes were incubated with S-protein in a surfactant (Triton-X 100)
solution to facilitate protein entry into the membranes. Triton-X 100 was then removed using
Amberlite XAD-2 resin beads and subsequent size-exclusion chromatography. (B) MD simulation
show that the surfactant stabilizes the protein and protects the hydrophobic transmembrane domain.
(C,D) show details of the insertion process. (E) Fluorescent microscope images of a giant Erythro-VLP
with membrane stained in red, and S-proteins stained in green. (F) shows high-resolution cryo-
TEM images of the erythrocyte liposomes before protein insertion, and with S-proteins embedded.
Figure adapted from [35].

6. Erythrocyte Liposomes for the Targeted Delivery of Antibiotics

The emergence of the antibiotic resistance crisis is the product of antibiotic overuse in
the medical and industrial settings [74]. With increased exposure to antibiotics, bacteria are
faced with selection pressures, allowing for the development and rapid spread of resistant
mutations [75]. Without immediate global intervention and management, bacteria may
evolve to develop multi-drug resistance (MDR), where infections once curable by com-
mon antibiotics become difficult to treat [76]. Enterobacteriaceae bacteria, such as E. coli
and Klesbiella spp., are responsible for many serious infections: pneumonia, gastroenteric,
and blood-stream infections [76]. Enterobacteriaceae are the major players in MDR and
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are thus a target species in the development of novel antimicrobial agents. In this con-
text, polymyxin antibiotics are able to treat Gram-negative bacterial infections with high
efficacy [77]. Despite being highly potent, polymyxin B (PmB) is considered a last resort
treatment due to its toxic side effects such as nephrotoxicity, neurotoxicity, and neuromus-
cular blockade [78–80]. Studies have thus been focused on optimizing the PmB dosage for
each patient to minimize toxicity with high efficacy [10,77,81].

Nanoparticles have been used deliver PmB to the infection site with the goal to reduce
its random distribution throughout the body. Proteins or ligands can be conjugated to
the nanoparticle surface to achieve targeted delivery, where an entry mechanism to the
target bacterial cell is required for antibiotic delivery [3]. Metallic nanoparticles themselves
show antimicrobial properties through the release of bactericidal free metal ions, the pro-
duction of free radicals, and interactions with the bacterial DNA [82]. The antimicrobial
activity of silver and gold nanoparticles could be further improved through function-
alisation with ampicillin to induce bactericidal activity against bacteria with β-lactam
resistance [83]. Gold nanoparticles functionalised with carbapenems showed antimicrobial
activity in vitro against MDR bacterial strains [84].

On the other hand, liposomes have been shown to deliver antibiotics through a fusion
mechanism with the bacterial membrane, allowing high antibiotic concentrations to be
delivered at low dosages. Electrostatic interactions likely play an important role in this
process as biofilm formation was reduced when positively charged clarithromycin was
encapsulated in negatively charged liposomes. However, positive liposome formulations
required smaller clarithromycin dosages, reducing toxicity [85]. Further optimization
of the membrane may be required to improve retention of the desired molecules. For
instance, liposomes composed of dipalmitoylphosphatidylcholine/cholesterol and palmi-
toyloleoylphosphatidylcholine/cholesterol showed loading efficiencies on the order of a
few percent [86,87]. Loading could be further increased to ∼50% with formulations with
varying ratios of phosphatidylcholine, sphingomylein, and cholesterol [88].

More recently, hybrid erythrocyte liposomes were prepared by doping the RBCcm
with small amounts of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (DMPS) as shown
in Figure 4A, to enhance retention of the cationic PmB [89]. Incorporation of negative
charges achieved an increased loading efficiency of ∼90%, suggesting that retention is
dominated by electrostatic attractions between the PmB molecules and the membrane lipids.
While PmB is known to interact with bacterial membranes through insertion [90,91], the
presence of cholesterol in the erythrocyte membrane was shown to prevent membrane
collapse by stabilizing the bilayer structure.

