
Perspective Shadow Maps

Marc Stamminger and George Drettakis

REVES - INRIA Sophia-Antipolis, France, http://www-sop.inria.fr/reves/ �

=) =)

Figure 1: (Left) Uniform 512x512 shadow map and resulting image. (Right) The same with a perspective shadow map of the same size.

Abstract

Shadow maps are probably the most widely used means for the gen-
eration of shadows, despite their well known aliasing problems. In
this paper we introduce perspective shadow maps, which are gen-
erated in normalized device coordinate space, i.e., after perspective
transformation. This results in important reduction of shadow map
aliasing with almost no overhead. We correctly treat light source
transformations and show how to include all objects which cast
shadows in the transformed space. Perspective shadow maps can
directly replace standard shadow maps for interactive hardware ac-
celerated rendering as well as in high-quality, offline renderers.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Bitmap and framebuffer operations; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Color,
shading, shadowing, and texture

Keywords: Frame Buffer Algorithms, Graphics Hardware, Illumi-
nation, Level of Detail Algorithms, Rendering, Shadow Algorithms

1 Introduction

Shadows are an important element for any computer graphics im-
age. They provide significant visual cues, aiding the user to un-
derstand spatial relationships in a scene and add realism to syn-
thetic images. The challenge of generating shadows goes back to
the early days of computer graphics, where various geometric al-
gorithms such as those based on clipping [15], or shadow volumes

�fMarc.Stamminger|George.Drettakisg@sophia.inria.fr The

first author is now at the Bauhaus-Universität, Weimar, Germany.

[1] were introduced. These methods often suffer from robustness
problems due to the geometric computations required, and may also
require non-trivial data structures or involve a significant rendering
overhead. In addition, such algorithms are usually a preprocess,
and are thus best suited to static scenes.

The introduction of shadow maps [16] marked an important step
in the evolution of shadow algorithms. With shadow maps, we sim-
ply render the scene from the viewpoint of the light source, creating
a depth image. When rendering each pixel in the final image, the
visible point is transformed into the light coordinate system, and
a depth comparison is performed with the corresponding shadow
map pixel to decide whether the point is hidden with respect to
the light source. A single shadow map is sufficient for directional
lights and spot lights; omnidirectional point lights require several
shadow maps to cover all emission directions. When considering
point lights in this paper, we implicitly mean spot lights, but the
ideas developed here transfer to omnidirectional point lights easily.

Compared to shadow algorithms which require geometric calcu-
lations prone to robustness problems, shadow maps are much more
general. Due to their simplicity, they have been incorporated into
graphics hardware, first on the Infinite Reality [6] and more recently
on consumer-level graphics cards such as the NVIDIA GeForce3.
The possibility to have shadows for large scenes makes shadow
maps particularly interesting for rendering-intensive applications
like video games. Shadow maps are also widely used in offline,
high-quality rendering systems because of their simplicity and flex-
ibility. In the RenderMan standard, for example, shadow maps are
the most widely used method to generate images with shadows [13].

However, as with any method based on a discrete buffer, shadow
maps suffer from aliasing problems, if the shadow map resolution
used is insufficient for the image being rendered. This is particu-
larly true for scenes with a wide depth range, where nearby shadows
need high resolution, whereas for distant shadows low resolution
would be sufficient. Recent shadow map approaches [12, 2] adapt
shadow map resolution by using multiple shadow maps of vary-
ing resolution. However, by using multiple shadow maps, several
rendering passes are required, and due to the more involved data
structures, the methods no longer map to hardware.

In this paper, we present a novel approach to adapt shadow map
resolution to the current view. By using a non-uniform parameter-
ization, a single perspective shadow map is generated, providing
high resolution for near objects, and decreased resolution as we

move away from the viewpoint. An example is shown in Fig. 1.
A standard shadow map (left) has insufficient resolution for nearby
objects (center left). In contrast, in our perspective shadow map
(center right), resolution varies such that nearby objects have suffi-
cient shadow map resolution (right).

