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Abstract. The diagnosis of Alzheimer’s disease (AD) is presently going through a paradigm shift from disease categories
to dimensions and toward the implementation of biomarkers to support identification of predementia and even preclinical
asymptomatic stages of the disease. We outline the methodological basis of presently available biomarkers and technological
methodologies in AD, including exploratory and hypothesis-based plasma and blood candidates, cerebrospinal fluid markers of
amyloid load and axonal destruction, and imaging markers of amyloid deposition, synaptic dysfunction, cortical functional and
structural disconnection, and regional atrophy. We integrate biomarker findings into a comprehensive model of AD pathogenesis
from healthy aging to cognitive decline, the resilience to cerebral amyloid load (RECAL) matrix. The RECAL framework
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integrates factors of risk and resilience to cerebral amyloid load for individual risk prediction. We show the clinical consequences
when the RECAL matrix is operationalized into a diagnostic algorithm both for individual counseling of subjects and for the
identification of at risk samples for primary and secondary preventive trials. We discuss the implication of biomarkers for the
identification of prodromal AD for the primary care system that seems presently not even prepared to cope with the increasing
number of subjects afflicted with late stage AD dementia, let alone future cohorts of subjects searching counseling or treatment
of predementia and asymptomatic stages of AD. The paradigm shift in AD diagnosis and its operationalization into a diagnostic
framework will have major implications for our understanding of disease pathogenesis. Now, for the first time, we have access to
in vivo markers of key events in AD pathogenesis integrated into a heuristic framework that makes strong predictions on pattern
of multimodal biomarkers in different stages of AD. Critical testing of these predictions will help us to modify or even falsify
the currently hold assumptions on the pathogenesis of AD based on in vivo evidence in humans.

Keywords: Alzheimer’s disease, amyloid, atrophy, biomarker, blood, cerebrospinal fluid, diagnosis, diffusion tensor imaging,
hippocampus, mild cognitive impairment, neurodegeneration, neuroimaging, pathophysiology, positron emission tomography,
prognosis, resting state functional magnetic resonance imaging, tau, therapy

INTRODUCTION

The recent consensus process toward the defini-
tion of new criteria for the diagnosis of Alzheimer’s,
disease (AD) [1] catalyzes a development that had
already started in the 1980 s of the last century. With
the availability of novel imaging technologies, includ-
ing structural magnetic resonance imaging (MRI) and
positron emission tomography (PET), research groups
worldwide had initiated the search for positive mark-
ers of AD [2, 3]. A few years later, imaging markers
were complemented by the detection of amyloid-�
(A�)42 and tau protein in the cerebrospinal fluid (CSF)
[4, 5]. In the last decade, CSF levels of abnormally
phosphorylated tau protein [6, 7] and MRI based mea-
sures of functional and structural connectivity using
functional MRI (fMRI) and diffusion tensor imaging
(DTI) [8–13] have become biomarker candidates for
early diagnosis. Finally, since 2004 [14] the detection
of amyloid load in vivo using Pittsburgh compound B
([11C]PIB) allows the identification of early molecu-
lar changes of AD. New 18F-labeled compounds will
make amyloid PET widely available within the next
few years [15].

The wide range of biomarkers of AD, reflecting
potential surrogate markers of different stages of dis-
ease pathogenesis, has fuelled the definition of new
diagnostic categories, including the concept of pre-
dementia and preclinical AD [16]. These categories
are based on a stage model of disease, where primary
amyloid-related molecular pathology over the course
of several years leads to destruction of synaptic func-
tion and axonal integrity followed by neuronal loss
and atrophy and finally clinically detectable cognitive
decline [17]. This stage model serves both to guide the
development of diagnostic algorithms implementing

different levels of biomarkers and as a heuristic
paradigm to test hypotheses on the molecular patho-
genesis of AD in vivo. Without doubt, future studies
will modify this stage model of AD. But at least now,
for the first time, we have a broadly consented heuristic
model which can be tested in vivo.

A model of AD spanning preclinical, predementia,
and dementia stages puts several demands on clinical
research:

1) We will have to integrate multimodal biomarkers
using adequate multivariate analysis approaches.

2) The stage model needs to be operationalized into
a diagnostic algorithm. This implies that it needs
to be implemented in multicenter studies, adding
multicenter acquisition as an additional source of
variability.

3) A stage model needs to consider modulating
factors of state transition. Thus, beside the pres-
ence of molecular or environmental risk factors
for the transition from healthy aging to cogni-
tive impairment, factors of cerebral resilience
have to be integrated that can be quantified using
biomarkers.

Figure 1 illustrates a comprehensive stage model of
AD operationalized into a diagnostic algorithm and
implementing both molecular and environmental risk
and resilience factors. This model makes specific pre-
dictions which can be tested in future studies. Thus,
the model predicts that one will not find a significant
number of subjects with a typical pattern of destruction
of functional or structural connectivity in the absence
of significant amyloid load as detected by PET or CSF.
The model also predicts that clinical signs of cognitive
decline should not be found before at least beginning
structural and functional cortical disconnection.



