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While digital integrated circuits with von Neumann architectures, having exponentially evolved for

half a century, are an indispensable building block of today’s information society, recently growing

demand on executing more complex tasks like the human brain has allowed a revisit to the architec-

ture of information processing. Brain-inspired hardware using artificial neural networks is expected

to offer a complementary approach to deal with complex problems. Since the neuron and synapse

are key components of brains, most of the mathematical models of artificial neural networks require

artificial neurons and synapses. Consequently, much effort has been devoted to creating artificial

neurons and synapses using various solid-state systems with ferroelectric materials, phase-change

materials, oxide-based memristive materials, and so on. Here, we review an example of studies on

an artificial synapse based on spintronics and its application to artificial neural networks. The spin-

tronic synapse, having analog and nonvolatile memory functionality, consists of an antiferromagnet/

ferromagnet heterostructure and is operated by spin-orbit torque. After giving an overview of this

field, we describe the operation principle and results of analog magnetization switching of the spin-

tronic synapse. We then review a proof-of-concept demonstration of the artificial neural network

with 36 spintronic synapses, where an associative memory operation based on the Hopfield model is

performed and the learning ability of the spintronic synapses is confirmed, showing promise for

low-power neuromorphic computation. Published by AIP Publishing.

https://doi.org/10.1063/1.5042317

I. INTRODUCTION AND BACKGROUND

Current information processing and communication

technologies rely on digital complementary metal-oxide-

semiconductor (CMOS)-based integrated circuits with the

von Neumann architecture. As the technologies advance by

increasing the clock frequency and count of the components

in circuits, the limit of this approach has risen to the surface

year by year in the form of physical scaling limits, significant

stand-by power consumption, data-transfer bottlenecks, and

so on.1 In addition, while the conventional approach effi-

ciently completes simple iterative operations, it is not suitable

to execute complex tasks such as perception, prediction, and

decision making. Consequently, a growing interest is being

paid on information processing inspired by the brain, a

system that can readily complete such complex cognitive

tasks even from an imperfect set of input information.

A scheme to emulate the information-processing mecha-

nism of the brain in software and run it on conventional hard-

ware, e.g., deep neural network, has been fully recognized as

a powerful means2 and has already been implemented as arti-

ficial intelligence. While this approach shows high perfor-

mance that can compete with the human brain,2 however, it

builds on tremendous hardware resources and power supply,

inhibiting the expansion of the area where the technology can

be utilized. This fact calls for another strategy where sophisti-

cated hardware is employed, which emulates neural networks

of the brain to aim at processing information at a lower level

of hardware resources and power comsumption.3–6

Key building blocks of the brains are the neuron and

synapse. The neuron takes a role of information processing; it

integrates frequently input stimuli by a membrane potential and

fires once the potential reaches a certain threshold. The synapse,

on the other hand, takes the role of learning and memorizing;

located at junctions between neurons. The connection strength,

or synaptic weight, corresponding to the memorized informa-

tion, is changed in an analog manner through learning. With

neurons and synapses, information processing, memorizing,

and learning take place locally, in parallel, and asynchronously,

in stark contrast to von Neumann architectures. Mathematical

models that abstract the aforementioned mechanism of informa-

tion processing in neural network or artificial hardware where

operations based on the mathematical model are executed are

referred to as artificial neural networks and are recognized as a

key ingredient to realize low-power, high-performance, and

adaptive neuromorphic computing beyond the currently used

von Neumann architecture-based artificial intelligence.7

In order to construct large-scale and low-power artificial

neural networks, it is effective to utilize artificial neurons anda)s-fukami@riec.tohoku.ac.jp
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synapses using solid-state devices. Also, since real neural net-