Our shadow map projection can still be represented by a 4� 4
matrix, so that it fully maps to hardware. It can easily be used
to improve any interactive and offline rendering method based on
shadow maps, with only marginal overhead for the computation of
the optimized projection matrix. Perspective shadow maps often re-
duce aliasing dramatically. In a few difficult cases, our parameteri-
zation converges to standard uniform shadow maps. Our approach
is view-dependent, requiring the generation of a new shadow map
at each frame or at least after major camera movements. This is
necessary for scenes containing moving objects anyhow, such as
those used in video games or other interactive applications. In this
case, we have no significant speed penalty compared to a standard,
fixed-resolution shadow map.

1.1 Shadow Map Aliasing

First, we briefly formalize the aliasing problems of shadow maps
for point light sources. Every pixel in the shadow map represents
a sheared pyramid of rays, passing through a shadow map pixel of
size ds x ds on the (shadow) image plane (Fig. 2). In the follow-
ing, we will call the reciprocal of ds the shadow map resolution.
To increase shadow map resolution we decrease ds and vice versa.
When the ray bundle through a shadow map pixel hits a surface
at distance rs under angle α, the size of the intersection is approx-
imately dsrs=cos α. In the final image, this intersection with the
surface has size:

d = ds
rs

ri

cosβ

cosα
;

where β is the angle between the light source direction and the sur-
face normal and ri is the distance from the camera to the intersec-
tion.

Figure 2: Shadow map projection quantities.

For directional light sources, d is independent of rs, so d only
depends on ds=ri. Analogously, for an orthogonal view d is propor-
tional to dsrs.

Shadow map undersampling appears when d is larger than the
image pixel size di. This can happen when dsrs=ri becomes large,
which typically happens when the user zooms into a shadow bound-
ary so that single shadow map pixels become visible. We will call
this perspective aliasing. Due to limited memory, the shadow map
resolution 1=ds can only be increased up to a certain limit in prac-
tice. Perspective aliasing can be avoided by keeping the fraction
rs=ri close to a constant. As we show in this paper, this is what is
achieved when we compute the shadow map after perspective trans-
formation.

When cosβ=cos α becomes large, projection aliasing appears.
This typically happens when the light rays are almost parallel to a
surface, so that the shadow stretches along the surface. Projection
aliasing is not treated by perspective shadow maps, since this would

require a local increase in shadow map resolution. This is not possi-
ble without much more involved data structures, and it would force
us to abandon hardware acceleration.

Note that there are also other sources of aliasing when using
shadow maps, e.g., depth quantization, which we will not treat here.

1.2 Related Work

The literature on shadow generation in computer graphics is vast,
and far beyond the scope of this paper (see [17] for an old, but nice
survey). We thus concentrate our review on previous work directly
related to shadows maps and our novel approach.

Reeves et al. [9] introduced the concept of percentage closer fil-
tering. The idea is to filter the shadows obtained from shadow maps
by interpolating the binary result of the depth comparison instead
of the depth values. The deep shadow maps of Lokovic et al. [5]
extend the idea of filtering shadow maps by storing approximate
attenuation functions for each shadow map pixel, thus capturing
self shadowing within hair, fur or smoke. Both approaches perform
anti-aliasing in that they filter undersampling artifacts, but they do
not solve the problem of undersampling as such.

Tadamura et al. [12] introduce multiple shadow maps with vary-
ing resolution as a solution to the aliasing problem for large outdoor
scenes. This solves the problem of perspective aliasing, but it does
not map to hardware and is thus not appropriate for interactive ap-
plications.

An interesting improvement to traditional shadow maps is the
adaptive shadow map method [2]. This approach replaces the “flat”
shadow map with an adaptive, hierarchical representation, which is
updated continuously during a walkthrough. For each frame, a first
rendering pass is required to determine which parts of the hierarchi-
cal shadow map need refinement. This is achieved using OpenGL
texture mip-mapping capabilities. Perspective and projection alias-
ing are detected. The most critical parts of the shadow map are then
rendered at higher resolution, read back, and inserted into the hier-
archical shadow map structure. Oversampled parts of the hierarchy
are truncated. The method is a software solution, since it requires
the traversal and refinement of a hierarchical data structure instead
of a shadow map, and thus cannot entirely map to hardware. Rapid
view changes make it necessary to update a large number of nodes
in the hierarchy, so either the frame rate drops or aliasing appears
until the hierarchical structure has been updated. The generation of
a new node essentially requires an entire rendering pass, albeit with
a small part of the model, but with the full cost of a frame-buffer
readback to update the data structure. Scenes with moving objects
would require the generation of the entire hierarchical structure at
each frame, which would require many rendering passes.