S.J. Teipel et al. / Multimodal Biomarkers in AD S331

Fig. 1. Stage model for risk stratification. According to the amy-
loid cascade hypothesis, a molecular event of abnormal amyloid
processing and deposition triggers down-stream pathological events
from synaptic dysfunction through cortical structural and functional
disconnection to neuronal loss and cognitive decline during the
development of AD. All these proposed steps of the pathogenesis
of AD can now be detected using in vivo markers. The stage model
makes specific assumptions on the sequence of pathological events
where the risk for an individual subject for the clinical manifestation
of AD increases with the number of biomarkers showing positive
(i.e., AD typical) findings. The individual risk, however, will be
modulated by factors of resilience and genetic and environmental
risk factors of disease. The stage model makes strong predictions on
the temporal sequence of events, where a typical pattern of cortical
structural and functional disconnection should not be found in the
absence of significant amyloid pathology. These strong predictions
render the model a helpful heuristic principle to test the validity of
the underlying model of disease pathogenesis.

Based on this model, we can define a multilevel
matrix for the transition from healthy aging to manifest
cognitive decline (Fig. 2). Healthy aging is defined as a
stage 1 where no pathological mechanisms of AD are
present. It is characterized by the absence of molec-
ular changes as detected by amyloid-PET and CSF,
intact synaptic function, intact structural and functional
connectivity, and normal results in cognitive tests and
behavioral function. In the second stage of compen-
sated cerebral aging, we expect dissociation between
positive signs of molecular pathology in amyloid-PET
or CSF and still intact or only minimally impaired
synaptic function and functional and structural con-
nectivity as well as normal cognitive function. This
stage represents a key stage for research on mecha-
nisms of cerebral resilience, given the capacity of the
brain to withstand progressive molecular lesions based
on factors of cerebral reserve. Using a finer resolu-
tion, stage 2 of compensated cerebral aging can be
split into a stage 2a where synaptic function and cor-
tical functional and structural connectivity is entirely
preserved and into a stage 2b where a beginning break-
down of functional and structural connectivity can be
detected, however, still in absence of cognitive decline.
The third stage, the stage of decompensated aging, is
characterized by the convergence of primary molecu-
lar changes as detected by amyloid-PET or CSF with

impaired structural and functional connectivity as well
as beginning or clearly manifest cognitive decline. The
classification of an individual subject in this matrix
would assist in the clinical counseling of high-risk indi-
viduals and the stratification of subjects for clinical
trials. Subjects in stage 1 could be counseled to have
a low risk for cognitive decline in the following years
and they would be the ideal candidates for primary
preventive trials. Subjects in stage 2 could be classi-
fied as asymptomatic at risk state for AD and advised
to participate in secondary preventive trials including
both pharmacological as well as non-pharmacological
interventions. These subjects have an increased risk to
develop AD dementia in the following years depending
on their further classification into stage 2a or 2b and on
the amount of risk factors and capacity of their cerebral
resilience. Subjects in stage 3 are subjects with prede-
mentia AD or AD dementia which should be advised
to participate in tertiary preventive trials in addition to
receiving standard treatment.

With this matrix, we extend the framework of the
new diagnostic criteria to integrate risk factors and
factors of cerebral resilience and operationalize them
for potential clinical application. The clinical valida-
tion of such a diagnostic matrix requires the use of
multimodal imaging and biomarkers acquired across
multiple clinical sites involving the use of multivariate
analysis approaches. In the following sections, we will
discuss the key modalities of such an approach with
specific focus on structural and functional connectiv-
ity which is the primary candidate for the stratification
of people with molecular pathology into different risk
categories and disease stages both for clinical trials as
well as clinical counseling. Moreover, structural and
functional connectivity is a key index for the integrity
of cerebral reserve capacity which modulates the tran-
sition from molecular lesions to cognitive decline.
Following this, we will describe the implementation of
these key markers into multimodal multicenter studies
and discuss the application of potential multivariate
approaches which will become available for diag-
nostic algorithms in the near future. Already now,
machine learning algorithms and other higher level
statistical approaches are being implemented in radi-
ological expert systems which will be part of the
next generation MR scanners for the support of the
radiological reading of anatomical MRI scans in the
elderly. This development will serve as a nucleus
for the integration of further biomarker and imag-
ing modalities in future diagnostic expert systems
which will first be of interest for the risk stratifica-
tion and sample selection for clinical trials, but also
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Fig. 2. The RECAL-Matrix: Resilience to Cerebral Amyloid Load. Matrix describing different levels of biomarkers and the expected findings
in different stages of AD pathogenesis. In addition, the clinical consequences of the staging of an individual subject in one of the three categories
are shortly outlined. This matrix serves as a heuristic model to interpret findings of biomarkers in AD and to help to modify the underlying
model of disease pathogenesis.

will become accessible for clinical diagnosis in the
mid-term future.