works comprise a much larger number of synapses than

neurons, mathematical models for artificial neural networks

mostly require a large number of synapses. It is also noted

that, as in the real synapses, the artificial synapses are desired

to change their state in an analog manner through learning and

store their state in a nonvolatile manner. These facts have led

to extensive efforts on realization of compact, analog, and

nonvolatile artificial synapses using solid-state devices made

of various material systems such as resistance switching mate-

rials (or memristor8),9,10 phase change materials,11 and ferro-

electric materials.12,13 In addition, several demonstrations of

brain-like computation have been reported. For example,

Prezioso et al. showed a classification of 3 × 3 pixels images

using a trained 12 × 12 cross-bar network with metal-oxide

memristors.14 Also, Burr et al. showed a classification of

handwritten digits using a trained three-layer perceptron

network with 164 885 phase-change memory devices.15

Spintronics also offers an attractive platform for solid-

state device technologies. Spintronics devices inherently

achieve fast and virtually infinite information writing operation

(magnetization switching) with standard CMOS-compatible

voltages and store their state without the use of a power

supply. Following magnetoresistive random access memories

(MRAMs) utilizing a magnetic-field-induced switching

scheme commercialized since 2006,16 MRAMs utilizing spin-

transfer torque (STT)-induced magnetization switching

(STT-MRAMs) are about to hit the mass market.17,18 In addi-

tion, these features hold promise for high-performance and

low-power artificial neural networks that are adaptive through

continuous learning and robust against environmental agita-

tion. At the same time, a variety of physical aspects of spin-

tronics devices make them various constituents in artificial

neural networks, unlimited to artificial synapses.19–24

Spintronic or magnetic material systems in general represent

digital information as their magnetization direction, e.g., up or

down. However, proper engineering of material systems

allows one to deal with analog information by their magnetic

domain structures, providing opportunities to realize spintronic

synapse for high-performance, low-power, and adaptive artifi-

cial neural networks.

In the following, we review our studies on a spintronic

artificial synapse25–27 and its implementation to the artificial

neural network.28 The synaptic device is operated by

spin-orbit torque [Fig. 1(a)] and consists of an antiferromag-

net/ferromagnet bilayer system [Fig. 1(b)], allowing analog

control of magnetization state by electric current. For the

demonstration of artificial neural network, the Hopfield

model, a representative model of neural network, is employed

and an associative memory operation is tested. Through this

proof-of-concept demonstration, we show that the employed

spintronic artificial synapse has functions of learning and

memorizing.

II. ARTIFICIAL SYNAPSE

In this section, we describe the structure, operation prin-

ciple, and the mechanism that accounts for the analog opera-

tion of the developed artificial spintronic synapses.

Viable spintronics devices require an efficient scheme to

electrically control magnetization. STT-induced magnetiza-

tion switching29,30 in magnetic tunnel junctions is a leading

example and has allowed successful development of

STT-MRAMs.17,18 Meanwhile, recent studies have revealed

that torque arising from spin-orbit interactions, spin-orbit

torque (SOT), also provides a promising scheme to induce

magnetization switching. SOT arises when one introduces an

in-plane current to magnetic crystals with noncentrosymme-

try31 or magnetic heterostructures with broken space inver-

sion symmetry,32 which have sizable spin-orbit interaction.

The origin of SOT in heterostructures is still under debate

and could be different from one system to another. One of

the most likely mechanisms is the spin Hall effect, in which

charge current is converted to a spin current in the transverse

direction to the original charge current33–36 as shown in

Fig. 1(a). The generated spin current accumulates spin-

polarized electrons in the adjacent ferromagnetic layer, exert-

ing a torque on its magnetization. Another possible factor is

the Rashba-Edelstein effect, in which charged carriers

moving in a two-dimensional interface with an effective elec-

tric field feels an effective magnetic field in the transverse

direction to both the momentum of the carrier and the electric

field.37,38 This eventually causes a non-equilibrium spin

accumulation as well. Importantly, both effects give rise to

similar torques with two different symmetries:39,40 a field-

like torque with m × σ symmetry and a Slonczewski-like

torque with m × (m × σ) symmetry, where m is the unit

vector of magnetization and σ is the spin accumulation vector

(σ // y in case that current flows in the x direction). There are

three types of SOT switching schemes in terms of magnetic

easy axis direction with respect to the applied current

(flowing along the x direction); perpendicular (Type Z)

scheme,32 in-plane and orthogonal-to-current (Type Y)

scheme,41 and in-plane and collinear-to-current (Type X)

scheme.42 For Types Z and X structures, the effective field of

the field-like torque always points to the y (hard-axis) direc-

tion and the switching is driven by the Slonczewski-like

torque. Since the effective field of the Slonczewski-like

torque has rotational symmetry about the y axis [Fig. 1(c)],

breaking the rotational symmetry of the Slonczewski-like

torque is necessary to determine the switching direction

[Fig. 1(d)], posing an obstacle for integrated-circuit imple-

mentation. While several means have been proposed and

demonstrated,43–47 here we describe a method to utilize anti-

ferromagnet/ferromagnet bilayer systems, which leads to the

analog control of magnetization and makes it a candidate for

artificial synapses.