Shadow maps are closely related to textures, so we assume the
reader is familiar with the texturing and the projective mapping pro-
cess. Most standard graphics textbooks treat these issues [3]. A
particularly nice and thorough description can be found in [4].

2 Overview

Perspective shadow maps are computed in post-perspective space
of the current camera, or, using standard graphics terminology, the
space of normalized device coordinates [3]. In the traditional ren-
dering pipeline, perspective is obtained by transforming the world
to a perspectively distorted space, where objects close to the camera
are enlarged and distant objects are shrunk (see Fig. 3). This map-
ping is projective [4] and can thus be represented by a 4� 4 ma-
trix with homogeneous coordinates. It projects the current viewing
frustum to the unit cube; the final image is generated by a parallel
projection of this cube along z.

The idea of perspective shadow maps is to first map the scene
to post-perspective space and then generate a standard shadow

map in this space by rendering a view from the transformed light
source to the unit cube. We can work in post-perspective space al-
most as in world space, with the exception of objects behind the
viewer, which will be handled in Sect. 4. Because the shadow map
“sees” the scene after perspective projection, perspective aliasing
(see Sect. 1.1) is significantly decreased, if not completely avoided.

To explain this principle a special case is depicted in Fig. 3. The
scene is illuminated by a vertical directional light source. In post-
perspective space the shadow map is an orthogonal view from the
top onto the unit cube and the final image is an orthogonal view
from the front. Consequently, all shadow map pixels projected onto
the ground in this scene have the same size in the image. Thus, in
the sense of Sect. 1.1, perspective aliasing is completely avoided
for this case.

Figure 3: The scene is illuminated by a vertical directional light
source (left). By applying the eye-view perspective transformation
and then generating the shadow map (right), the shadow map pixels
projected on the ground are evenly distributed in the image.

3 Post-Perspective Light Sources

To apply our new method, we first transform the scene to post-
perspective space, using the camera matrix. We then transform the
light source by the same matrix, and generate the shadow map. The
different cases which arise are described next.

3.1 Directional Light Sources

Directional light sources can be considered as point lights at infin-
ity. The perspective mapping can move these sources to a finite
position; the set of possible cases is shown in Fig. 3 and 4. A di-
rectional light source parallel to the image plane remains at infinity.
All other directional light sources become point lights on the infin-
ity plane at z = (f +n)=(f �n), where n and f are the near and far
distance of the viewing frustum (see Fig. 3).

A directional light source shining from the front becomes a point
light in post-perspective space (Fig. 4, left), whereas a directional
light source from behind is mapped to a “inverted” point light
source (center). In this context, “inverted” means that all light rays
for these light sources do not emanate, but converge to a single
point. Such inverted point light sources can easily be handled as
point lights with their shadow map depth test reversed, such that hit
points furthest from the point source survive. The extreme cases are
directional lights parallel (facing or opposite to) the view direction,
which are mapped to a point light just in front of the viewer (right).

3.2 Point Light Sources

The different settings for point light sources are shown in Fig. 5.
Point light sources in front of the viewer remain point lights, (left).

Figure 4: Directional lights in world space (top row) become point
lights in post perspective space (bottom row) on the infinity plane.
Lights from behind become inverted, i.e., the order of hits along a
ray is inverted.

Figure 5: Mapping of point lights in world space (top row) to post-
perspective space (bottom row). A point light in front of the user
remains a normal point light (left), a point light behind the viewer
becomes inverted (center). Boundary cases are mapped to direc-
tional lights (right).

Point lights behind the viewer are mapped beyond the infinity plane
and become inverted (center). Point lights on the plane through
the view point which is perpendicular to the view direction (camera
plane), however, become directional (right).

3.3 Discussion

In post-perspective space, the final image is an orthogonal view
onto the unit cube. Following our observations in Sect. 1.1, this
means that perspective aliasing due to distance to the eye, ri, is
avoided. However, if the light source is mapped to a point light in
post-perspective space, aliasing due to the distance to the shadow
map image plane, rs, can appear.