DETECTION OF MOLECULAR AMYLOID
PATHOLOGY IN AD

Amyloid PET imaging

Over the last 10 years, PET imaging of cerebral A�
load has emerged as a powerful biomarker of AD. This
reflects the fact that A� accumulation represents one of
the two histopathological hallmarks of the disease [18].
To date, [11C]PIB [19] is the most widely applied A�-
targeted PET tracer. Due to the short half-life of the
label, however, [11C]PIB does not have the potential
to become a tracer for large clinical trials or routine
diagnostics. Currently, A� PET tracers florbetaben,
florbetapir, and flutemetamol, labeled with 18F with
a longer half-life, are undergoing late-stage Phase III
clinical development [15, 20, 21].

For [11C]PIB, it is known that the tracer accurately
discriminates between patients with AD dementia and
cognitively healthy controls [19]. It also allows the
prediction of the progression from mild cognitive

impairment (MCI) to AD dementia [22], rendering A�
PET a promising tool for the detection of prodromal
AD. Cognitively healthy elderly subjects show neocor-
tical [11C]PIB uptake in 10–30% of cases, dependent
on the age of the subject [23]. This may indicate that
the tracer detects preclinical stages of AD, although the
2-year transition rate in amyloid-positive cognitively
healthy subjects to clinical stages of AD is only about
20% [24]. Therefore, for the risk enrichment in clini-
cal trials on disease prevention in cognitively healthy
subjects, A� PET may need to be complemented by
other biomarkers. As compared to late onset sporadic
AD cases which demonstrate neocortical tracer uptake
mainly in cingulate, frontal, temporal, and parietal cor-
tices [19], early onset autosomal-dominant AD cases
exhibit tracer uptake predominantly in striatal areas
[25]. In AD dementia, the tracer uptake is a func-
tion of ApoE4 state [26]. Of interest, in AD dementia
there is no or only limited increase of tracer uptake
over time [27]. Both in AD dementia and in cogni-
tively healthy elderly subjects, tracer uptake is not or
only weakly correlated with cognition [28, 29]. These
results suggest that A� PET is not an ideal candidate
marker for disease progression. As an alternative, PET
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tracers targeting nicotinic acetylcholine receptors
might in the future serve this purpose, as the recep-
tor binding is correlated with cognitive function [30,
31]. Despite the fact that [11C]PIB PET has limitations
as a marker of disease progression, it was success-
fully applied to directly monitor effects of A�-cleaving
therapies on brain A� load [32].

A� load as measured by [11C]PIB PET has been
combined with a range of other biomarkers of AD
including: 1) A�42 levels in CSF; 2) markers of synap-
tic dysfunction as determined using [18F]FDG PET, 3)
markers of neuronal loss as determined using structural
MRI, and 4) markers of axonal degeneration using CSF
tau.

(i) In AD, CSF A� concentration was negatively
correlated with brain A� load as measured
by PET [33], a result which was successfully
replicated by other groups. The strength of the
correlation between both markers has even led
to the proposal to impute [11C]PIB uptake units
from CSF A� levels [34]. However, in MCI
subjects, A� PET provided more accurate pre-
diction of progression to AD than CSF A� [35].

(ii) A� PET has been shown to be more sensitive
than [18F]FDG PET to discriminate between
AD patients and healthy control subjects [36]
and to predict progression to AD in MCI
[37]. In general, both biomarkers carry valu-
able complementary information in MCI and
AD dementia subjects [38]. Of interest, the pre-
frontal cortex of AD patients usually presents
with high [11C]PIB uptake, but is relatively
spared from glucose consumption deficits [39],
a pattern which is so far not fully understood. It
suggests dissociation between amyloid depo-
sition and neuronal functional deficits, which
may also account for the limited correlation
between cognitive decline and amyloid load in
cross-sectional studies [28, 29].

(iii) Local brain atrophy in AD dementia as
determined by structural MRI was positively
correlated with regional and global A� brain
load as measured by PET [40]. Such a corre-
lation was even found in the inferior temporal
cortex of A� PET-positive cognitively healthy
elderly subjects and was interpreted as a very
early sign of asymptomatic preclinical AD [41,
42].

(iv) Conflicting results were reported in the lit-
erature on the association between brain A�
PET and CSF tau and phospho-tau levels in

AD dementia [43, 44]. However, in MCI sub-
jects, A� PET seems to be more sensitive in
predicting the progression to AD dementia as
compared to CSF phospho-tau [35].