A large spin Hall effect has been mostly observed in

nonmagnetic materials such as Pt,48 Ta,41 and W.49

However, recent theoretical studies pointed out that some of

the noncollinear antiferromagnets exhibit a giant anomalous

Hall effect, originating from the Berry curvature50 which is

confirmed experimentally.51 Experimental studies on the

inverse/direct spin Hall effect in antiferromagnetic materials

have also been performed, and sizable effects have been

observed in various systems.52–57 Antiferromagnet/ferromag-

net bilayer systems are also known to exhibit exchange

bias, where a unidirectional anisotropy is exerted on the
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ferromagnet at the interface.58 Therefore, combination of

these two effects is expected to achieve field-free switching

of perpendicular magnetization, where the antiferromagnet

plays the role of the source of SOT and the source of

in-plane field simultaneously [Figs. 1(b)–1(d)].25,59 In the

following, the experimental results based on this concept25

will be reviewed.

For this work, antiferromagnetic PtMn and ferromag-

netic Co/Ni multilayers were employed. The stack structure

was, from the substrate side, Ta(3)/Pt(4)/PtMn (8)/[Co(0.3)/

Ni(0.6)]2/Co(0.3)/MgO(1.2)/Ta(2) (numbers in parentheses

are nominal thickness in nanometers). The films were depos-

ited on high-resistance Si substrate by dc/rf magnetron sput-

tering. After the deposition, the films were annealed in a

magnetic field of 1.2 T along the x direction at 300 °C for

one hour. We confirmed from the magnetization hysteresis

loop measurement using vibrating sample magnetometer that

perpendicular easy axis and finite exchange bias were simul-

taneously obtained at the PtMn thickness of 8 nm (thinner

PtMn resulted in negligible exchange bias whereas thicker

PtMn resulted in in-plane easy axis due to too strong

exchange bias). The films were processed into cross-shaped

Hall-bar devices with a width of 10 μm by photolithography

and Ar ion milling, as shown in Fig. 1(e). The channel was

fabricated along the x direction, the same direction with the

exchange bias. To evaluate the magnetization reversal, the

anomalous Hall resistance was measured with a dc current

magnitude of 1 mA. The details are described in Ref. 25.

Figure 1(f ) shows the Hall resistance as a function of the

applied channel current measured at various in-plane mag-

netic fields μ0Hx along the x direction (μ0 is the permeability

in free space). A hysteresis loop is observed at zero magnetic

field. The loop collapses at μ0Hx =−10 mT, meaning that

the effective field due to the exchange bias is canceled by

the external field. The switching direction reverses above

−10 mT. Change in the switching direction indicates that the

switching is driven by SOT and finite hysteresis at zero field

indicates field-free SOT switching of perpendicular magneti-

zation owing to the exchange bias as expected. We confirmed

that the switching direction changes when we reverse the

exchange bias direction by reversing the magnetic-field

annealing direction, indicating that the exchange bias causes

the field-free switching.

We then take a closer look at the current-induced hystere-

sis loop at zero field. The outer curve in Fig. 1(g) shows the

loop obtained by sweeping the current between ±44 mA, in the

direction indicated by arrows. The inner curves, on the other

hand, show the results when the increase of the current in the

negative direction was stopped below −44mA. Depending on

the applied maximum current IMAX, intermediate states of dif-

ferent levels are realized. The intermediate states are found to

be stable after turning off the current, which indicates that the

present system functions as an analog and nonvolatile memory

device, which is expected to be useful as an artificial synapse

in artificial neural networks as described earlier. In Sec. III, a

proof-of-concept demonstration of an artificial neural network

using the analog SOT device will be presented.

We then investigated the underlying mechanism that

causes the observed nonvolatile and analog behavior.26 To

examine it, we fabricated dot devices, in which the ferromag-

netic Co/Ni multilayer was processed into nanodots with

various diameters Ddot from 1 μm to 50 nm and formed on

top of a PtMn Hall bar. The channel width Wch was varied

according to Ddot. Figure 2(a) shows the scanning electron

FIG. 1. Field-free and analog switching by spin-orbit

torque in antiferromagnet/ferromagnet heterostructure.

