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Perspective on the Martini model

Siewert J. Marrink*a and D. Peter Tielemanb

The Martini model, a coarse-grained force field for biomolecular simulations, has found a broad range of

applications since its release a decade ago. Based on a building block principle, the model combines

speed and versatility while maintaining chemical specificity. Here we review the current state of the

model. We describe recent highlights as well as shortcomings, and our ideas on the further development

of the model.

Introduction

The use of coarse-grained (CG) models in a variety of simulation

techniques has proven to be a powerful tool to probe the spatial

and temporal evolution of systems on the microscale, beyond

what is feasible with traditional all-atom (AA) models. A large

diversity of coarse-graining approaches is available, ranging from

qualitative, often solvent-free, models to models including

chemical specificity. Models within the latter category are typically

parameterized based on comparison to atomistic simulations, a

so-called bottom-up or systematic multi-scale approach. They

are designed to match a set of specific target distributions from

the atomistic simulations, using iterative Boltzmann,1,2 force

matching,3,4 minimization of relative entropy,5 or conditional

reversible work6 approaches. For an extended overview of these

methods, the reader is referred to recent reviews.7–11

The Martini force field,12–14 developed by the groups of Marrink

and Tieleman, has also been derived in close connection with

atomistic models, especially for bonded interactions. However, the

philosophy of our coarse-graining approach is different. Instead of

focusing on an accurate reproduction of structural details at a

particular state point for a specific system, we aim for a broader

range of applications without the need to reparameterize themodel

each time. We follow a top-down approach by extensive calibration

of the non-bonded interactions of the chemical building blocks

against experimental data, in particular thermodynamic data such

as oil/water partitioning coefficients. Processes such as lipid

self-assembly, peptide–membrane binding, and protein–protein

recognition depend critically on the degree to which the con-

stituents partition between polar and non-polar environments.

The overall aim of our coarse-graining approach is to provide a

simple model that is computationally fast and easy to use, yet

flexible enough to be applicable to a large range of biomolecular

systems. Example input files for many systems can be downloaded

from http://cgmartini.nl. The first version of the CG force field, with

parameters for lipids only, was published by the Marrink group in

2004. The name ‘Martini’ for the force field was coined in 2007 with

the release of version 2.0 for lipids.13 The subsequent extension to

peptides and proteins14 was released as version 2.1, with recent

improvements to version 2.2, the current version.15

Although the Martini model was originally developed for use

with the GROMACS software suite,16 the general form of the

potential energy functions has allowed other groups to implement

the Martini model into other major simulation packages such as

NAMD,17 GROMOS18 and Desmond.19 Note that the groups of

Schulten17 and Sansom20 have developed CG protein force fields

compatible with the Martini lipid force field, but different from

the Martini protein force field.

In this perspective we describe the current state of the

Martini model. We highlight its applications, carefully consider

its shortcomings, and sketch the road ahead. The rest of this

perspective is organized as follows. Below we describe the design

principles of the Martini model, and provide a comprehensive

overview of the field of applications. Subsequently, the limitations

of the model are described. An extensive outlook section ends

this paper.

Design principles of the Martini model

Mapping

The Martini model is based on a four-to-one mapping, i.e., on

average four heavy atoms plus associated hydrogens are represented

by a single interaction centre. The four-to-one mapping was
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chosen as an optimum between computational efficiency on

the one hand and chemical representability on the other hand.

Mapping of water is consistent with this choice, as four real

water molecules are mapped to a CG water bead. Ions are

represented by a single CG bead, which represents both the ion

and its first hydration shell. To represent the geometry of small

ring-like fragments or molecules (e.g., benzene, cholesterol, and

several of the amino acids), the general four-to-one mapping

approach is too coarse. Ring-like molecules are therefore mapped

with a higher resolution of up to two non-hydrogen atoms to

one Martini particle. The Martini mapping of major classes of

(bio)molecules is shown in Fig. 1.

Based on the chemical nature of the underlying structure,

the CG beads are assigned a specific particle type with more or

less polar character. The Martini model has four main types of

particle: polar (P), non-polar (N), apolar (C), and charged (Q).

Within each type, subtypes are distinguished either by a letter

denoting the hydrogen-bonding capabilities (d = donor, a =

acceptor, da = both, 0 = none) or by a number indicating the

degree of polarity (from 1 = low polarity to 5 = high polarity),

giving a total of 18 particle types or ‘building blocks’.

Non-bonded interactions

Non-bonded interactions are described by a Lennard-Jones (LJ)

12-6 potential. The strength of the interaction, determined by

the value of the LJ well-depth eij, depends on the interacting

particle types i,j. The value of e ranges from eij = 5.6 kJ mol�1 for

interactions between strongly polar groups to eij = 2.0 kJ mol�1

for interactions between polar and apolar groups, mimicking the

hydrophobic effect. The effective size of the particles is governed

by the LJ parameter s = 0.47 nm for all normal particle types. For

the special class of particles in ring-like molecules, slightly

reduced parameters are defined to model ring–ring interactions:

s = 0.43 nm, and eij is scaled to 75% of the standard value. The

full interaction matrix can be found in the original publication.13

In addition to the LJ interaction, charged groups (type Q) bear a

charge �e and interact via a Coulombic energy function.

Coulombic interactions are screened implicitly with a relative

dielectric constant erel = 15 to account for the reduced set of

partial charges and resulting dipoles that occur in an atomistic

force field. Note that the non-bonded potential energy functions

are used in a shifted form. The non-bonded interactions are cut

off at a distance rcut = 1.2 nm. The LJ potential is shifted from

rshift = 0.9 nm to rcut. The electrostatic potential is shifted from

rshift = 0.0 nm to rcut. Shifting of the electrostatic potential

in this manner mimics the effect of a distance-dependent

screening. To alleviate some of the limitations of the implicit

screening of electrostatic interactions caused primarily by a

water model without charges or dipole, polarizable water

models were also recently introduced for use with Martini.21,22

With these models a much lower dielectric constant is used

because of the increased explicit screening (erel = 2.5 for the

Martini polarizable water model,21 erel = 1.3 for the Big Multipole

Water (BMW) model22).

The non-bonded interactions of the Martini model have been

parameterized based on a systematic comparison to experimental

thermodynamic data. Specifically, the free energy of hydration,

the free energy of vaporization, and the partitioning free energies

between water and a number of organic phases were calculated

for each of the 18 different CG particle types. Martini reproduces

the correct trend in free energies of hydration and vaporization.

However, the actual values are systematically too high, implying

that the CG condensed phase is not as stable with respect to the

vapour phase as it should be. The same is true with respect

to the solid phase. This is a known consequence of using a

LJ 12-6 interaction potential, which has a limited fluid range

(see ‘Limitation’ section below). As long as its applications are

aimed at studying the condensed phase and not at reproducing

gas/fluid or solid/fluid coexistence regions, the most important

thermodynamic property is the partitioning free energy. Impor-

tantly, the water/oil partitioning behaviour of a wide variety of

compounds can be accurately reproduced with the current

version of Martini.

Bonded interactions

Bonded interactions are described by a standard set of potential

energy functions common in classical force fields, including

harmonic bond and angle potentials, and multimodal dihedral

potentials. Proper dihedrals are primarily used to impose secondary

structure on the peptide backbone. Improper dihedrals are mainly

used to prevent out-of-plane distortions of planar groups. LJ

interactions between nearest neighbours are excluded.

To parameterize the bonded interactions, we use structural

data either directly derived from the underlying atomistic

geometry (such as bond lengths of rigid structures) or obtained

from comparison to atomistic simulations. In the latter proce-

dure, the higher resolution simulations are first converted into a

‘‘mapped’’ CG (MCG) simulation by identifying the centre of

mass of the corresponding atoms as the MCG bead. Second, the

distribution functions are calculated for the mapped simulation

and compared to those obtained from a true CG simulation.

Fig. 1 Martini mapping examples of selected molecules. (A) Standard water particle

representing four water molecules. (B) Polarizable water molecule with embedded

charges. (C) DMPC lipid. (D) Polysaccharide fragment. (E) Peptide. (F) DNA fragment.

(G) Polystyrene fragment. (H) Fullerene molecule. In all cases Martini CG beads are

shown as cyan transparent beads overlaying the atomistic structure.
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Subsequently the CG parameters are systematically changed in

an iterative way until satisfactory overlap of the distribution

functions is obtained.

For proteins, the PDB databank has been used as an additional

source of atomistic reference geometries. Based on MCG distribu-

tions from the PDB, bonds, angles, and dihedral interactions were

optimized. Importantly, the bonded parameters depend on the

sequence, and are used to stabilize the secondary structure

elements of the protein; the lack of directional hydrogen bonds

prevents realistic folding at the Martini level of coarse-graining.

On top of this, an elastic network can be used to further constrain

the protein close to a particular, e.g. native, state. The elastic

network approach, named ElNeDyn,23 has been optimized with

respect to atomistic reference simulations.