Compared to other AD biomarkers A� PET seems
to have certain advantages. Compared to MRI-based
markers, A� PET directly assesses the supposed pri-
mary molecular event in AD pathogenesis; compared
to CSF markers, A� PET is less invasive and allows
determining biomarker expression on a regional level
within the brain. A� PET plays a key role in the
establishing of a multimodal in vivo model of AD
pathogenesis and will help to determine whether the
hypothesis of amyloid processing changes as a pri-
mary event in AD pathogenesis can hold or needs to
be modified in the future. In addition, A� PET has
a great potential to serve as a valuable biomarker of
AD, especially for early diagnosis and monitoring the
effect of A�-cleaving therapies. Once the first 18F-
labeled A�-targeted PET tracers will be approved, they
will certainly enrich our clinical routine AD diagnos-
tic toolbox by supplementing cognitive testing towards
increased diagnostic confidence.

CSF markers of amyloid load in vivo

In monocentric studies, CSF core feasible AD
biomarkers (A�42, total tau (t-tau) and phosphorylated
tau (p-tau)) display predictive and diagnostic sensitiv-
ity and specificity in the range of 80–90% [45, 46].
Decreased levels of A�42 in CSF indicate accumula-
tion of A� in the brain and changes of CSF A� levels
are fully developed as much as 5–10 years before man-
ifestation of dementia syndrome in AD [47]. These
findings are in line with theoretical frameworks of
biomarker trajectories proposing that changes in amy-
loid metabolism are among the earliest detectable
molecular changes associated with AD pathophysiol-
ogy [48]. The detection of amyloid pathology via A�
PET imaging or via changes in CSF A� levels is an
important defining diagnostic factor for the diagnosis
of prodromal [49] and preclinical [50] stages of AD.
Moreover, it is accepted as a supportive tool to increase
the diagnostic certainty in the determination of AD-
related etiology in patients with dementia syndrome
[51] and in subjects with MCI [52]. However, CSF
based monomeric A�42 levels (as well as CSF based
t-tau and p-tau) have been shown to lack a clear correla-
tion with cognitive and functional state in AD patients
[53, 54]. Therefore, recent research has focused on the
development of novel approaches in order to assess
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those aspects of amyloid-related pathophysiology that
may be more closely associated with cognitive and
functional impairment, providing the basis for clini-
cally relevant disease-tracking and surrogate marker
development. The basis of this research strategy has
been the observation that sub-nanomolar concentra-
tions of oligomeric forms of A� (A�-oligomers)
display extreme levels of synaptotoxicity and that their
negative effects on synaptic plasticity necessary for
learning and memory surpass the effects of monomeric
or fibrillar A� species [55, 56]. A major problem in the
assessment of A�-oligomers is their low concentration
in CSF but novel methods using ELISAs, nanoparti-
cle based detection methods, or various spectroscopy
based methods have recently been developed to suc-
cessfully assess CSF concentrations of A�-oligomers.
Flow cytometry based measurement of fluorescence
resonance energy transfer (FRET) has proven useful
for reliable and valid quantitative measurement of A�-
oligomers in CSF [57]. So far, several human studies
revealed that CSF levels of A�-oligomers correlate
very strongly with cognitive state in AD patients [58,
59]. Further studies comprising not only demented AD
patients but subjects presenting with preclinical and
MCI stages of AD are necessary in order to assess the
usefulness of CSF A�-oligomers to indicate even sub-
tle, subclinical levels of cognitive deficits and to predict
cognitive decline in asymptomatic at-risk subjects with
confirmed AD pathophysiology.

Another focus of evolving research related to the
development of diagnostic and prognostic amyloid
based CSF biomarkers is in the assessment of CSF
based BACE-1 levels, an enzyme critically involved in
the intracerebral generation of A� through cleavage of
A�PP. Recent human studies suggest that CSF BACE-
1 levels are elevated very early during predementia
stages of AD [60, 61] and that they are associated
with morphological changes of the hippocampus in AD
patients [62]. Further research is necessary in order
to test whether elevations of CSF BACE-1 may pre-
cede the onset of detectable changes in monomeric
or oligomeric CSF A� species or changed binding to
amyloid tracer ligands in PET amyloid imaging. More-
over, the ability to specifically and differentially assess
factors related to A� generation (as opposed to fac-
tors involved in, e.g., A� degradation or clearance) is
of utmost value for the identification of potential risk
states preceding brain amyloid accumulation and of
potential endophenotypes of AD.

Despite its somewhat questionable reputation
among patients and even among some physicians, lum-
bar puncture and CSF sampling in a memory clinic

setting have been shown to have negligible adverse
effect rates and virtually absent neurological or any
medical complications [63]. Due to its direct con-
tact with ongoing pathophysiological processes in the
CNS, CSF is one of the most promising and worth-
while sources in the quest of diagnostically relevant
biomarkers in neurodegenerative diseases. Specific
molecular amyloid species beyond monomeric A�
as well as proteins critically involved in A�PP and
amyloid metabolism are important new candidate
biomarkers, promising to improve detection and pre-
diction of cognitive decline, and to allow for sensitive
tracking of compound and drug effects on aspects
of amyloid metabolism relevant to cognitive dys-
function. In line with recent conceptual frameworks
of the pathophysiology of AD which propose com-
plex models with heterogeneous upstream molecular
pathways ultimately leading to the AD phenotype
[64], the identification of potential AD endophe-
notypes might greatly facilitate the development of
disease-modifying compounds specifically designed to
therapeutically interfere with specific pathophysiolog-
ical pathways which are present in some but not all
individuals with sporadic AD. CSF candidate biomark-
ers will likely play a critical role supporting this line
of research.