(a) Schematics of generation of spin-orbit torque in het-

erostructure. (b) Schematic of antiferromagnet (PtMn)/

ferromagnet (Co/Ni) heterostructure used for an artificial

synapse. [(c), (d)] Mechanism of field-free switching.

Effective field of the Slonczewski-like spin-orbit torque

has rotational symmetry (c) and breaking it by exchange

bias achieves field-free switching (d). (e) Optical micro-

graph of fabricated Hall device. (f ) Measured Hall resis-

tance RH versus applied channel current ICH under

various in-plane external field HX. (g) Hall resistance

RH versus applied channel current ICH at zero magnetic

field. Increase in current to negative direction is stopped

at various current IMAX. Adapted from Ref. 25.
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microscopy image of a fabricated dot device with a nominal

Ddot of 100 nm. For reference, micrometer-wide Hall devices

were also fabricated. The details of the sample fabrication are

described in Ref. 26.

Figure 2(b) shows the Hall resistance vs. channel current

for devices with different Ddot. The measurement procedure

is the same with that for Fig. 1(g). All the measurements were

performed at zero magnetic field. The loop for Ddot = 1 μm is

similar to the one for the 5-μm-wide Hall device. As Ddot

decreases, the loop becomes stepwise and the number of

steps decreases. Finally, below Ddot = 200 nm, the loop

shows a simple binary feature. These results suggest that the

Co/Ni dot consists of a number of magnetic domains with

different properties that separately switch at different levels

of the applied current. By counting the number of intermedi-

ate levels for each loop with different Ddot, the size of the

domain was derived to be around 200 nm. Meanwhile, the

size of crystalline grain was observed to be around 15 nm

from cross-sectional transmission electron microscopy, indi-

cating that the domain consists of multiple crystalline grains.

A schematic picture inferred from detailed analysis is shown

in Fig. 2(c). We found that the magnitude and direction of

the exchange bias along both perpendicular and in-plane

directions are different among the domains, making the

threshold switching current different among them. Also, such

variation of exchange bias can stabilize the multidomain

states. As a result, each domain switches at different levels of

current and resultant multidomain state remains even after

the current is turned off, eventually causing the synapse-like

analog and nonvolatile property.26

The mechanism that stabilizes the multidomain structure

has yet to be clarified. It should be noted, however, that

such behavior is also observed in other antiferromagnet/ferro-

magnet bilayer systems.60,61 Moreover, recent experiments

on the electrical switching of antiferromagnets also show

similar behavior,62–65 leading to the inference that the

observed analog and nonvolatile behavior may be a common

nature of the antiferromagnetic systems.

III. ARTIFICIAL NEURAL NETWORK

As described in Sec. II, antiferromagnet/ferromagnet

bilayer systems operated by spin-orbit torque achieve

magnetic-field-free, analog magnetization switching and store

the state in a nonvolatile manner, making it a promising

building block for an artificial synapse in artificial neural net-

works. In this section, a proof-of-concept demonstration of

an artificial neural network with the spintronic artificial

synapse28 will be described.

As an example of neuromorphic computation, we exam-

ined an associative memory operation, which is a typical

operation that von Neumann computers struggle with and

yet the human brain readily completes. For the associative

memory operation, the Hopfield model66 is used, which is a

form of recurrent neural networks, is originally developed

from an analogy with spin glass systems, and is known to

be useful for the optimization problem. The Hopfield

network stores information in a matrix, the so-called synap-

tic weight matrix, and can robustly associate the closest

memorized information with noise-contained inputs by

defining an energy function and minimizing the energy.

Configuration of each matrix element collectively represents

the stored information, where the individual matrix elements

take arbitrary analog numbers. To realize hardware

FIG. 2. Mechanism of analog behavior. (a) Scanning electron micrograph of fabricated dot devices with nominal diameter Ddot of 100 nm. (b) Hall resistance

RH as a function of channel current ICH for microscale Hall bar and dot devices with Ddot = 1 mm, 800, 350, 225, 50 nm. (c) Schematic of the texture of crystal-

line grain and exchange bias direction. Cylinders represent crystalline grains and arrows represent the direction of exchange bias. Reprinted with permission

from Appl. Phys. Lett. 110(9), 092410 (2017). Copyright 2017 AIP Publishing LLC.26
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executing the Hopfield model-based associative memory

operation, artificial analog synaptic devices (or circuit units)

are necessary. The work in Ref. 28 was performed based on

this concept.