Simulation parameters

The force field terms are coupled to the simulation algorithms

Martini was parameterized for, although there is some flexibility

in this regard. Key parameters include the timestep, neighbour

list update frequency, cut-off radii for the nonbonded potentials,

and the exact form of the switch function. Martini simulations

generally are stable with timesteps of up to 40 fs or 20 fs in the

presence of rings such as in cholesterol or proteins. Lower

values than 20 fs we consider an inefficient use of computer

time as errors in the model will strongly dominate errors due to

numerical integration time steps.24 Energy conservation also

depends strongly on the use of neighbour lists, but the implementa-

tion of these lists differs in different software and for GROMACS in

different versions. More frequent updates or the use of large buffer

zones removes errors associated with neighbour lists but come

at a computational cost as well. Martini is parameterized with a

switch function that reduces both LJ and Coulomb interactions

to zero at 1.2 nm. The form of this function together with the

accurate calculation of temperature turned out to be important

in implementing Martini in other software as errors may lead to

more serious temperature artefacts.25

Validation

Currently, the Martini force field provides parameters for a

variety of biomolecules, including many different lipids,12,26–28

sterols,13,29 peptides and proteins,14,20,30 sugars,31,32 polymers,33–36

nanoparticles,37–39 dendrimers,40,41 and more. This family of

Martini molecules is constructed using the building block

principle, i.e. mapping the underlying chemical structure to

the corresponding flavor of CG particle types, and stringing

them together to reproduce the overall topology of the target

molecule. The basic assumption underlying Martini is that the

carefully parameterized properties of the individual beads are

transferable to the molecule as a whole. This basic assumption

requires validation, which may come either from comparing to

more detailed atomistic simulations or to experimental data.

Recent validation examples of the first category are: partitioning of

amino acid side chain analogues (SCAs) across the membrane,

which shows profiles matched to within 1–2 kT for most SCAs;42

dimerization of SCAs in solvents of different polarities, reproducing

most atomistic dimerization free energies to within 1 kT;43 and

the potential of mean force (PMF) between a pair of fullerenes

in different solvents, reproducing the atomistic profiles.39

Examples of validation with respect to experimental data are:

the area per lipid, typically reproduced to within 0.1–0.2 nm2 or

experimental accuracy for many types of lipid membranes;12,13

the ternary phase behaviour of lipid mixtures, showing phase

diagrams in semi-quantitative agreement;44 the relative binding

free energy of a systematic series of pentapeptides to the water/

lipid interface,45 consistent with the experimental hydrophobicity

scale derived from these peptides; dimerization free energies of

transmembrane (TM) helices within the range of experimental

values from FRET data;46 2H-NMR quadrupolar splittings of

WALP peptides,47 reproduced to a better extent than atomistic

simulations; and the structure of the glycophorin A dimer,48

compared to NMR data.

Many more critical tests have been performed in several of

the papers listed below in the Application section. Sometimes it

turns out that the set of standard Martini beads is not sufficient

to reproduce the desired accuracy, and further optimizations

are made. One of the advantages of Martini is its limited set of

parameters, which makes it relatively easy to adjust or optimize

the interactions. We quote the original characterization of the

Martini model:13 ‘‘how a few simple ingredients (read: chemical

building blocks) can be endlessly varied to create a complex

palette of taste’’. Cheers.

Martini based applications

The first applications of the Martini model, dating back

10 years, concerned the self-assembly49 and fusogenicity50 of

small lipid vesicles. Since these first studies, the list of applications

has grown dramatically, reflecting the flexibility and transferability

underlying our coarse-graining protocol. Currently, applications

can be grouped as: characterization of lipid membrane properties;

lipid polymorphism; protein–lipid interplay; membrane protein

oligomerization; self-assembly of soluble peptides and proteins;

protein conformational changes; binding and pore-formation

in membranes by membrane active peptides; design of drug

and gene delivery systems; structure and dynamics of lipo-

protein particles; membrane fusion; compression and expansion

of monolayers; self-assembly of surfactants; characterization of

carbohydrate based systems; structure and dynamics of polymers;

and interaction of nanoparticles with membranes. From this

overview it is apparent that lipid membranes are central in

many applications. Given the origin of the Martini force field

for simulations of lipid systems this is not surprising. Below we

discuss the main application areas to date.

Lipid membrane characterization

Although simple lipid membranes can be modelled at the fully

atomistic level, Martini offers three significant advantages

given the current state of atomistic simulations: (i) the use of

a CG model allows many independent simulations in which state

conditions are systematically varied, e.g. the in silico design of robust

membranes,51 tethered or supportedmembranes,52–54 or correlating

lipid type and membrane properties;55,56 (ii) direct, unbiased,
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sampling of rare processes becomes possible, such as lipid flip–

flop and lipid desorption,57,58 deformation of asymmetric

membranes,59–62 or the membrane binding and permeation

of drugs and amphiphiles;63–67 and (iii) the Martini model

allows simulations requiring large system sizes, e.g. modelling

of lipid vesicles49,68–73 and calculation of membrane bending

moduli74–77 and viscosity.78 As an example of the latter category,

Baoukina et al.79 simulated the formation of membrane tethers

(Fig. 2A), mimicking micropipette aspiration experiments. The

largest systems studied contained close to 4 000 000 CG particles,

making it one of the biggest Martini-based simulations so far.

Lipid polymorphism

Another important area of applications of the Martini model is

lipid phase behaviour, requiring both large systems due to the

collective nature of phase transitions and long simulation times

to observe the critical nucleation events. Examples include the

formation of gel phases80–86 and inverted hexagonal26,87–89 and

cubic phases,90,91 or transitions between micelles, bicelles, and

vesicles.28 A snapshot of an inverted cubic phase stabilized by

fusion peptides, obtained by Fuhrmans and Marrink91 using a

self-assembly approach, is shown in Fig. 2B. An important

breakthrough in our ability to model realistic, heterogeneous,

membranes was reported by Risselada and Marrink,44 who

simulated the spontaneous formation of liquid-ordered (Lo)

and liquid-disordered (Ld) domains in ternary mixtures of

saturated and unsaturated lipids together with cholesterol.

Probing the structural and dynamical properties of these fluid

domains has received a lot of attention, as it is presumably

linked to the formation of lipid nano-domains (‘‘rafts’’) in real

cells. Follow up studies have further explored the properties of

these domains in a number of ways, including: systematic

evaluation of composition,29,92–96 studying partitioning of lipids

and amphiphiles at Ld/Lo domain boundaries,97,98 probing

conditions for domain registration,99 observing sorting anomalies

of domains under stress,100 looking into the effect of immobiliza-

tion on domain formation,101 and analysis of raft dynamics.102–105

A recent review by Bennett and Tieleman covers in more detail

simulations of membrane domains and membrane asymmetry,

including many Martini simulations.106

Membrane protein–lipid interplay

Martini has proven to be very useful to probe protein–lipid

interactions of membrane embedded proteins. Recent applica-

tions can be broadly classified into six categories: (i) predicting

binding modes of proteins to membranes as well as membrane

adaptation around proteins, as exemplified by many simula-

tions of a variety of peptides46,107–112 and proteins.113–118 These

kinds of simulations can be efficiently done in high-throughput

mode using a self-assembly approach pioneered by Sansom

and coworkers.119,120 3D stress profiles around membrane

proteins121–123 have been resolved using Martini as well;

(ii) simulating protein sorting, notably the propensity of TM

peptides and membrane proteins to partition in either Ld or Lo

domains.124–129 Domanski et al.,129 for instance, modelled the

sorting of TM model peptides (the synthetic WALP peptides)

under crowding conditions. They found that, at lipid/protein

ratios characteristic of real membranes, the peptides induced

Ld/Lo domain segregation (Fig. 3C). Unravelling the complicated

dynamics of membrane proteins in homogeneous membranes is

a related area of interest;129–134 (iii) identifying specific lipid

binding sites on membrane proteins is a rapidly growing area.

Current examples include the enrichment of short-tail lipids

around OmpA,135 phosphatidylinositolphosphate (PIP) binding

to the pleckstrin homology domain136 and to inwardly rectifying

potassium (Kir) channels,137,138 cardiolipin binding to mito-

chondrial creatine kinase (MtCK),139 cytochrome c oxidase,140

and cytochrome bc1,141 cholesterol binding to the serotonin (1A)

receptor,142 enrichment of anionic lipids at the gap junction

hemichannel connexion-26,143 at potassium channels KcsA

and chimeric KcsA-Kv1.3,144 and at TM and juxtamembrane

Fig. 2 Large scale membrane remodelling. (A) Pulling of a membrane tether

from a planar lipid bilayer.79 Lipid head groups are coloured grey, lipid tails green.

The tether is partly cut to view the inside. (B) Stabilization of an inverted cubic

phase by fusion peptides.91 Fusion peptides are depicted as red cylinders, the

water/lipid interface is rendered as a green surface. The space occupied by the

lipids is coloured black.

Fig. 3 Membrane protein sorting and clustering. (A) Formation of membrane

folds (cristae) by ATP synthase dimers148 (courtesy of W. Kühlbrandt). Membrane

surface rendered blue, proteins in yellow. Adapted with permission from ref. 148.

Copyright (2012) National Academy of Sciences. (B) Aggregation of membrane

proteins due to hydrophobic mismatch152 (courtesy M. S. P. Sansom). Membrane

viewed from top in blue, with barrel proteins depicted yellow. Adapted with

permission from ref. 152. Copyright (2011) Elsevier. (C) Sorting of transmembrane

helices into liquid-disordered domains.129 TM helices in yellow, unsaturated lipids

red, saturated lipids blue, cholesterol grey with the white hydroxyl group.
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domains of cytokines,145 specific interactions of phosphatidic acid

(PA) and PIP2 with the actin capping protein (CP),146 and binding

of cholesteryl esters to cholesteryl ester transfer protein;147 (iv)

simulating protein mediated membrane remodelling, i.e. the defor-

mation of membranes under the action of proteins, is also suitable

for ‘Martinization’ as proven by an increasing number of applica-

tions. A fine example is the large-scale simulation of Davies et al.,148

probing the role of F1F0-ATP synthase dimers in shaping the

mitochondrial cristae. Based on these simulations, the authors

propose that the assembly of ATP synthase dimer rows is driven

by the reduction in the membrane elastic energy, rather than

by direct protein contacts, and that the dimer rows enable the

formation of highly curved ridges in mitochondrial cristae (Fig. 3A).