These Erythro-PmBs were made specific to E. coli bacteria through conjugation of
anti-E. coli antibodies to 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide
(polyethylene glycol)-2,000] (PEG-MAL(2,000)) lipids incorporated in the erythrocyte mem-
brane, as shown in Figure 4A. This step requires the reduction of interchain disulfide
bonds in the antibody to form reactive cysteine residues that form bonds with the male-
meide groups on the PEG terminal. Erythro-PmBs stained with TR-DHPE (red) attached to
E. coli—Green Fluorescent Protein (GFP) in Figure 4B, where the yellow color is indicative
of Erythro-PmB colocalization. Erythro-PmBs were further incubated with E. coli and
imaged with TEM in Figure 4C, where Erythro-PmBs were found to concentrate around
the E. coli and form attachments to the bacterial surface.
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Figure 4. (A) Preparation schematic for Erythro-PmBs: Erythrocyte liposomes were prepared from
red blood cells. Negatively charged lipids were added to enhance PmB retention. Anti-Escherichia coli
(E. coli) antibodies are conjugated to malemeide residues on PEG linkers. (B) Fluorescent microscopy
image of Erythro-PmBs stained with TR-DHPE (red) targeting E. coli expressing green fluorescent
protein (GFP, green). (C) Erythro-PmBs form attachments with E. coli in transmission electron
microscopy. (D) E. coli, (left) and Klebsiella aerogenes (K. aerogenes, (right)) are treated with Erythro-
PmBs delivering varying concentrations of the minimum inhibitory concentration (MIC) for free PmB.
Bacterial growth curves show Erythro-PmBs prevent E. coli growth with high efficacy; however, are
not active against K. aerogenes. Figure adapted from [89].

These Erythro-PmBs could deliver PmB to non-resistant E. coli with similar efficacy
to that of free PmB, as indicated by no change in the minimum inhibitory concentration
(MIC) in Figure 4D. Antibody conjugation, however, established specificity as PmB was not
effectively delivered to the bacterial strain Klebsiella aerogenes that lacked the corresponding
antigens. K. aerogenes still exhibited growth after higher orders of the MIC, indicating
that the bacteria must display the proper antigens in order for an interaction between the
Erythro-PmBs and bacterial membrane to occur thereby delivering PmB.
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7. Current Limitations and Future Perspective

There is potential for the erythrocyte-based platform to be transferred to other types
of therapeutic molecules; however, some considerations must be addressed. Firstly, the
interaction of the cargo with the erythrocyte membrane will determine the encapsula-
tion procedure required. If the cargo is membrane-active, such as polymyxin B, it may
be incorporated into or on the surface of the outer-leaflet of the erythrocyte membrane.
Conversely, hydrophilic molecules will need to be encapsulated within the erythrocyte
liposome’s aqueous core. Secondly, the properties of the cargo molecule will reflect the type
of synthetic lipids that must be incorporated in the hybrid membrane in order to achieve
optimal loading without compromising the membrane structure. Such properties may
include molecular charge, size, and stereochemistry.

There are additionally some considerations that must be taken prior to establishing the
erythrocyte-based platform as a therapy option in the clinical setting. Prior to becoming a
commercial product, future work is required to determine large-scale manufacturing of the
erythrocyte liposomes. For instance, this may involve the use of microfluidic devices. While
this erythrocyte-based platform presents an advantage in terms of biocompatibility, further
research is required to determine the importance of the blood types prior to administration
in human patients. As of right now, it is unclear whether the erythrocyte liposomes must be
derived from blood-types compatible to that of the patient, or whether blood types become
negligible. This will become particularly important when doing large-scale production. If
blood type is indeed relevant, then a more personalized medicinal approach may be taken
where the donor blood comes from the patient themselves.

Both systems, the Erythro-VLPs and the Erythro-PmBs (Figure 5) are examples of a
novel, blood-based platform of therapeutics. This platform should easily be expanded to
include for instance applications in the treatment of cancer by conjugating the erythrocyte
liposomes with antibodies that target tumours and cancers cells, and delivering anti-
tumour drugs. By conjugating with antibodies targeting receptors or transporters in the
blood–brain-barrier (BBB), the platform can also potentially help to deliver molecules, such
as anti-dementia drugs, across the BBB. The target proteins may attach to receptors or
transporters in the BBB and are capable to deliver the load across the BBB and into the
brain.