Blood based markers

Lumbar puncture is still regarded as a semi-invasive
procedure in many countries worldwide. Therefore,
blood-based biological markers would be consid-
ered very beneficial for diagnostic purposes due to
cost-effectiveness and easy sample collection. Several
markers related to AD pathophysiological processes
have been studied, such as components of A�PP
and A� metabolism, cholesterol metabolism, oxida-
tive stress, and inflammation. Particularly A�42, A�40,
and the A�42/40 ratio have been investigated in AD
patients compared to control subjects. The discrimi-
natory power, however, of all of these markers was
insufficient and no single marker or combination of
markers has been established so far for diagnostic
purposes. Novel proteomic and metabolomic profiling
methods seem promising approaches under investiga-
tion (for review see [65, 66]) but still have not yielded
conclusive results.

Interestingly, blood-based analyses can yield insight
in AD-related pathophysiological processes. For
example, the conversion rate to dementia of MCI
patients treated with antihypertensive drugs was sig-
nificantly reduced only in patients with elevated
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mid-regional pro-atrial natriuretic peptide (MR-
proANP) at baseline. This peptide is the propeptide
of ANP, which is related to (micro-) circulatory func-
tion and hypertension. These data support the notion
of a potential impact of microcirculatory function on
the development of AD at a prodromal stage. Antihy-
pertensive treatment may reduce conversion rates to
AD in MR-proANP stratified subjects with MCI [67].
Another study looked at A�42 levels in 25 resuscitated
patients with severe hypoxia due to cardiac arrest. After
a lag period of 10 or more hours, all patients showed
significant serum A�42 elevations. These data indicate
that ischemia acutely increases A� levels in blood and
support the notion that hypoxia may play a role in the
amyloidogenic process of AD [68]. These studies sup-
port the notion that blood-based markers, if not useful
as diagnostic markers, still could contribute within the
neurochemical biomarker panel to test hypotheses on
the molecular pathogenesis of AD in vivo.

CORTICAL FUNCTIONAL
AND STRUCTURAL CONNECTIVITY

The concept of cerebral connectivity

The long standing discussions on a modular or
network-like organization of human brain function
have been integrated into the concept of a complex
interplay of distributed neuronal networks subserv-
ing higher cognitive functions. The notion of cerebral
connectivity has been introduced into the broad dis-
cussion since the advent of functional imaging using
PET and fMRI. Functional connectivity refers to the
covariance of neuronal signals within the time domain
[69]. This notion has been critically discussed given
its somewhat vague definition. Thus, it can include
data from different signal modalities, such as EEG,
fMRI, or PET, as well as pooling of data across sub-
jects or across time points within subjects [70]. Still,
the concept of functional connectivity can be further
qualified by information on modalities and analysis
and is very helpful to describe the destruction of
neuronal networks which in concert subserve higher
cognitive function in AD. A complementary concept
is effective connectivity, which combines functional
connectivity with a causal model of region A influenc-
ing region B [69]. Effective connectivity has become
accessible through the use of causal models such as
dynamic causal modeling or structural equation mod-
eling of functional imaging data [71]. Closely related
to the concept of effective connectivity is the concept
of structural connectivity. This concept implies that

there exists an anatomical connection between two
distant regions of the brain. Indeed, combined DTI
and fMRI studies showed that structural connectivity
parallels functional connectivity between any of two
regions [72]; however, functional connectivity can also
be detected between brain regions which have no direct
structural connections.

One could assume that functional connectivity
would be more sensitive than structural connectivity
to neurodegenerative disease progression. This relates
to the notion that synaptic dysfunction is among the
earliest signs of neuronal dysfunction in prodromal
AD where the loss of synaptic function would be
detected as a decline of neuronal activity as determined
by FDG-PET assessed glucose consumption or the
hemodynamic response function of functional MRI.
The decline of structural connectivity would imply
a more advanced disease stage where axonal struc-
tures such as the myelin sheath, axonal membrane, or
the intra-axonal cytoskeleton would undergo progres-
sive destruction. This model, however, needs to take
into account that compensatory mechanisms of axonal
sprouting and neuronal reorganization may lead to the
maintenance of functional connectivity (using novel
indirect pathways) despite the destruction of direct
anatomical pathways and structural connectivity.

The concept of functional and structural connectiv-
ity is of high interest in the study of AD progression
for several reasons:

1. Since the late 1980 s, a range of post-
mortem studies suggested a selective vul-
nerability of intracortical projecting neurons,
particularly layer 3 and 5 large pyramidal neu-
rons, which maintain long-reaching intracortical
connections.