Other examples in the category of membrane remodelling are

simulations of the curvature field induced by a-synuclein,149

and the shaping of membranes by BAR domains.150 Studies on

(v) membrane-mediated protein clustering and (vi) gating are

described in sections below.

Membrane protein oligomerization

Many integral membrane proteins assemble in oligomeric

structures in biological membranes. The Martini force field

makes it possible to study these self-assembly processes at

near-atomic detail over time scales of micro- to milliseconds.

The first study on large scale protein assembly, by Periole

et al.,151 considered rhodopsin, a prototypical G-protein coupled

receptor (GPCR). Starting from random initial positions, the

proteins formed linear aggregates due to competition of non-

specific lipid mediated forces and specific sidechain–sidechain

interactions at the protein surface. This explained in detail

previous experimentally observed linear aggregates. An extensive

systematic study on aggregation of model membrane proteins,

modulated by hydrophobic mismatch, membrane curvature,

and protein class, was performed by Parton et al.152 An example

from this study is presented in Fig. 3B, showing clustering of

generalized b-barrel proteins under mild mismatch conditions.

Other examples of protein–protein self-assembly simulated with

Martini include the dimerization studies of glycophorin A,48,153

the repressor of primer protein,23 the c0-subunit of the ATP

synthase complex,154 TM WALP peptides,46,47,124,129 gramicidin

channels,155 the delta opioid receptor,156 TM domains of ErbB2

receptors157 and Fukutin-I,158 integrin TMhelix heterodimers,159,160

the integrin–talin complex,161,162 the cohesion-dockerin system,163

the TM domain of T cell receptor complex,164 the bacterial stress-

response peptide TisB165 and the serine receptor Tsr,166 as well

as tetramerization of the TM domain of the M2 channel167 and

modelling of caseinolytic peptidase B (ClpB) hexameric ring

structures.168 The fast sampling speed of Martini also allows

computation of the dimerization free energy of membrane

proteins; recent studies of GPCRs169,170 and OmpF171 reveal

specific, favorable, association interfaces.

Self-assembly of soluble peptides and proteins

In addition to membrane proteins, aggregation of soluble

proteins is a potentially large field of Martini applications.

So far, however, self-assembly simulations have been restricted

mainly to small peptides. A number of these studies deal with

dipeptides. In a very nice high-throughput study by Frederix

et al.,172 the Martini force field was used to screen all 400

dipeptide combinations and predict their ability to aggregate as

a potential precursor to their self-assembly. Systems that

showed strong aggregation tendencies were selected for longer

simulations in which supramolecular structures were formed

consistent with known aggregation states of dipeptides reported

in the literature (Fig. 4A). Related studies show self-assembly of

diphenylalanine peptides into a range of morphologies,173 and of

N-(fluorenyl-9-methoxycarbonyl)-dialanine peptides into hydro-

gels.174 Aggregation of larger peptides has also been the subject

of a number of Martini studies. Lee et al.175 addressed the self-

assembly of peptide amphiphiles, composed of a 13-residue

hydrophilic peptide connected to a hydrophobic tail. In line

with experimental data, they observed spontaneous formation

of fibres (Fig. 4B). Likewise, self-assembly of amphiphilic

peptides into peptide-vesicles (‘‘peptosomes’’)176 or micelles177

has been simulated. A particular challenging case for CG

models such as Martini, which lack directional hydrogen

bonds, is the formation of amyloid fibrils. For a realistic

simulation of amyloid formation, a more detailed description

of the peptide backbone is probably required;178 more qualita-

tive studies, however, can be performed. For instance, Sorensen

et al.179 modelled the assembly of amylin (20–29) peptides, pre-

assembled into protofibril fragments. The protofibril fragments

were kept together with an elastic network using the ElNeDyn23

approach. The simulations pointed to an elongation growth

mechanism of the protofibrils into fibres (Fig. 4C). Another

example is the study on the effect of lipid concentration on the

aggregation propensity of the amyloidogenic peptide apolipo-

protein C-II (60–70).180 Martini studies of interactions between

soluble proteins are still limited, but do exist, for example on

the stability of the spider silk’s N-terminal protein domain181

and of keratin filaments,182 the stability of engineered nano-

fibres,183 the mechanical properties of protein filaments,184,185

Fig. 4 Self-assembled peptide aggregates. (A) Nanotube formed by diphenyl-

alanine peptides172 (courtesy of P. W. J. M. Frederix). Peptide backbone in red,

side chains grey, and water inside the tube blue. (B) Fibre formed by a peptide

amphiphile175 (courtesy of G. C. Schatz). IKVAV epitope, blue; rest of PA, grey. (C)

Fibre composed of amylin (20–29) peptide fragments.179 Phenylalanine side

chains, purple; other side chains, yellow; backbone, cyan.
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and dissociation of gas phase protein complexes.186,187 A

related application of the Martini model is protein adsorption

on solid supports188,189 or at fluid interfaces.190 Martini could

also be used to screen for protein–ligand interactions in

principle. Thus far, we are aware of one example, in which

peptide binding to the OppA transporter was studied.191

Conformational changes in proteins

Although secondary structure changes of proteins cannot be

modelled in Martini yet, changes in tertiary structure are

unrestricted and in principle realistic within the general

approximations underlying our CG model. A fine example is

the gating process of the mechano-sensitive channel of large

conductance (MscL). When the membrane is put under ten-

sion, MscL channels undergo significant conformational

changes in accordance with an iris-like expansion mechanism

and reach a conducting state on a microsecond timescale.192,193

The gating of an MscL channel embedded in a liposome has

been simulated in a large-scale study by Louhivuori et al.194

After putting the liposome under stress by adding excess water,

mimicking hypoosmotic shock conditions, the MscL channel

opened to release excess solvent (Fig. 5A). The energetics of the

gating process have been analysed in more detail elsewhere.195

Full closure of the channel has also been achieved in simula-

tions of the reversible gating of MscL by Ingolfsson et al.196

(Fig. 5B). Structural transitions of other channel proteins

that have been simulated with Martini include voltage-gated

potassium channels,197 the SecY channel,198 and Ca-ATPase.199

Furthermore, acyl carrier protein (ACP) substrate-shuttling

within the fatty acid synthase reaction chamber has been

modelled,200 providing valuable insight into the role of linkers

and crowding in the shuttling process. The dynamics of

membrane-bound and soluble cytochrome P450 has also been

studied, revealing correlations between opening and closing of

different tunnels from the enzyme’s buried active site.201

Another study addresses collective motions of RNA polymerases

that might contribute significantly to the conformational transi-

tion between the open and closed states.202 A final example is a

Martini study on the dynamics of TM helices of bacterial chemo-

receptors, supporting a piston model of signalling.203

Peptide induced membrane permeabilization

Antimicrobial peptides (AMPs) are still in the spotlight as

potential new antibiotics essential to overcome bacterial resis-

tance to conventional antibiotics, while similar peptides are

studied as anti-cancer and anti-fungal agents as well as vehicles

for drug delivery. At a certain threshold concentration, AMPs

permeabilize the membrane, either by forming a discrete pore

or by disrupting the bilayer structure. Using the Martini model

it is in principle possible to simulate AMP induced membrane

poration. A first example was shown as validation example

of the protein force field.14 Magainin peptides stabilized a

toroidal pore with a structure similar to those seen with

atomistic models. In Martini simulations, spontaneous pore

formation typically has been observed only under rather favour-

able conditions, such as in very thin bilayers,204 at very high

peptide concentrations,205,206 or with highly asymmetric bilayers.207

Other attempts to simulate AMP-induced membrane poration

revealed potential problems with Martini, such as the formation

of dehydrated pores208,209 or membrane buckling,210,211 see the

section on ‘Limitations’ below. Stabilization of pores by human

islet amyloid polypeptides has also been investigated,212 as well as

pores stabilized by fusion peptides.90,91,213 Likewise, Martini allows

for systematic calculations of the binding and translocation free

energy of AMPs214,215 and other membrane active peptides such as

caveolin,216 but also in these cases the shortcoming of Martini in

modelling lipid-lined membrane pores has to be kept in mind. The

ability of AMPs in a surface bound state to cluster charged lipids

does not suffer from this problem, and is therefore expected to be a

real phenomenon well suited for Martini.217,218

Drug and gene delivery systems

Membranes pose a barrier for typical drug molecules and gene

fragments and hinder their use in practice. Therefore, design of

delivery vehicles that help these molecules to cross the cell

membrane is an active area of research in which Martini has

found a growing number of applications. A series of simulation

studies of polyamidoamine (PAMAM) dendrimers show these

Fig. 5 Proteins in action. (A) Gating of a mechanosensitive protein channel,

MscL, in a liposome under hypoosmotic shock.194 (B) Reversible gating of MscL in

a planar membrane196 (courtesy H. Ingolfsson). Upper panel shows snapshots of

the closed starting structure, the open structure under tension, and the closed

structure after tension has been released. Lower graphs shows the applied

surface tension (red) and water flux (black) as a function of time.
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nanoparticles are able to porate membranes.40,41 PAMAMs can

be functionalized to optimize drug loading.219 Other polymer-

based delivery systems that have been investigated using the

Martini model are poly(gamma-glutamyl-glutamate) paclitaxel

(PGG-PTX), a series of semiflexible polymer–drug constructs

varying in PTX loading fraction220–222 and ABA type triblock

copolymers.223 The design of self-assembling nanofibres

composed of amphiphilic peptide derivatives for delivery of

therapeutic peptides has also been addressed.224 Other examples of

Martini-based studies of drug-delivery systems include simulations

of encapsulation of propofol in quaternary ammonium palmitoyl

glycol chitosan micelles,225 investigation of the permeability of

lysolipid-incorporated liposomes for enhanced permeation of

anticancer drugs,226 and fusion of perfluorocarbon-based

nanoemulsions to target liposomes.227 Considering gene

delivery, the structure of lipoplexes (DNA–lipid complexes)

has been modelled.228 A recent large scale Martini application

by Leung et al.229 involves modelling of lipid nanoparticles

containing ionizable cationic lipids, enabling therapeutic appli-

cations of siRNA (Fig. 6A).