The ideal case occurs when, after the perspective mapping, the
light source is directional. Perspective aliasing due to rs is thus also
avoided. This happens for:

� a directional light parallel to the image plane (see Fig. 3),

� a point light in the camera plane. The typical example is the
miner’s head-lamp, that is a point light just above the camera.
It is known that this setting is also ideal for standard shadow
maps [7]. With our parameterization, the offset can be arbi-
trarily large, as long as the point remains in the camera plane.

On the other hand, the less optimal cases appear when we obtain
a point light with a large depth range in post-perspective space. The

extreme example is a directional light parallel to the viewing direc-
tion. In post-perspective space, this becomes a point light on the in-
finity plane on the opposite side of the viewer (see Fig. 4 right). In
this worst case the two perspective projections with opposite view-
ing directions cancel out mutually and we obtain a standard uniform
shadow map.

In general, for directional light sources the benefit is maximal for
a light direction perpendicular to the view direction. Since these are
also parallel lights in post-perspective space, perspective aliasing is
completely avoided in this case. Consider the smaller of the two
angles formed between the light direction and the viewing direc-
tion. The benefit of our approach decreases as this angle becomes
smaller, since we move further away from the ideal, perpendicu-
lar case. If the angle is zero our parameterization corresponds to a
uniform shadow map.

For point lights, the analysis is harder, since the point light
source also applies a perspective projection. Informally, the ad-
vantage of our parameterization is largest when the point light is
far away from the viewing frustum, so that it is similar to a paral-
lel light, and if the visible illuminated region exhibits a large depth
range. For the case of a miner’s lamp, which is known to be ideal
for uniform shadow maps [7], our parameterization again converges
to the uniform setting.

A common problem in shadow maps is the bias necessary to
avoid self-occlusion or surface acne [7]. This problem is in-
creased for perspective shadow maps, because objects are scaled
non-uniformly. We use a constant offset in depth in shadow map
space, which may require user adjustment depending on the scene.

4 Including all Objects Casting Shadows

Up to now, we ignored an important issue: our shadow map is op-
timized for the current viewing frustum. But the shadow map must
contain all objects within that frustum plus all potential occluders
outside the frustum that can cast a shadow onto any visible object.

4.1 World Space

More formally, we define the set of points that must appear in the
shadow map as follows: Let S be an envelope of the scene objects,
typically its bounding box. V is the viewing frustum and L the light
source frustum. The light source is at position l (for directional
lights L = R3 and l is at infinity). First, we compute the convex
hull M of V and l, so M contains all rays from points in V to l.
From M we then remove all points outside the scene’s bounding
box and the light frustum: H = M \ S \L (shown in yellow in
Fig. 6 (right)).

Figure 6: The current view frustum V , the light frustum L with
light position l, and the scene bounding box S (left). M is obtained
by extending V towards the light (center). Then M is intersected
with S and L to obtain the set of points that need to be visible in
the shadow map (right).

In our implementation we use the computational geometry li-
brary CGAL (www.cgal.org) to perform these geometric com-
putations. As a result, the window of the shadow map is chosen so

that all points in H are included. However, the shadow map will
not see H , but its transformation to post-perspective space, so we
have to consider how H changes by the perspective mapping.

4.2 Post-perspective Space

Under projective transformations lines remain lines, but the order
of points along a line can change. For perspective projections, this
happens when a line intersects the camera plane, where the inter-
section point is mapped to infinity. As a result, we can quickly
transform the convex set H to post-perspective space by transfor-
mation of its vertices, as long as H is completely in front of the
viewer. An example where this is not the case is shown in Fig. 7.
Points behind the viewer had to be included, because they can cast
shadows into the viewing frustum. However, in post-perspective
space, these points are projected to beyond the infinity plane. In
this case, possible occluders can be on both sides of the infinity
plane.

Figure 7: The scene is lit by a directional light source coming from
behind (top left). After perspective projection, an object behind the
viewer is inverted and appears on the other side of the infinity plane
(lower left). To treat this we move the center of projection back
(upper right), so that we are behind the furthermost point which can
cast a shadow into the view frustum. After this, a standard shadow
map in post-perspective space is again sufficient (lower right).