Figures 3(a) and 3(b) show the block diagram and

photograph of the developed demonstration system, respec-

tively. It consists of a software-implemented PC, field-

programmable gate array (FPGA) development board, and

analog front-end circuit board. Chips with 36 SOT devices

with an antiferromagnet/ferromagnet bilayer were packed

into ceramic packages and mounted on the analog front-end

circuit board. The SOT devices play the role of the synapse

in the Hopfield model. The PC operates the whole system

based on the programmed Hopfield model. The FPGA sends

read/write currents to the SOT devices according to control

signals received from PC. We here note that, in a final form

of sophisticated artificial neural network hardware, the

synaptic devices are embedded in an integrated circuit and

the circuit performs all the operations that are executed by

PC and FPGA in the current proof-of-concept demonstration

system.

The SOT devices employed here consisted of a stack

with Ta(3)/Pt(2.2)/PtMn(9.5)/Pt(0.6)/[Co(0.3)/Ni(0.6)]2/Co(0.3)/

MgO(1)/Ru(1), where the 0.6-nm-thick Pt dusting layer

between the PtMn and Co/Ni multilayer was found to

enhance both the perpendicular magnetic anisotropy of Co/

Ni multilayer and the exchange bias at the interface.27 The

films were patterned into micrometer-sized Hall devices as

shown in Fig. 1(e). The synaptic weight is stored as the mag-

netization state and extracted as the Hall resistance. Note that

while the anomalous Hall effect is used to detect the magne-

tization state in this proof-of-concept demonstration, the

device will be processed into a three-terminal structure67 for

practical use, where the tunneling magnetoresistance effect

exhibiting much larger resistance change will be used for

reading operation.

Using the developed systems, an associative memory

operation was tested for three kinds of 3 × 3-block patterns,

“I, C, and T,” shown in Fig. 4(a). The procedure for the asso-

ciative memory operation is as follows (see Refs. 28 and 68

for details). First, Hall resistance vs. current loops were mea-

sured for all the 36 SOT devices, and the region where a vir-

tually linear change of the Hall resistance with the current is

ensured for all the 36 devices was determined. This was fol-

lowed by writing synaptic weights for the “I, C, and T” pat-

terns to each SOT device via the FPGA, where the weight

was calculated in the PC based on the Hopfield model and

was mapped to the write current based on the measured rela-

tion between the Hall resistance and current. At this stage, if

the 36 SOT devices were uniform and had sufficient linearity,

“I, C, and T” patterns would be already memorized.

However, this was not the case due to the variability of the

properties among the devices and inevitable non-linearity,

and thus correct “I, C, and T” patterns were not recalled from

the inputs, even without noise. To compensate for such

imperfection of the devices, adjustment of synaptic weights,

i.e., a learning process, was performed. In this experiment,

Hebbian and anti-Hebbian learning processes69 were itera-

tively applied. In this process, we first read RH from all the

devices and configure the synaptic weight matrix in PC.

Then, we calculate the recalled pattern from the original three

patterns using the synaptic weight matrix. According to the

discrepancy between the original pattern and the recalled

pattern, the modified synaptic weight matrix to reduce the dis-

crepancy is calculated from the Hebbian and anti-Hebbian

learning rule, and new weights are stored to the SOT devices

by sending a new set of write current. From a number of

trials, we confirmed that the leaning process converges after

about 5–20 times iterations, where the recalled patterns match

with the original patterns. Figures 4(b) and 4(c) show the

measured Hall resistance for 36 SOT devices before and after

the learning process, respectively. We confirmed that, after

FIG. 3. Demonstration system of artificial neural network. (a) Block diagram. (b) Photograph. Adapted from W. A. Borders, H. Akima, S. Fukami, S. Moriya,

S. Kurihara, Y. Horio, S. Sato, and H. Ohno, Appl. Phys. Express 10(1), 013007 (2017). Copyright 2017 The Japan Society of Applied Physics.28
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the learning process, all of the memorized patterns, “I, C, and

T,” were successfully recalled from the inputs without noise.