Lipoprotein particles

Low-density and high-density lipoproteins (LDL/HDL) transport

cholesterol in the bloodstream and play an important role in

the development of atherosclerosis. They consist of a mixture of

components including phospholipids, triglycerides, cholesterol,

and associated proteins. The Martini model has proven useful to

study the structure and dynamics of these particles, starting with

the self-assembly of model HDL by Shih et al.230 using the

Martini variant developed by the Schulten group. Subsequently,

the structure and dynamics of HDL231,232 with realistic size and

lipid composition have been modelled with standard Martini.

The interfacial tension and surface pressure of various lipid

droplets have also been investigated.233 A model for LDL was

also developed, by Murtola et al.,234 and consists of an ApoB-100

protein wrapped around a 20 nm thick lipid droplet (Fig. 6B).

The simulations reveal a complex distribution of the lipid

constituents in the particle, and point to biologically relevant

contacts between the surrounding protein and some of the core

molecules. Another type of lipoprotein particle is the complex

formed by Saposin A, a protein involved in lipid transfer.

Simulation studies show that the protein can solubilize various

phospholipids into small discs.235 Martini based simulations

have been helpful to reveal the molecular packing of artificial

lipoprotein particles, so-called nanodiscs, which are increasingly

used by experimentalists to characterize membrane proteins.

Examples are nanodiscs stabilized by amphipathic polymers

(amphipols)236 or engineered proteins.237

Membrane fusion

Membrane fusion was one of the very first applications of the

Martini model50 and is still a hot topic where simulation studies

can resolve details that are not easily probed experimentally.

Possible fusion pathways between lamellar membranes and

between vesicles are now quite well established,50,87,238,239 and

current efforts are directed to calculate the energetics of the

various intermediates240–244 and to investigate the role of fusion

promoting molecules such as PEG.245 An important new direc-

tion is peptide and protein mediated fusion. Baoukina and

Tieleman246 simulated the fusion of small unilamellar vesicles

mediated by lung surfactant protein B (SP-B). They found SP-B

monomers capable of triggering fusion events, consistent with the

experimentally observed fusogenic effect of SP-B, by anchoring two

vesicles and facilitating the formation of a lipid bridge between the

proximal leaflets. Another recent example is the Martini simulation

of neuronal SNARE-mediated membrane fusion by Risselada

et al.247 (Fig. 7A). The simulations reveal that SNARE complexes

mediate membrane fusion in a cooperative and synchronized way,

requiring at least one single SNARE complex consistent with single-

molecule fluorescence studies. After fusion, the zipping of the

SNAREs extends into the membrane region, in agreement with

the recently resolved X-ray structure of the fully assembled state.

Force transduction of the SNARE protein synaptobrevin has

Fig. 6 Molecular view on nanoparticles. (A) Lipid nanoparticle used for gene

delivery,229 composed of ionisable lipids (yellow), cholesterol (pink), phospholipid

(grey; lipid polar moiety in cyan), PEG–lipid (violet) and 12 bp DNA (red). (B) Low

density lipoprotein particle234 (courtesy I. Vattulainen), consisting of a droplet of

lipids (blue), cholesterol (green), triglycerides (yellow), and cholesterylester

(brown), bound to lipoprotein ApoB-100. Adapted with permission from

ref. 229. Copyright (2012–2013) American Chemical Society.

Fig. 7 Examples of protein mediated fusion. (A) Fusion of vesicles induced by

SNARE proteins247 (courtesy H. J. Risselada). Lipids are coloured with orange

heads and grey tails, interior water in blue, and the SNARE complexes with yellow

TM helices and red/green/blue soluble parts. (B) Fusion of vesicles and mono-

layers mediated by lung surfactant protein SP-B258 (courtesy S. Baoukina). Lipids

are shown in grey with blue (vesicle) or purple (monolayer) heads, protein

backbone in red.
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also been looked into with Martini.248 Furthermore, wild-type

hemagglutinin (HA) influenza fusion peptides were shown to

stabilize a highly fusogenic pre-fusion structure, i.e. a peptide

bundle formed by four or more TM fusion peptides.213 Studies

onmutant peptides provided a rationale for experimentally observed

incomplete fusion pathways. Related studies also point to the ability

of HA fusion peptides to stabilize fusion intermediates.90,91 For a

recent review of simulations on fusion, including many Martini-

based works, see Markvoort and Marrink.249

Lipid monolayers

At polar–apolar interfaces, lipids form monolayers that reduce

the surface tension. Besides being of fundamental interest for

surface science, lipid monolayer collapse is crucial for main-

taining low surface tension at the gas-exchange interface in the

lungs during breathing. The Martini force field can be used to

study the behaviour of lipid monolayers in detail, both for pure

lipid systems and in combination with peptides and proteins.

Although quantitative reproduction of the pressure–area iso-

therms at low surface pressure remains challenging,250 the

model is well suited to study properties of monolayers in the

liquid-expanded and liquid-condensed phases,250,251 and to

study for instance the collapse of lipid monolayers at high

surface pressure.252 Mixed monolayers have also been studied,

e.g. to model the tear fluid lipid layer,253–255 or to study phase

transitions256 and phase coexistence,103,104 and the effect of the

presence of lung surfactant proteins.257 In a large scale study

Baoukina and Tieleman simulated fusion of lipid reservoirs to

monolayers mediated by lung surfactant protein SP-B.258 They

found SP-B induced establishment of a lipid-lined connection

similar to the hemifusion stalk (Fig. 7B) allowing lipid flow in a

surface-tension-dependent manner. These findings are in line

with existing hypotheses on SP-B activity in lung surfactant and

explain its molecular mechanism.

Surfactant self-assembly

The Martini force field is ideally suited to study formation of

micelles, as it enables simulations that are long enough to

equilibrate many surfactant solutions. However, the ability to

obtain an equilibrated micellar size distribution depends on

the type of surfactant; exchange of surfactants between

micelles, and fusion and fission of small micelles are only

observed for surfactants with a relatively high CMC. For

instance, in the first study on surfactants using the Martini

model, DPC (dodecyl-phosphatidylcholine) could be observed

to self-assemble into micelles, but convergence of the size dis-

tribution was very slow and not achieved on the sub-microsecond

time scale.12 Recent Martini simulation studies, involving acyl-

trimethylammonium chloride,259,260 dodecyltrimethylammonium

bromide (DTAB),73 cetyltrimethylammonium bromide (CTAB),261

sodium dodecyl sulphate (SDS),262 dihexanoyl-PC (DHPC),263

and pentaethylene glycol monododecyl ether (C12E5),264 how-

ever, achieve longer (multi-microsecond) simulation times and

approach equilibrium distributions. Sampling of interesting

phenomena, such as the sphere-to-rod transition,259,261,264

becomes possible. In a study comparing a number of surfactants,265

the Martini model reproduced experimental CMCs and aggre-

gation numbers for non-ionic surfactants reasonably well. The

temperature dependence of these properties, however, is not

correct. Reproducing the correct temperature dependence is a

known challenge for CG models in general (see ‘Limitation’

section below). Martini simulations of micelles can also be

used to provide starting structures for fine-grained models, as

shown in a recent study on lyso-phospholipids,266 and to

provide details on the absorption and desorption process of

non-ionic surfactants.267 Bicelles, composed of double tail and

single or short tail lipids, have also been the topic of a number

of studies.28,268,269

Carbohydrates

Carbohydrates (saccharides) constitute a fundamental class of

biomolecules and are present in a variety of emerging classes of

biomimetic materials. The large size of most polysaccharides

warrants the use of a coarse-grained model, yet the complexity

of carbohydrate physico-chemical properties makes this a

very challenging undertaking. Recently, common mono- and

disaccharides have been parameterized for Martini,31 providing

a basis for further carbohydrate modelling. Simulations of

glucose and trehalose interacting with a DPPC membrane show

suppression of gel phase formation,31 in agreement with the

cryoprotective properties of these sugars. Based on the Martini

carbohydrate model, oligosaccharides such as amylose and

curdlan,31 and cellulose32,270 have also been parameterized.

Martini parameters for the important class of glyco-lipids were

developed as well,27 including biologically relevant lipids for

the thylakoid membrane, signalling lipids such as PI and its

phosphorylated analogues PIPn, as well as gangliosides. A

pioneering study on multi-component membranes containing

the ganglioside monosialotetrahexosylganglioside (GM1) shows

formation of GM1 enriched nano-domains that act as protein

shuttles between membrane regions with different degrees

of order.127

Polymers

Coarse-graining has been of fundamental importance in the

field of polymer modelling. In order to study the large size of

polymer chains and the associated slow relaxation processes, a

reduction of the degrees of freedom has proven absolutely

necessary. Although the Martini model was designed primarily

with biomolecular applications in mind, there is no reason why

the same philosophy could not be extended to soft matter in

general. Indeed, there is a growing number of basic polymer

systems for which Martini parameters have been derived,

currently including polyethyleneglycol (PEG),33,271 polystyrene,34

triblock copolymers polyethyleneoxide–polypropyleneoxide–

polyethyleneoxide (PEO–PPO–PEO),223,272 polyurea,273 Nafion

ionomers,274 polyester coatings composed of two dicarboxylic

acids and a diol, esterified to neopentyl glycol monomers and

crosslinked by hexa(methoxymethyl)melamine,275 polymer

nanofibres composed of nylon-6 (polycaprolactam),276 PAMAM

dendrimers40,41,219 and PEG-conjugated PAMAM dendrimers,277

and amphipols.236 Two recent examples are illustrative of the
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type of applications for which the Martini model can be used.