2. The concept of cortical connectivity accounts
coherently for the development of AD along
specific neuronal systems subserving distinct
cognitive domains that are early and selectively
impaired in the clinical stages of AD.

3. An increasing body of evidence supports
the notion that despite progressive neurode-
generation, functional decline can partially
be compensated by mechanisms of neuronal
restructuring. The underlying bases of these
mechanisms are still only partly understood.
However, the ability of the brain to maintain
functional connectivity despite breakdown of
anatomical connectivity is an important feature
for the understanding of the natural history of
AD.
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From a range of studies it is clear that molecular
amyloid pathology is an important risk marker for
the development of AD in cognitively intact healthy
elderly subjects. However, the rate of conversion into
cognitive decline and dementia in those subjects with
high load of amyloid as detected by PET or CSF
amounts only to about 16% over 2 years [24]. This sug-
gests that amyloid load may be a necessary but not a
sufficient condition for the development of AD demen-
tia at least over a short time follow-up. Therefore, the
study of cortical functional and structural connectiv-
ity can significantly increase the accuracy of disease
prediction, which is relevant for the selection of at-risk
subjects for clinical trials, as well as for the integra-
tion of risk and resilience factors into a comprehensive
model of AD progression.

Therefore, in the following sections we will outline
the current evidence on functional and structural dis-
connection in prodromal AD and AD dementia based
on resting state functional MRI and DTI data. We will
focus on these two modalities because they have gained
increasing interest over the last years and are the focus
of ongoing large scale multicenter studies worldwide.

Functional connectivity in resting state fMRI,
a marker of risk and resilience

One approach to the investigation of functional
connectivity in the brain is by the measurement of
the low frequency coherent networks active while
the brain is ‘at rest’. Much of the work in this area
stems from a pivotal study [73] where intrinsic activ-
ity attributed to a baseline state or ‘default mode’
was first proposed. Deactivations were noted when
task conditions were contrasted with a low level, often
resting-state, condition which led the investigators to
propose that networks of brain activity were present
during the baseline state, denoted the default mode
network (DMN). Thus, for example, AD patients and
amnestic MCI subjects had decreased deactivation
compared to healthy subjects during performance of a
cognitive task [74–76] and similar alterations between
groups were found with functional connectivity [29].
Using resting state fMRI instead of an active cognitive
paradigm, significant numbers of baseline networks
could be identified, denoted intrinsic connectivity net-
works (ICNs) [77], yet the earliest and most extensively
studied is the DMN. The DMN includes the posterior
cingulate cortex/precuneus, dorsal and ventral medial
prefrontal, lateral inferior parietal cortices, and medial
temporal lobes.

There are several approaches to analyze resting
state fMRI data. Among the most widely used meth-
ods are functional connectivity analysis, a measure of
interregional time-course correlation between regions
of interest [9, 78–80] as developed by Biswal and
colleagues [81], and independent component anal-
ysis (ICA) which automatically isolates networks
of synchronized coactivation from the fMRI data
in a purely data-driven approach [82–84]. Initial
investigations found decreased functional connectiv-
ity between the hippocampus and posterior cingulate
in the AD group compared to healthy subjects as
well as decreased connectivity in amnestic MCI
subjects compared to healthy subjects [85, 86].
Alteration of DMN connectivity in AD and MCI
is not restricted to the hippocampus and poste-
rior cingulate, but there are significant alterations
in connectivity with the other regions of the DMN.
One study found decreased functional connectiv-
ity between posterior cingulate and medial frontal
regions in AD and amnestic MCI subjects [87],
while another comprehensive study on functional
network alterations in AD patients found decreased
intratemporal, temporo-thalamus, temporo-striatal,
thalamo-occipital, and thalamo-frontal connectivity,
but also increased intrafrontal, frontal-prefrontal,
and fronto-striatal connectivity [79]. Similarly, AD
patients showed decreased linear correlations between
the prefrontal and parietal lobes, but increased positive
correlations within the prefrontal lobe, parietal lobe,
and occipital lobe [88].

The disruption of the DMN in AD is thought to
begin before the appearance of clinical symptoms.
Supportive of this idea, healthy subjects with a high
amyloid-load deposition in the posterior cingulate
had impaired deactivation in the posterior cingulate
during performance of a memory task [89]. In addi-
tion, another study found that there was increased
disruption of functional connectivity in the posterior
cingulate/precuneus and temporoparietal cortex across
a group of healthy subjects with high amyloid depo-
sition compared to healthy subjects with low amyloid
deposition [90].