One solution would be to generate two shadow maps in this case.
A first one as described previously, and a second one that looks
“beyond” the infinity plane. We avoid this awkward solution by
a virtual camera shift. We virtually move the camera view point
backwards, such that H lies entirely inside the transformed cam-
era frustum; the near plane distance remains unchanged and the far
plane distance is increased to contain the entire previous frustum.
Note that this camera point displacement is only for the shadow
map generation, not for rendering the image.

By this, we modify the post-perspective space, resulting in de-
creased perspective foreshortening. If we move the camera to infin-
ity, we obtain an orthogonal view with a post-perspective space that
is equivalent to the original world space; the resulting perspective
shadow map then corresponds to a standard uniform shadow map.

Consequently, we can say that by moving back the camera, our
parameterization degrades towards that of a standard shadow map.
By this, perspective aliasing is reintroduced, however, in practice
this is only relevant for extreme cases, so we found it preferable to
the double shadow map solution. It is interesting to note that for
the cases that are ideal for perspective shadow maps, no such shift
is necessary, because H will always be completely in front of the
camera. The shift distance will be significant only if the light source
is far behind the viewer. But in this case, our parameterization con-
verges to the uniform shadow map anyway.

5 Point Rendering

Point rendering (e.g., [8, 10, 11, 14]) has proven to be a very effec-
tive means for rendering complex geometry. Points are particularly
well suited for natural objects. However, for the generation of uni-
form shadow maps point rendering loses most of its benefits. A
very large, dense point set needs to be generated in order to render
a high-resolution uniform shadow map. Frequent regeneration of
the shadow map for dynamic scenes becomes highly inefficient.

On the other hand, our projective shadow map parameterization
fits nicely with the point rendering approaches presented in [14, 11],
in the sense that the point sets generated by these methods can also
be used for the rendering of the shadow map. The reason is that
these approaches generate random point clouds, with point den-
sities adapted to the distance to the viewer. In post-perspective
space, these point clouds have uniform point density. Since per-
spective shadow maps are rendered in this space, the shadow map
can assume that point densities are uniform. It is thus easy to select
the splat size when rendering the shadow map such that holes are
avoided.

6 Implementation and Results

We implemented perspective shadow maps within an inter-
active rendering application using OpenGL hardware assisted
shadow maps. The following results, and all sequences
on the accompanying video, were obtained under Linux on
a Compaq AP550 with two 1 GHz Pentium III processors
and an NVIDIA GeForce3 graphics accelerator. We used
the shadow map extensions GL SGIX depth texture and
GL SGIX shadow. The shadow maps are rendered into p-buffers
(GLX SGIX pbuffer) and are applied using register combiners
(GL NV register combiners).

In order to obtain optimal results from perspective shadow maps,
we require that the near plane of the view be as far as possible.
We achieve this by reading back the depth buffer after each frame,
searching the minimal depth value, and adapting the near plane ac-
cordingly. Due to the fast bus and RAM of our computer, the speed
penalty for reading back the depth buffer is moderate, e.g., 10ms
for reading back depth with 16 bits precision at 640 by 480 pixel
resolution. The increase in quality is well worth this overhead.

Fig. 1 shows a chess board scene, lit by a spot light source. The
left image shows a uniform shadow map, the center left image is
the resulting rendering with well visible shadow map aliasing. The
far right image was obtained with a perspective shadow map of the
same size, which is shown on the center right.

Fig. 8 shows Notre Dame in Paris, augmented with a crowd and
trees. With point based rendering for the trees and the crowd, the
views shown are still obtained at about 15 frames/sec.

In the street scene in Fig. 9 the cars and two airplanes are mov-
ing. The figure shows three snapshots from an interactive session;
all images were obtained at more than ten frames per second with
perspective shadow maps of size 1024�1024.

Our final test scene is a complete ecosystem, consisting of hun-
dreds of different plants and a few cows. The view shown in
Fig. 10 contains more than 20 million triangles. We show the image
without shadows (left), with shadows from a 1024�1024 uniform
shadow map (center) and with shadows from a projective shadow
map of the same size (right).

7 Conclusions

We have introduced perspective shadow maps, a novel parameter-
ization for shadow maps. Our approach permits the generation of
shadow maps with greatly improved quality, compared to standard

uniform shadow maps. By choosing an appropriate projective map-
ping, shadow map resolution is concentrated where appropriate. We
have also shown how our method can be used for point rendering,
thus allowing interactive display of very complex scenes with high-
quality shadows. Perspective shadow maps can be used in interac-
tive applications and fully exploit shadow map capabilities of recent
graphics hardware, but they are also applicable to high-quality soft-
ware renderers.