Simulations of nanocoating of a polymer matrix composed of

polymethylmethacrylate (PMMA), by Uttarwar et al.,278 show the

effect of nanoparticle (NP) concentration, size, and polydispersity

on the behaviour of the polymer matrix. For instance, the

presence of NPs leads to elongation of the polymer chains as

the radius of gyration is increased (Fig. 8A). Simulations of grafted

polystyrene brushes in good solvent (benzene), by Rossi et al.,279

explore the structural and dynamical configuration of the

brushes as a function of their grafting density in a high grafting

density regime (0.1–0.3 chains nm�2) (Fig. 8B). The presence of

metastable collapsed states, with free chain ends trapped close

to the substrate, is revealed at all grafting densities. These

collapsed states are shown to be long-lived, surviving over a

time scale of several microseconds.

Nanoparticles

The two-dimensional carbon sheet graphene and its three

dimensional cousins fullerene and carbon nanotubes (CNTs)

enjoy a huge scientific interest due to their interesting mechan-

ical and electrical properties, with many realised and potential

applications. The interaction of these nanoparticles with bio-

logical material is of specific importance with respect to their

toxicity. To address these concerns, a number of groups have

started developing Martini models for fullerene,37,39,280 gra-

phene,281,282 and CNTs,38,283–287 and explore how they interact

with lipids and surfactants. For instance, in a breakthrough

study by Wong-Ekkabut et al.,37 the lipid membrane was shown

to be a very good solvent for fullerenes (Fig. 9A). Clustering in

the aqueous phase, the fullerene aggregates spontaneously

enter the membrane and disperse on a microsecond time scale.

Likewise, as demonstrated in a pioneering study by Titov

et al.,281 graphene nanoflakes dissolve into a lipid membrane and

adopt a flat orientation in between the membrane leaflets (Fig. 9B).

The affinity of graphene-based particles for lipids is also

elegantly shown in a study by Wallace and Sansom38 on CNTs.

Dispersing lipids or surfactants randomly in the aqueous

solution, self-assembly of a CNT–lipid complex is observed

(Fig. 9C). In addition, the interaction of other nanoparticles

such as gold clusters,288–292 nanocrystals,293 and coated nano-

particles294,295 with lipid membranes has been studied using

Martini. As an example, in the work of Lin et al.,288 the interaction

of functionalized gold particles with DPPC/DPPG membranes was

systematically investigated, showing penetration, disruption, pore

formation or wrapping (Fig. 9D) depending on the surface charge

of both the nanoparticle and the membrane. In a related study,296

the aggregation of monolayer-protected gold nanoparticles in

various solvents was investigated. We expect many more of such

studies in the near future, for instance along the lines of a very

recent study of the effect of PEG functionalized phospholipids on

nanotube bundling297 and on morphological characterization

of polymer-functionalized gold nanoparticles.298 Finally, we

mention three other non-biological applications, namely nano-

pore inhibition,299,300 surface wetting,301 and physisorption of

organic molecules on graphite.302

Limitations of Martini

Martini, as any other model, has a number of limitations. It is

obviously important to know these limitations, both to make

sure the model is used appropriately and to further improve the

model. Some of Martini’s limitations are shared with coarse-

grained models at a fundamental level, such as the chemical

and spatial resolution, which are both limited compared to

atomistic models; a shifted balance between entropy and

Fig. 8 Polymeric systems. (A) Nanoparticle coated with PMMA resin278 (courtesy

Y. Huang). Nanoparticle is shown in grey, the polymer in blue. (B) Grafted

polystyrene chains in good solvent279 (courtesy G. Rossi). Support is shown in

yellow, polymer backbone in red with one polymer highlighted with blue phenyl

rings. Adapted with permission from ref. 278 and 279. Copyright (2012–2013)

American Chemical Society.

Fig. 9 Nanoparticles interacting with lipids. (A) Fullerene dissolved in a lipid

membrane37 (courtesy L. Monticelli), with fullerenes in red, lipid tails green, lipid

heads blue/orange. (B) Graphene sandwiched in between the bilayer leaflets281

(courtesy P. Kral), with graphene flake in orange, lipid tails blue, lipid heads green.

(C) Carbon nanotube wrapped by surfactants38 (courtesy M. S. P. Sansom), with

CNT in grey, surfactant heads red and tails blue. (D) Wrapping of a cationic gold

nanoparticle by a negatively charged lipid membrane288 (courtesy H. W. Zhang),

showing the cationic coat in red, the lipid tails in yellow, and lipid heads in purple.

Adapted with permission from ref. 38, 281 and 288. Copyright (2007–2011)

American Chemical Society.
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enthalpy due to the reduced number of degrees of freedom; and

kinetics that are modified in unpredictable ways. Other limita-

tions are more tightly linked to Martini itself and could be

improved in the future at the level of coarse-graining inherent

in Martini, or by accepting more detailed descriptions in parts

of the system of interest. This presents an interesting philoso-

phical problem, as the essence of a coarse-grained model is that

it contains less detail than a particular reference model (atomistic

models, in Martini’s case). While it is clear that adding back

details in such a model can improve its accuracy, this also negates

(some of) its computational advantages. Below we discuss a

number of known limitations of Martini.

Model resolution and accuracy

With its 4-1 mapping and its particular range of interactions,

Martini can reproduce the thermodynamics of a large number

of different organic compounds. This mapping clearly limits

the chemical resolution. Phosphatidylcholine lipids can be

used to illustrate this in a biological context. Key properties

of such lipids, including melting temperature and bilayer

stability and thickness depend strongly on the length of

the acyl chains. The lipid dilauroylphosphatidylcholine (DLPC)

has two acyl chains with 12 carbon atoms, represented in

principle by 3 Martini beads, while the lipid dipalmitoyl-

phosphatidylcholine (DPPC) has two acyl chains with 16 carbon

atoms, represented by 4 Martini beads. The common lipid

dimyristoylphosphatidylcholine (DMPC) with 14 carbon atoms

falls somewhere in the middle. Thus the mapping to specific

lipids is not unique. Martini reproduces properties such as

lipid bilayer density profiles, but within the limitations of

this mapping and the spatial resolution afforded by the size

of Martini particles. Similar limitations occur in common

biomolecules such as sterols, where small changes in ring

structure or tail can have large effects on the thermodynamics

of membranes that contain these sterols; carbohydrates, where

stereochemistry and other details that are too subtle to easily

represent in a coarse-grained model occur; and proteins, where

all amino acids have a different representation but it is unlikely

subtle differences between similar side chains are accurately

represented.

Martini in many cases is comparable in accuracy to atomistic

models, particularly in thermodynamics, but it also amplifies a

number of limitations in atomistic models, where lack of

electronic polarizability in the standard force field is one of

the main limitations. Important interactions such as cation–pi

interactions in proteins or the strong electrostatically driven

interactions between benzene molecules are difficult to include

in a coarse-grained force field to reproduce both the strength

of these interactions and, more challenging, the peculiar geo-

metries resulting from these interactions. However, the wide

use of Martini and extensive testing in the original papers

clearly shows the degree of agreement with experiments and

atomistic simulations and allows an assessment of whether

Martini is accurate enough for a particular application. Recent

progress in linking Martini more closely to atomistic simula-

tions through backmapping and through hybrid simulations

appears promising in terms of extending the use of Martini

simulations to problems that may be outside the current

resolution (see ‘Outlook’ section).

Effective time scale

In atomistic simulations the time scale is well-defined and

properties such as water diffusion coefficients are used to judge

the quality of the underlying model. In coarse-grained simula-

tions this is not normally the case. Coarse-graining involves

modifying the energy landscape to become smoother, which

effectively results in more sampling of the energy landscape in

a given time period, speeding up the kinetics of the system.

This is one of the main advantages of coarse-grained models,

but the speed-up is not easily predictable and is not likely to be

the same for all degrees of freedom.303 In Martini the current

best estimate of a semi-universal factor of speed-up compared

to atomistic simulations is about 4, based on lateral diffusion

coefficients of lipids13 and TM peptides130 in membranes.

Some papers therefore report an effective simulation length,

which is 4 times the formal simulation length. However, the use

of a global speed-up factor has to be considered with care. In a

systematic study by de Jong304 on a range of compounds, speed-

up factors based on self-diffusion ranged between 1.2 and 22

comparing Martini to experiments and 0.79 and 17 comparing

Martini to atomistic simulations. The speed-up is dependent

on the type of molecule: Martini alkanes have a small speed-up

compared to experiments or even a reduced speed compared to

atomistic simulations, whereas alcohols show large speed-up

factors. This can be rationalized by the lack of explicit hydrogen

bonds in the CG model. Water, although highly polar, shows a

relatively small speed-up (E2.5), but this is due to the bundling

of four molecules together. Lipids show a large speed-up,

comparable to polar fluids suggesting that their diffusion is

mainly controlled by the polar head groups.