Immunization

Trigger immune 

response

Targeted Delivery

Deliver antibiotics to 

resistant bacteria

Deliver molecules to 

targets in the body

Figure 5. Erythrocyte-based drug delivery platform. (Left) Erythrocyte liposomes are produced from
red blood cells and their molecular structure and properties tuned by incorporation of synthetic
lipids. Specificity is achieved through conjugation of corresponding antibodies to deliver molecules
to various targets. For instance, antibiotic resistant bacteria, tumours, or transport proteins in the
blood–brain barrier. (Right) Virus-like particles can be generated through anchoring of viral antigens
in the liposomal membranes to trigger an immune response.

While first results for the Erythro-VLPs demonstrate the potential of this pathway and
the erythrocyte platform, future work is needed to establish its potential therapeutic use.
This includes, for instance, in vivo toxicity evaluations and pathological analysis including
vasculitis, and options for intramuscular administration. Seroconversion was accomplished
by using a virus-like-particle emerging from red blood cells on the one hand, which needs
to be carefully tested in vivo. The platform also uses a relatively unexplored pathway to
produce antibodies and potential vaccination that involves a different immune response as
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compared to most current vaccines. As such, the exact retention time and location of the
VLPs in organisms, and their immunological pathway needs to be explored in detail to fully
evaluate their potential and identify potential drawbacks and risks. Potential advantages
of this pathway certainly lay in the enhanced biocompatibility and promise of reduced
side effects and potentially high social acceptance because it does not involve genetics.
The platform is also versatile and can be adapted to new strains or viruses quickly by
embedded the corresponding antigens.

The use of nanoparticles as a delivery system for antibiotics has been explored as a so-
lution because they have the potential to penetrate through thick mucus layers and biofilms
produced by bacteria [92]. Additionally, nanoparticles may allow for the localized delivery
of higher antibiotic concentrations to the infection site, which would reduce the patient’s
exposure to the antibiotic throughout treatment. Liposomes composed of phosphatidyl-
choline (PC) lipids encapsulating the antibiotic ciproflacin exhibited a sustained release of
ciproflacin to model lung cells [93]. Achieving sustained release, allows for the antibiotic
to be delivered to the target site for a prolonged period of time rather than administering
multiple doses and therefore, has potential to reduce negative side effects. PC liposomes
carrying amikacin showed increased penetration into Pseudomonas biofilms with higher
concentrations delivered [94]. Despite their potential, liposomes are sensitive to the method
of aerosolisation and are easily susceptible to membrane degradation and aggregation if
not chosen properly. As a result, a large fraction of the encapsulated antibiotic is released
from the liposome within the aerosol droplet, where the free antibiotic is now taken up by
the antibiotic. Additionally, liposomes themselves are limited in their physical instability
and rapid clearance by the immune system. Using RBCs for aerosol delivery may resolve
the limitations associated with synthetic liposomes. Their high biocompatibility would
result in protection from the body’s immune system, allowing them to remain in circula-
tion for longer, further reducing the need for multiple dose administrations. The RBCcm
composition is comprised of ∼ 50% cholesterol which may provide additional physical
support during aerosoliza tion, reducing the likelihood for membrane damage.
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PC Phosphatidylcholine
PE Phosphatidylethanolamine
PS Phosphatidylserine
PG Phosphatidylglycerol
PA Phosphatidic Acid
PI Phosphatidylinositol
MPS Mononuclear Phagocyte System
SARS-CoV-2 Severe Acute Respiratory Syndrome—Coronavirus-2
APC Antigen Presenting Cell
VLD Virus Like Particle
SEC Size Exclusion Chromatography
ACE-2 Angiotensin Converting Enzyme 2
RBD Receptor Binding Domain
TMD Transmembrane Binding Domain
MD Molecular Dynamics
TEM Transmission Electron Microscopy
TR-DHPE Texas Red 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine
AF488 Alexa Fluor 488
DMPS Dimyristoyl-sn-glycero-3-phospho-L-serine
PmB Polymyxin B
GFP Green Fluorescent Protein
MIC Minimum Inhibitory Concentration
K. aerogenes Klebsiella aerogenes
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