Using the synaptic weight matrix after learning

[Fig. 4(c)] that memorizes the patterns shown in Fig. 4(a),

we then tested the associative memory function, where we

input patterns with random noise and calculated the associ-

ated patterns based on the Hopfield model. Figure 4(d)

shows an example of the input patterns, in which one ran-

domly selected block was inverted, and Fig. 4(e) shows the

corresponding associated patterns. Degree of agreement

between the input and output (associated) patterns was

evaluated by the direction cosine, given by (1/N)ξμζμ, where

N is the number of blocks (neurons), and ξμ and ζμ are a

number representing the color of each block for memorized

and associated patterns, respectively (white =−1, gray = +1).

In the case of “I, C, and T” patterns, the ideal value of the

direction cosine, calculated for the ideal synaptic weight

matrix, is 0.905 for this experiment. The obtained mean

direction cosine when we used the synaptic weight matrix

before and after the learning process was 0.601 and 0.852,

respectively, from 100 trials. The improved direction cosine

clearly indicates that the developed artificial synapse can

function as an artificial synapse with learning capability,

allowing associative memory operation. We also found from

a numerical calculation that the remaining gap of the direc-

tion cosine to the ideal value is caused by the variability

among the devices of the dynamic range of the Hall resis-

tance. The dominant factor and countermeasure of the vari-

ability will be described elsewhere.68

We finally discuss potential advantage of the proposed

approach, i.e., artificial neural network with spintronic artifi-

cial synapse, over the conventional computing paradigm. In

terms of power consumption and chip area, it has been shown

that nonvolatile integrated circuits with digital spintronics

devices achieve a significant power reduction by a factor of

1/100 at the same or smaller chip area compared with conven-

tional semiconductor-based integrated circuits, owing to the

nonvolatility and back-end-of-line compatibility of spintronics

devices.70–73 This benefit holds true for the artificial neural

network paradigm with analog spintronics device. In addition,

if one uses nanoscale spintronic synapse with the analog

nature, significant reduction of the count of components

should be achieved, leading to further reduction of power con-

sumption and chip size. More importantly, unique features of

spintronics devices such as nonvolatility and high endurance

allow one to combine two important aspects of brain-inspired

computing, learning, and memory. This fact makes the spin-

tronic artificial neural network qualitatively different from

conventional systems and offers unexplored opportunities,

e.g., low-power, compact, and adaptive systems.

IV. CONCLUSION

In conclusion, this article has reviewed material and

device studies on an artificial spintronic synapse and a

proof-of-concept demonstration of artificial neural network

using the artificial synapse. Hardware inspired by the struc-

ture and information processing mechanism of the brain

offers a promising pathway to execute complex cognitive

tasks at a lower power consumption level. In particular, to

realize high-performance, low-power, and adaptive artificial

neural networks, the use of artificial synapses consisting of

solid-state devices with nonvolatile and analog-memory func-

tionality provides an attractive approach. We have shown that

antiferromagnet/ferromagnet heterostructures operated by the

spin-orbit torque not only allow field-free switching of per-

pendicular magnetization, but also achieve analog control of

magnetization depending on the magnitude of applied

current. The detailed investigation revealed that the magneti-

zation reversal proceeds in the unit of fine magnetic domain

with the scale of around 200 nm, resulting in the analog

behavior. Using this analog nature, an artificial neural

network was developed, where the 36 analog spin-orbit

torque devices were implemented, and Hopfield model-based

associative memory operation was tested as a

proof-of-concept demonstration of spintronics neuromorphic

computing. We confirmed that the artificial spintronic

synapse can learn the patterns, enabling execution of the

brain-like associative memory operation.

Spintronics devices, in general, allow for high-speed and

virtually unlimited read/write operation as well as storage of

information without the use of a power supply, holding

FIG. 4. Associative memory operation. (a) Three kinds

of 3 × 3 pattern “I” “C” and “T”. [(b), (c)] Hall resis-

tance RH, representing the synaptic weight, for 36

spin-orbit torque (synaptic) devices before (b) and after

(c) the learning process. (d) Example of input noisy pat-

terns, where randomly-selected one block is inverted.

(e) Example of associated patterns using Hopfield

model.
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promise for realization of low-power and adaptive neuromor-

phic hardware. Through further advances, they will open new

avenues for information processing technologies.
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