These estimates of speed-up factors are based on single-

molecule diffusion, but the underlying mechanism has not

been carefully investigated and may be different for tracer

diffusion, viscosity, collective diffusion, etc. For instance, the

viscosity of standard Martini water has been determined78,305 at

Z = 7 � 10�4 Pa s (at 323 K) in close agreement with the

experimental value of 5.5 � 10�4 Pa s and actually closer to the

experimental value than the widely used SPC water model. For

lipid bilayers, apparent surface shear viscosity has been calcu-

lated by Baoukina et al.79 and is similar to experimental

estimates; for lipid monolayers, the apparent surface shear

viscosity was similar to previously reported atomistic simula-

tions but much smaller than measured experimentally for

monolayers.252 However, a direct comparison for surface

viscosities is difficult because experimental shear rates are

much lower and simulation results are expected to depend on

the system size. Baoukina et al.103 also calculated the effect of

the presence of domains on monolayer surface viscosity and

found a clear increase in viscosity in the presence of domains or

at higher compression levels, in qualitative agreement with

experiment. Thus although there is some data on viscosities,

more thorough investigations would be welcome. In addition,
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density fluctuations (collective diffusion) have not been care-

fully analyzed yet. Another example of comparing effective time

scales is the recent study on the dynamics of the onset of phase

separation in membranes composed of ternary lipid mixtures.105

Comparing atomistic andMartini simulations, the authors conclude

that, while sharing the structural features of phase separation

in the CG model, the onset of demixing for the atomistic model

is 40 times slower.

In addition to the effect of a simplified energy landscape,

there is also a much smaller source of uncertainty in kinetics

due to the choice of masses of the Martini particles. The actual

time step used in molecular dynamics depends on the masses

of the particles involved, which correspond to real atomic

masses in atomistic simulations but to effective masses in

coarse-grained simulations. All Martini particles have a mass

of 72 amu for full particles or 45 amu for scaled particles,

regardless of the underlying atoms. Effectively this scales the

simulation time differently for groups with different underlying

masses. This could be corrected by using more accurate masses

but since the masses do not affect the ensemble obtained from

a molecular dynamics simulation this is not critical. As atomistic

simulations increase in reach we expect more detailed compar-

isons of kinetics between atomistic and Martini simulations,

which would help calibrate the effective timescale of Martini

simulations. One useful application of Martini is to assess the

amount of sampling required to study a particular phenomenon,

such as lipid mixing, before attempting this with atomistic

simulations.

Free energies, enthalpies, entropies

A third category of properties that are fundamentally affected

in CG models are thermodynamic properties, particularly

the balance between enthalpy and entropy. Martini is para-

meterized to reproduce accurate free energies, with a reduced

number of degrees of freedom compared to atomistic simula-

tions. Reducing the number of degrees of freedom affects the

entropy of the simulation system, which is compensated for by

reduced enthalpic terms in the model. However, this means

that the temperature dependence of coarse-grained models is a

priori not correct. It also means that although free energy

differences are accurate, a break-down of free energies into

enthalpies and entropies may not be accurate. The classical

example of this is the potential of the mean force (PMF)

between two hydrophobic molecules in solution. MacCallum

et al. performed detailed all-atom calculations of the PMF

between two hydrophobic helices, showing a deep well in the

free energy, despite an enthalpic barrier at a slighter higher

separation than the equilibrium conformation.306 Aggregation

was driven by a favorable entropy, related to the structure of

water around the hydrophobic helices and the release of water

trapped between the two helices at near-contact. Corres-

ponding Martini simulations with the standard water model

showed the right free energy profile, but the basis for this

profile is almost entirely enthalpic.307 The polarizable Martini

water model shows a bit more water-ordering effects, but still

did not reproduce the atomistic simulations. The BMW water

model did at least reproduce the correct sign although the

features of the entropy/enthalpy decomposition still differed

from the atomistic simulations. This water model is not a universal

solution due to its interactions with other parts of the Martini force

field, but does point out the importance of water structure if one

wants to reproduce more accurately the underlying thermo-

dynamics. A recent study compared atomistic simulations with a

different CG model in their ability to reproduce different compo-

nents of the thermodynamic driving force for a ligand binding to a

protein.308 The authors concluded that an anisotropic component

to the water model interactions combined with translational

entropy was sufficient to retain a reasonable enthalpy/entropy

balance and temperature dependence of ligand binding.

Thus in solution, PMF decompositions based on CG models

should be used with great caution and in many cases results

with both the standard and polarizable water models in Martini

will be unrealistic. In hydrophobic solvents or membranes, the

story may be different as water ordering is probably one of the

least accurate components of Martini, while lipid ordering or

hydrophobic solvents are likely to be represented much more

accurately. PMFs for dimerization of two fullerene molecules in

octane gave good agreement between atomistic and coarse-

grained simulations, including decomposition in entropy and

enthalpy profiles (Monticelli, personal communication). A

study of the aggregation of two TM helices gave thermodynamic

parameters, including enthalpy and entropy, in reasonable

agreement with experiment,47 although obtaining these para-

meters from atomistic simulations is out of reach at the

moment. Thus it seems entropy/enthalpy decompositions in

apolar environments give at least qualitatively useful results

and warrant further testing.

In a number of studies, Baron et al. compared thermo-

dynamic properties of alkanes and lipids in atomistic and

coarse-grained simulations, including configurational entro-

pies of alkanes309 and lipids,310 as well as a larger range of

thermodynamic properties in liquid alkanes.18 In general, both

models showed similar behaviour, although the temperature

dependence of alkanes and lipids modelled with Martini was

notably weaker than with the atomistic force field or compared

to experiment.

Other properties related to strong water interactions and

water ordering are also challenging to reproduce in coarse-

grained models like Martini. Free energies of hydration and

transfer of groups with full charges are so large that they are

difficult to fit in the range of interactions Martini is capable of

reproducing based on the current LJ and limited Coulomb

interactions. Charge–charge interactions in apolar solvents

are too weak because the implicit screening in Martini and

the size of the Martini particles reduce interactions too much.

One way to improve this may be to place charges off-centre to

allow a closer interaction, analogous to recent changes in the

protein force field.15

The functional form of the non-bonded potential

The use of a LJ 12-6 potential to describe the non-bonded

interactions in Martini is, in hindsight, not the best choice.
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The steep repulsion leads to overstructuring of fluids compared

to atomistic models, as evidenced for instance in the radial

distribution functions (RDFs) for simple alkanes.309 Further-

more, the LJ 12-6 potential has only a limited fluid range.

Consequently, Martini water is prone to freezing even at room

temperature, although the switch function reduces attraction

and increases the melting temperature compared to a pure LJ

function. The melting temperature of Martini water is 290 �

5 K.13 In confined geometries freezing is more pronounced. A

practical, if chemically difficult to justify, solution is the use of

‘anti-freeze’ particles, water particles with a slightly larger

radius.13 Switching to a different non-bonded interaction

potential could, in principle, improve the relative stability of

the fluid phase (see ‘Outlook’ section). A related property that is

not accurate in current versions of Martini is the surface

tension of the air/water interface, which is much too low. This

results in unrealistic behaviour in monolayers at the air/water

interface, where lipids do not spread homogeneously at high

surface tensions but rather form pores in tighter packed

monolayers.250 It is also apparent in water/oil interfaces, which

show properties of consisting of two interfaces (water/air and

air/oil) close to each other, rather than a single interface.251

Using the polarizable water model,21 these properties improve

but only to a limited amount.

Secondary structure constraints

Realistic modelling of conformational changes in proteins

and peptides in biomolecular force fields is essential for

many problems, but is a major challenge in CG simulation.

Martini is unusual among CG protein force fields in that it has

rather sophisticated side chains but a very simple backbone,

consistent with the overall design philosophy of Martini.

However, that means that conformational changes with the

simplified description of Martini cannot be accurately repro-

duced in general. In the current version of the protein force

field, we apply secondary structure constraints to maintain

extended and helical secondary structures by strengthening

bonded interactions to maintain a preset secondary structure.

The secondary structure elements are able to move relative to

each other, which in general does not lead to accurate protein

structures in solution but enables a number of applications of

primarily TM proteins like MscL mentioned above. These

proteins are constrained by the membrane environment and

consist mainly of helices with short loops where details of the

conformations are in some cases not important. Situations

where proteins or peptides change structure considerably

cannot be reliably handled. A few examples that are hindered

by this but otherwise seem very suitable for Martini are

membrane-binding peptides that may be unstructured in

solution but adopt specific conformations when binding to

the membrane, and may adopt yet different structures in

aggregates or channels; membrane-binding proteins with loops

that may fold into helices or unfold from a protected, perhaps

multimeric, structure into a membrane-binding state, and

other systems with similar types of conformational changes.

These changes can be incorporated as assumptions in Martini

simulations, of course, but this is typically less desirable.

Perhaps a combination of backmapping and coarse-graining

steps with atomistic and coarse-grained models may be useful

in some of these cases. Further work in this direction would be

interesting. In a more experimental approach, we tried to

include backbone pseudo-dihedral potentials that reproduce

backbone conformations of atomistic simulations.178 This

method enables some new applications but requires atomistic

simulations as input and is not generally transferable between

sequences or between chemical environments.

Testing the limits: simulations of pore formation

We discussed a range of limitations of Martini, most of which

have their origins clearly in the choice of approximations,

including the resolution of the model and the functional form

of the potential. However, Martini can also break down in cases

where there is no obvious reason. One example of this is pore

formation in lipid bilayers. This is a particularly interesting

example because lipid-lined pores occur in a wide range of

problems for which Martini has been used or could be used.

Pore formation, or more generally defects, in lipid bilayers

occur in processes such as permeabilization of bilayers by

antimicrobial peptides, transport of polar molecules across

membranes, fusion intermediates, and lipid flip–flop from

one membrane leaflet to another. These defects involve water

penetrating into the membrane, followed by rearrangements of

phospholipids. This is an interesting test case for Martini

because of the relatively small characteristic size at the level

of water molecules and the complex environment of water and

polar head groups in a low-dielectric membrane interior. We

have studied membrane defects in great detail by atomistic

simulations and tried to reproduce this data with Martini.311

Fig. 10A shows a snapshot of a DLPC bilayer in which we have

restrained a DLPC headgroup in the centre of the bilayer.