The pattern of increased and decreased connectivity
in the DMN among the AD, amnestic MCI, and healthy
control groups point to the existence of potential com-
pensatory processes emerging in the early stages of
the disease. Cognitive reserve or resilience relates to
the capacity of the brain to cope with neuropathology
leading to delayed and less severe clinical symptoms of
the disease [91]. Bosch and colleagues [92] found that
higher cognitive reserve in healthy subjects was found
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to be associated with lower deactivations within the
DMN and lower task-related activity, which were inter-
preted to reflect increased neural efficiency. In contrast,
the amnestic MCI subjects and AD patients with higher
cognitive reserve had greater activity in task-related
brain areas and increased deactivations within the pos-
terior cingulate and medial frontal regions compared
to those with lower cognitive reserve. Thus, Bosch
and colleagues [92] found a greater reallocation of
processing resources from the DMN to the neural net-
work engaged in the experimental task, which could
reflect increased reliance on compensatory resources
to maintain cognitive function.

Several studies have tested and quantified the diag-
nostic value of the ICNs. One study used the goodness
to fit on components of the DMN that were detected
by ICA, and found that AD patients and healthy
elderly controls could be correctly categorized with
a sensitivity of 85% and a specificity of 77% [9].
Koch and colleagues [93] applied both region of
interest (ROI)-based interconnectivity analyses and
ICA based analyses of the DMN. When used in
combination these approaches yielded a diagnostic
accuracy of 97% (sensitivity 100%, specificity 95%)
in discriminating AD patients from healthy subjects.
Fleisher and colleagues [94] directly compared the
diagnostic value between altered functional activa-
tion during a cognitive task and disrupted DMN
connectivity in the resting-state, to separate asymp-
tomatic subjects at high risk for AD (family history
and APOE �4 allele carriers) from healthy low-risk
subjects. A comparison between the two methods
revealed that resting state functional connectivity
discriminated between the two risk groups with a
larger effect size compared with task-related functional
activation.

An issue for the use of the DMN as a potential marker
for diagnosis of dementia is the stability of the DMN
as assessed by ICA within individuals over time. In
a study on 18 healthy young subjects, the DMN was
reproducible within a single imaging session as well
as between imaging sessions twelve hours and one
week apart [95]. The reproducibility over time has
also been shown for other frequently reported ICNs
[96] and using functional connectivity analysis instead
of ICA [97]. Finally, ICNs as detected by both func-
tional connectivity analysis and ICA were also shown
to be consistent across multicenter data [98]. How-
ever, further work needs to be performed in older
healthy subjects and longer intervals between scan-
ning sessions to further validate the DMN for clinically
oriented uses.

Diffusion tensor imaging as a marker of structural
connectivity

DTI entered clinical application around the turn of
the century. This technique relies on the diffusion of
water molecules where the use of diffusion gradients
during the MRI acquisition labels water protons with a
spatial coordinate because diffusion will lead to signal
attenuation at read-out [99]. Using at least six diffu-
sion gradients, DTI determines the elements of the
diffusion tensor which allows the reconstruction of
the main directions of diffusion along three orthogonal
axes using eigenvectors and the corresponding eigen-
values of the diffusion tensor. Currently, a state of the
art DTI sequence for studying patients with demen-
tia will employ at least 30 diffusion gradients and last
about 10 minutes. From DTI, we can derive reconstruc-
tions of fiber tracts (fiber tracking) as well as scalar
indices of anisotropic diffusion, the most widely used
being the fractional anisotropy (FA).

Spatial maps of scalar diffusion indices can be ana-
lyzed using ROIs in selected brain areas where the
decline of diffusion anisotropy and an increase of
mean diffusivity indicate microstructural changes in
the brain region under study. Using this approach, a
range of previous studies has found significant decline
of fiber tract integrity in posterior cingulate, corpus
callosum, temporal lobe, and parietal lobe white mat-
ter [12, 100–109]. Using ROIs in the hippocampus,
a study in patients with amnestic MCI showed a more
accurate discrimination between MCI and healthy sub-
jects using markers of diffusion anisotropy compared
to hippocampus volume [110]. This result agrees with
the notion that changes in microstructural integrity of
fiber tracts subserving structural connectivity would
precede the decline of neuronal density in grey matter
areas such as the hippocampus.