8 Acknowledgments

The first author has been supported by a Marie-Curie postdoctoral
Fellowship while doing this work. L. Kettner implemented the frus-
tum intersection code in CGAL (www.cgal.org). Thanks to
F. Durand for his very helpful comments. Most of the models in
the result section were downloaded from www.3dcafe.com and
www.help3d.com.

References

[1] F. C. Crow. Shadow algorithms for computer graphics. Computer

Graphics (Proc. of SIGGRAPH 77), 11(2):242–248, 1977.

[2] R. Fernando, S. Fernandez, K. Bala, and D. P. Greenberg. Adaptive

shadow maps. Proc. of SIGGRAPH 2001, pages 387–390, 2001.

[3] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes. Computer

graphics, principles and practice, second edition. 1990.

[4] P. Heckbert. Survey of Texture Mapping. IEEE Computer Graphics

and Applications, 6(11):56–67, November 1986.

[5] T. Lokovic and E. Veach. Deep shadow maps. Proc. of SIGGRAPH

2000, pages 385–392, 2000.

[6] J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J. Migdal. Infinite-

reality: A real-time graphics system. Proc. of SIGGRAPH 97, pages

293–302, 1997.

[7] nvidia. webpage. http://developer.nvidia.com/
view.asp?IO=cedec shadowmap.

[8] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface

elements as rendering primitives. Proc. of SIGGRAPH 2000, pages

335–342, 2000.

[9] W. T. Reeves, D. H. Salesin, and R. L. Cook. Rendering antialiased

shadows with depth maps. Computer Graphics (Proc. of SIGGRAPH

87), 21(4):283–291, 1987.

[10] S. Rusinkiewicz and M. Levoy. Qsplat: A multiresolution point ren-

dering system for large meshes. Proc. of SIGGRAPH 2000, pages

343–352, 2000.

[11] M. Stamminger and G. Drettakis. Interactive sampling and ren-

dering for complex and procedural geometry. In S. Gortler and

K. Myszkowski, editors, Rendering Techniques 2001 (12th Euro-

graphics Workshop on Rendering), pages 151–162. Springer Verlag,

2001.

[12] K. Tadamura, X. Qin, G. Jiao, and E. Nakamae. Rendering optimal so-

lar shadows with plural sunlight depth buffers. The Visual Computer,

17(2):76–90, 2001.

[13] S. Upstill. The RenderMan Companion. Addison-Wesley, 1990.

[14] M. Wand, M. Fischer, I. Peter, F. Meyer auf der Heide, and W. Straßer.

The randomized z-buffer algorithm: Interactive rendering of highly

complex scenes. Proc. of SIGGRAPH 2001, pages 361–370, 2001.

[15] K. Weiler and K. Atherton. Hidden surface removal using poly-

gon area sorting. Computer Graphics (Proc. of SIGGRAPH 77),

11(2):214–222, 1977.

[16] L. Williams. Casting curved shadows on curved surfaces. Computer

Graphics (Proc. of SIGGRAPH 78), 12(3):270–274, 1978.

[17] A. Woo, P. Poulin, and A. Fournier. A survey of shadow algorithms.

IEEE Computer Graphics and Applications, 10(6):13–32, November

1990.

Figure 8: Notre Dame rendered with shadow maps of size 1024� 1024. The left image and the right halves of the center and right image
were rendered with perspective shadow maps at about 15 frames per second. The left sides of the center and right image have been generated
with uniform shadow maps of the same size. The rendering of the trees and the crowd is accelerated by point rendering.

Figure 9: A street scene with moving cars and planes. The images were rendered at more than 10 frames per second with perspective shadow
maps of size 1024�1024. Note the different shadow details at varying distances.

no shadows uniform shadow map perspective shadow map

Figure 10: This view into an eco system contains more than 20 million triangles, rendered by a mix of points and polygons in one second
(left). By adding shadows from a uniform shadow map the quality improves significantly (center), but only the perspective shadow map
captures fine nearby shadows (right). The total rendering time for the right image is 1.2 seconds.