Atomistically this leads to pore formation and an extensive

structural defect, but with Martini (Fig. 10C) the structure is

very different although the free energy cost of placing the lipid

at the centre is similar. To test whether this is due to the simple

water model, we repeated the calculation with the polarizable

Martini water, but with the same result (Fig. 10B). To test

whether the difference is due to the large size of a Martini

water particle compared to an atomistic water molecule, we

tethered atomistic water molecules together in tightly-bound

groups of four, but this gave nearly the same results as the

regular atomistic simulations. Increasing the interaction

between water and headgroups did give structures closer to

the pore observed in atomistic simulations (Fig. 10D), but

worsened other important bilayer properties such as the area/

lipid. We will continue to use a system like this for tests of

future refinements of Martini.

Outlook

Given the large interest of the modelling community to use

Martini on the one hand, and the clear limitations of the model
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on the other hand, there is a lot of work to be done. Below we

sketch the main developments we foresee in the near future.

The next generation, Martini 3.x

The use of a LJ 12-6 potential to describe the non-bonded

interactions in Martini leads to overstructuring as discussed

above. To reproduce the ‘softness’ of real systems a smaller

power for the repulsive term appears more appropriate, as in the

recently reparameterized CG model of Klein and co-workers.312

The other drawback of the LJ 12-6 potential is the limited fluid

range. Possible solutions are given in the literature,313,314

including switching to a power 4 attraction or to a different

potential such as the Morse potential. For the next generation

of the Martini force field, we aim to change the non-bonded

form to a softer potential with longer-ranged attraction. We

are currently exploring the use of the Mie potential,315 a

generalized LJ potential with exponents n and m. Preliminary

results304 indicate that key properties can be reproduced with

Mie 5-4, 5-3, 4-3, and 4-2 potentials in their shifted form.

Another major direction forward is the development of a

foldable protein backbone. The lack of structural flexibility of

the Martini proteins obviously limits the applicability range of

the model. While aiming at a CG model capable of folding a

protein from its sequence may be overly ambitious, describing

the backbone in a more realistic manner would be an important

improvement. One solution is the use of a specific set of bonded

parameters optimized to reproduce an ensemble obtained from

atomistic simulations or NMR experiments, an approach already

used to model amyloids178 and fusion peptides.91 For a less

biased approach, the directionality of H-bonds needs to be

restored. Available coarse-grained models for protein folding

represent the backbone H-bonding in quite different manners

and generally use a specific potential.316–320 In contrast we want

to keep a simple and generic approach. For instance, we have

been exploring the possibility of using a fixed dipole to repre-

sent the backbone polarity, see Fig. 11. The dipoles interact

with other dipoles and particles through regular Coulomb

and LJ potentials. Importantly, this description restores the

directionality of backbone interactions, and has a number of

added benefits: the overall dipole along the axis of an a-helix

is represented, and the charges are natural sensors of the

dielectric environment. A similar approach was used to model

polar side chains more realistically in Martini 2.2 and may

prove to be an effective way to model polar chemical building

blocks in general.

More Martini molecules

Nucleotides, RNA and DNA, constitute the major class of

biomolecules that has not yet been thoroughly parameterized

for Martini. Although there is a Martini model available for a

small piece of DNA,321 a more generic approach is required to

make the model applicable to all nucleic acids. We are currently

developing parameters for single and double stranded DNA,

using a systematic approach analogous to our work on carbo-

hydrates.31 A preliminary model is shown in Fig. 1F. Another

class of biomolecules that requires careful parameterization

are glycans (oligosaccharides), e.g. peptidoglycans that are

the building block of the bacterial cell wall, or the glycans

attached to proteins in the process of glycosylation, or lipo-

polysaccharides that are the major component of the outer

membrane of Gram-negative bacteria. The Martini carbo-

hydrate31 and glycolipid27 force fields can serve as starting

points. Apart from biomolecules, other molecular systems are

in principle amenable to the Martini CG approach. We encourage

parameter development for many more polymers and nano-

particles, and expect a growing number of applications

Fig. 10 Snapshots of a DLPC phospholipid restrained at the centre of a DLPC

bilayer.311 Water is shown as red licorice, lipid tails as grey lines, restrained lipid as

thick grey lines, and headgroup phosphate (phosphorus) and choline (nitrogen)

as balls. (A) Atomistic, (B) polarizable Martini water, (C) standard Martini water,

(D) polarizable Martini water with increased attraction between water and lipid

headgroups. Reprinted with permission from ref. 311. Copyright (2011) American

Chemical Society.

Fig. 11 Toward a foldable Martini protein backbone (courtesy X. Periole). (A)

Stabilization of an a-helix due to added degrees of freedom in the form of

charged particles (red +q, blue �q) attached to the backbone (green), mimicking

the CQO and N–H hydrogen acceptor and donors and providing an overall

dipole moment. (B) Zoomed view of the interaction of the peptide backbone

with the polarizable water model. Effective H-bonds along the backbone and

with the water particles are shown with dashed lines. (C) Close up of the

polarizable water model, consisting of a central LJ bead with two charged

particles attached, representing four real waters.
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involving hybrid molecules; combining bio- and synthetic

molecules into hybrid molecules is a booming research field

in the era of synthetic biology. And why not a Martini force field

for ionic liquids? Using polarized or polarizable CG particles

this might well turn out to be a fruitful approach. Attempts in

this direction have recently been undertaken.322

Algorithmic improvements affecting Martini

A number of algorithmic developments are worthwhile to

mention as they are likely to improve the accuracy, speed,

and stability of Martini simulations in the near future. A first

issue is the choice of thermostat. Although Martini was devel-

oped with the widely-used Berendsen weak-coupling scheme

for temperature and pressure control, recent developments

promise efficient temperature control methods that conserve

momentum,323 which may be important in future work on time

and length scales where hydrodynamic effects play a role. It

remains to be seen how accurately the Martini model can

capture hydrodynamic effects; the fact that the solvent viscosity

is actually reproduced quite well is promising in that respect

(see the discussion on the effective time scale above). Second, to

improve speed, the buffered Verlet pairlist scheme recently

implemented in GROMACS shows promise. Instead of a switch

function, the Verlet scheme uses a straight cut-off in combi-

nation with a shift of the potential to zero at the cut-off.

Neighbour list searching is much faster with this method.

However, as this involves a change in the overall shape of the

non-bonded potential, it might affect system properties. Pre-

liminary results (de Jong and Marrink, unpublished) show that

key properties of the Martini model remain unaffected when

using a slightly reduced cut-off (1.1 nm instead of the current

1.2 nm) in combination with an optimized neighbour list cut-off.

These settings result in a speed-up of almost 100%. Third,

improving numerical stability is also deemed important,

especially in light of high-throughput applications (see below).

One common reason for Martini simulations to crash is that

dihedrals, formed by four particles, are not defined when three of

these particles are co-linear. In atomistic models this does not

occur but at the coarser level of Martini this is difficult to avoid.

We are working on alternative definitions of local geometry to

avoid this numerical problem, making use of combined bending-

torsion potentials or dummy-assisted dihedrals.324

Mixing Martinis

One of the current challenges in biomolecular simulation is to

develop effective multi-scale methods,325–329 which combine

the advantages of atomistic and coarse-grained models. Multi-

resolution methods can either use a static division as in QM/MM

(denoted ‘‘hybrid’’ models), or allow particles to change resolu-

tion on the fly (‘‘adaptive’’ models). Recently we introduced a

straightforward scheme to perform hybrid simulations, making

use of virtual sites to couple the two levels of resolution.327 With

the help of these virtual sites interactions between molecules at

different levels of resolution, i.e. between CG and atomistic

molecules, are treated in the same way as the pure CG–CG

interactions. As a proof of principle, hybrid GROMOS/Martini

simulations of simple liquids like butane and small peptides

were shown to behave well. However, in an extension of this

work330 challenges are pointed out in regard to the electrostatic

coupling between the two levels of resolution. In particular, a

proper description of the interaction between polar AA mole-

cules suffers from the poor short range screening behaviour of

the CG solvent. Applications of this multi-scale method dealing

with less polar solvents, e.g. a lipid bilayer, are more promising.

For instance, the gating of AA mechanosensitive channels in

CG bilayers is currently being studied by our group (Fig. 12A).

To achieve a quantitatively more accurate method, cross optimiza-

tion of the interactions between theMartini and the atomistic force

field is probably necessary, as has been recently attempted in

the PACE force field.331

A breakthrough implementation of an adaptive multi-scale

method is the AdResS (Adaptive Resolution Simulation)

approach, developed by Kremer and co-workers.332 In this

method, a transition region allows molecules to pass from

atomistic to CG resolution and vice versa as a function of the

position of the molecule in the simulation box. The coupling of

resolutions is achieved through the use of a thermodynamic

force in the transition region that compensates for the

chemical potential difference between the two resolutions.

We are currently exploring the coupling of Martini to atomistic

resolution using the AdResS scheme (Fig. 12B). Within the field

of biomolecules, Martini based multi-scale methods appear

ideally suited to study e.g. protein–ligand binding, where the

active site and ligand are modelled in atomistic detail and the

rest of the protein together with the solvent is coarse-grained,

or aggregation of membrane proteins where the surface of the

proteins is treated at a finer grained level compared to the

interior and lipids may increase their resolution in close

contact with proteins. Another potentially powerful approach

to multi-scale simulations is based on Hamiltonian Replica

Exchange MD (HREMD). In HREMD, multiple simulations are run

at the same time with systematic differences in the Hamiltonian, in

this case the atomistic and CG Hamiltonians. Coupling of CG

models to AA models using REMD has been pioneered by

several groups,333,334 but has not yet been used in combination

with the Martini model. Not really multi-scale, but worth

mentioning as an interesting method that opens a range of

Fig. 12 Mixing Martini and AA force fields. (A) Hybrid simulation of an atomistic

membrane protein, MscL, in CG environment330 (courtesy H. Ingolfsson). Protein

channel depicted in red, lipid bilayer with cyan tails and blue/ochre heads, and

water beads purple. (B) Adaptive resolution simulation of CG Martini and

atomistic water using the AdResS scheme (courtesy M. de Melo). The right hand

side shows CG water beads, the left hand side shows bundled clusters of four

atomistic SPC water molecules.
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new problems that can be studied, is the use of constant pH

algorithms with Martini.335

At the other end of the scale, there is promise in combining

Martini with self-consistent field theory,336 to couple Martini to

multi-domain elastic network models,337,338 and to combine

Martini with protein–protein docking approaches. Another

scale bridging opportunity is the ability of Martini to yield

converged PMFs between proteins.169 These PMFs may subse-

quently be used to describe the effective interactions between

simplified proteins in a solvent free approach, a method

coined Atomistic Resolution Brownian Dynamics (ARBD).339

In a related line of research, we are currently parameterizing

a variant of the Martini force field that is solvent free

(‘‘Martini dry’’).

Automated high throughput

World-wide the trend remains to invest in massively parallel

computing with petaflop clusters currently topping the list of

the fastest computers (see http://www.top500.org). Within the

foreseeable future, the exascale will be reached, with clusters

composed of millions of cores. Even local facilities will

approach the petascale soon. This opens the way to simulations

of either very huge systems or massively high throughput. The

largest systems simulated with Martini to date include systems

of a few million particles, e.g. a huge membrane patch from

which a tether was pulled (cf. Fig. 2A), totalling almost 4 000 000

particles in a box with dimensions 86 � 86 � 65 nm3 and

simulated for 1 ms;79 a lipid nanoparticle for gene delivery

(cf. Fig. 6A) with 1 400 000 particles in total, a box size of

54 � 54 � 54 nm3 and simulated for 10 ms;229 and a tetrameric

row of F1F0 ATPase dimers (cf. Fig. 3A) composed of 4 635 000

particles in a box of 84 � 336 � 19 nm3 and simulated for

100 ns.148 Examples of high throughput studies are: scoring of

the aggregation propensity of all 400 dipeptides based on 400 �

100 ns simulations of a box of 300 solvated dipeptides;172

construction of a CG database for the positioning of 91

membrane proteins in a lipid bilayer, based on hundreds of

self-assembly simulations;119 and performing 10000 separate

simulations by using the Folding@Home distributed computing

project to model membrane fusion.239 A recent example of high-

throughput simulations is the systematic sampling of protein–

protein interfaces (Fig. 13). In the forthcoming exascale era, and

with the aid of the continuous improvement of simulation

software, we can expect system sizes to grow to 109 particles,

timescale reaching seconds, and high throughput studies sys-

tematically exploring 1000 s of conditions. To harvest this

enormous power, automated workflows should be designed

and optimized. Efforts in that direction are already undertaken

in a number of groups, for example in the grid-enabled web

portal for MD simulations,340 automated topology builder341 and

automatic embedding of membrane proteins.342 To facilitate the

Martini workflow, we have developed the Martinize script15

which generates GROMACS topology files for proteins from

coordinate input files. We are currently developing scripts to

automatically perform and analyse simulations of heterogeneous

membranes composed of arbitrary lipids and proteins.

Conclusions

In the ten years since its initial publication, the Martini model has

developed from amodel for simulations of lipids and surfactants to

the most widely-used coarse-grained force field for biomolecular

simulation and increasingly in synthetic biology. It has been used

in a broad range of applications and been subjected to many

critical tests, resulting both in exciting scientific results and clear

routes towards further development.
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297 S. Aslan, J. Määttä, B. Z. Haznedaroglu, J. P. M. Goodman,

L. D. Pfefferle, M. Elimelech, E. Pauthe, M. Sammalkorpi

and P. R. van Tassel, Soft Matter, 2013, 9, 2136.

298 J. Dong and J. Zhou, Macromol. Theory Simul., 2013,

22, 174.

299 M. R. Stukan, P. Ligneul, J. P. Crawshaw and E. S. Boek,

Langmuir, 2010, 26, 13342.

300 M. R. Stukan, P. Ligneul and E. S. Boek, Oil Gas Sci.

Technol., 2012, 67, 737.

301 D. Sergi, G. Scocchi and A. Ortona, J. Chem. Phys., 2012,

137, 094904.

302 C. Gobbo, I. Beurroies, D. de Ridder, R. Eelkema,

S. J. Marrink, S. de Feyter, J. van Esch and A. H. de Vries,

J. Phys. Chem. C, 2013, in press.

303 D. Fritz, K. Koschke, V. A. Harmandaris, N. van der Vegt

and K. Kremer, Phys. Chem. Chem. Phys., 2011, 22, 10412.

304 D. H. de Jong, PhD thesis, Univ. of Groningen, 2013.

305 M. Fuhrmans, B. P. Sanders, S. J. Marrink and A. H. de Vries,

Theor. Chem. Acc., 2010, 125, 335.

306 J. L. MacCallum, M. S. Moghaddam, H. S. Chan and

D. P. Tieleman, Proc. Natl. Acad. Sci. U. S. A., 2007,

104, 6206.

307 Z. Wu, Q. Cui and A. Yethiraj, J. Phys. Chem. Lett., 2011,

2, 1794.

308 R. Baron and V. Molinero, J. Chem. Theory Comput., 2012,

8, 3696.

309 R. Baron, A. H. de Vries, P. H. Huenenberger and W. F. van

Gunsteren, J. Phys. Chem. B, 2006, 110, 8464.

310 R. Baron, A. H. de Vries, P. H. Huenenberger and W. F. van

Gunsteren, J. Phys. Chem. B, 2006, 110, 15602.

311 W. F. D. Bennett and D. P. Tieleman, J. Chem. Theor.

Comput., 2011, 7, 2981.

312 W. Shinoda, R. Devane and M. L. Klein, Mol. Simul., 2007,

33, 27.

313 C. C. Chiu, R. DeVane, M. L. Klein, W. Shinoda,

P. B. Moore and S. O. Nielsen, J. Phys. Chem. B, 2010,

114, 6394.

314 B. van Hoof, A. J. Markvoort, R. A. van Santen and

P. A. J. Hilbers, J. Phys. Chem. B, 2011, 115, 10001.

315 G. Mie, Ann. Phys., 1903, 8, 657.

316 G. H. Wei, N. Mousseau and P. Derreumaux, Proteins, 2004,

56, 464.

317 T. Bereau and M. Deserno, J. Chem. Phys., 2009,

130, 235106.

318 G. G. Maisuradze, P. Senet, C. Czaplewski, A. Liwo and

H. A. Scheraga, J. Phys. Chem. A, 2010, 114, 4471.

319 T. Ha-Duong, J. Chem. Theor. Comput., 2010, 6, 761.

320 D. Alemani, F. Collu, M. Cascella and M. Dal Peraro,

J. Chem. Theor. Comput., 2010, 6, 315.

321 S. Khalid, P. J. Bond, J. Holyoake, R. W. Hawtin and M. S. P.

Sansom, J. R. Soc. Interface, 2008, 5, S241.

322 D. Sun and J. Zhou, AIChE J., 2013, DOI: 10.1002/aic.14009.

323 N. Goga, A. J. Rzepiela, A. H. de Vries, S. J. Marrink and

H. J. C. Berendsen, J. Chem. Theor. Comput., 2012,

8, 3637.

324 M. Bulacu, N. Goga, X. Periole, G. Rossi, W. Zhao,

L. Monticelli, D. P. Tieleman and S. J. Marrink, 2013,

in preparation.

325 J. W. Chu, G. S. Ayton, S. Izvekov and G. A. Voth,Mol. Phys.,

2007, 105, 167.

326 S. Nielsen, R. Bulo, P. Moore and B. Ensing, Phys. Chem.

Chem. Phys., 2010, 12, 12401.

327 A. J. Rzepiela, M. Louhivuori, C. Peter and S. J. Marrink,

Phys. Chem. Chem. Phys., 2011, 13, 10437.

328 C. Peter and K. Kremer, Soft Matter, 2009, 5, 4357.

Chem Soc Rev Review Article

O
p
en

 A
cc

es
s 

A
rt

ic
le

. 
P

u
b
li

sh
ed

 o
n
 2

4
 M

ay
 2

0
1
3
. 
D

o
w

n
lo

ad
ed

 o
n
 8

/2
5
/2

0
2
2
 5

:5
8
:0

5
 P

M
. 

 T
h
is

 a
rt

ic
le

 i
s 

li
ce

n
se

d
 u

n
d
er

 a
 C

re
at

iv
e 

C
o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
 3

.0
 U

n
p
o
rt

ed
 L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c3cs60093a


6822 Chem. Soc. Rev., 2013, 42, 6801--6822 This journal is c The Royal Society of Chemistry 2013

329 S. C. L. Kamerlin and A. Warshel, Phys. Chem. Chem. Phys.,

2011, 13, 10401.

330 T. A. Wassenaar, H. I. Ingólfsson, M. Prieß, S. J. Marrink
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