More recent studies investigated changes along
entire fiber tracts which were reconstructed using
selected seed points, for example in the posterior cin-
gulate. Similar to the ROI data, fiber tract integrity was
reduced along the cingulate bundle in AD dementia
compared to healthy controls [111, 112]. In addition,
multivariate approaches which take into consideration
the covariance structure of the DTI data showed decline
of network connectivity in AD dementia and even pro-
dromal AD [109, 113–115]. Interestingly, while FA is
still the most widely used index of microstructural fiber
integrity, recent studies suggest that other diffusion
indices, including axial, radial, and mean diffusivity
may be more sensitive markers of AD-related white
matter pathology [116, 117].
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DTI also serves to determine mechanisms of cere-
bral resilience. Already in the 1990 s, epidemiological
studies suggested that the incidence of AD is decreased
in subjects with higher education [118–120]. The risk
reduction in subjects with higher education can be
interpreted as the effect of a higher cerebral resilience
which helps people to maintain normal cognitive func-
tion for a longer time despite progressive cerebral
lesions than people with lower education. A potential
neurobiological basis for this observation was sug-
gested by studies using FDG-PET [121] and structural
MRI [122, 123] who found more severe metabolic
dysfunction and atrophy at the same level of cogni-
tive performance in subjects with higher education,
suggesting that these subjects could compensate more
severe cerebral pathology. Subjects with higher educa-
tion at the same level of cognitive impairment showed
a more severely impaired integrity of structural net-
works involving far reaching intracortical association
areas as detected by DTI [124]. In addition, healthy
subjects showed higher anisotropy in intracortical
connecting fiber tracts with higher education com-
pared to lower educated cognitively normal subjects.
This data suggest that structural connectivity reflects
potential mechanism of cerebral resilience, possibly
related to the density of intracortical projecting fiber
tracts.

Future DTI studies will focus on its direct diagnostic
application; measures of structural connectivity have
entered the state of multicenter trials. Within the frame-
work of the European DTI study in dementia (EDSD),
a clinical and physical phantom study suggested an
about 50% higher variability of multicenter acquired
DTI data compared to classical anatomical MRI scans
[125]. In addition, the variability of diffusion indices
is higher in fiber tracts with lower anisotropy, suggest-
ing that multicenter studies need to take into account
the systematic variation across different types of fiber
tracts. In respect to clinical application across 300
subjects, DTI derived measures of structural con-
nectivity using univariate analysis showed relatively
lower diagnostic accuracy discriminating AD demen-
tia from healthy subjects compared to anatomical MRI
data (Teipel et al. in press). The use of multivariate
machine learning algorithms including support vector
machine increased diagnostic accuracy by about 9%,
but still structural connectivity reached at most identi-
cal accuracy compared to anatomical MRI (Dyrba et al.
submitted). Based on the model of disease progression
in AD (Fig. 1), one would expect a higher accuracy of
DTI-based measures of structural integrity compared
to measures of atrophy in prodromal stages of AD. This

has already been shown in monocenter studies [110],
but not yet in multicenter studies.

Multimodal imaging studies

Both the power and diagnostic accuracy of clinical
studies, as well as the heuristic value of imaging stud-
ies, is increased by the use of multimodal data with
multivariate statistical approaches. One of the most
interesting approaches is the combination of resting
state fMRI with DTI data. In healthy adult subjects, the
combination of DTI with resting state fMRI showed
that the presence of anatomical connections as sug-
gested by DTI based fiber tract integrity is almost
always correlated with functional connectivity in the
corresponding brain regions [126]. In contrast, the
presence of functional connectivity between distinct
brain regions is not necessarily implying the presence
of a direct anatomical connection [127]. Within the
DMN, it has been found that functional connectiv-
ity is predefined by the structural connectivity in fiber
tracts connecting the key nodes of this network. This
finding has been replicated using both fiber tractogra-
phy [128, 129] and multivariate analysis of anisotropy
index maps [130]. When applied to patients with AD
dementia, one can show that the decline of functional
connectivity is paralleled by a decline of fiber tract
integrity in fiber tracts connecting the key nodes of the
DMN (Likitjaroen et al., submitted). These data sug-
gest that the decline of functional connectivity in AD is
related to the decline of underlying fiber tract integrity
where the combination of both markers can help to
discriminate between two types of functional changes,
(i) break-down of functional and structural connec-
tivity and (ii) compensatory reallocation of neuronal
networks.

In recent years, machine learning algorithms to
determine complex patterns of covariance between
multidimensional data sets have become available
for the analysis of imaging data based on improved
hardware and software resources. Among the applied
algorithms, support vector machines (SVM) have
found increasing interest, because they enable the iden-
tification of binary outcomes based on a very efficient
algorithm [131, 132]. Thus, recent studies that used
combined information from spatial atrophy and DTI
based changes in structural connectivity to train a SVM
classifier, could show a high accuracy in discriminat-
ing between AD patients and control subjects as well
as between patients with MCI and healthy elderly con-
trols [115] (Dyrba et al., submitted). Another study
used linear discriminant analysis to optimally combine
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multimodal MRI measurements (T1- and T2-weighted
contrasts and DTI) for the distinction between AD
patients and cognitively normal controls. These AD-
specific multimodal MRI indices in combination with
the discriminant function yielded a highly accurate
model for the distinction of patients with MCI that
later converted to AD from those that remained sta-
ble over follow up [133]. Machine learning algorithms
are already now being developed for the software of
scanner consoles as radiological expert systems based
on anatomical MRI data. They employ SVM algo-
rithms or related techniques, all of which allow the
integration of a multitude of image and biomarker
modalities.

These approaches will also gain further relevance
for the attenuation of effects of multicenter acquisition
when imaging is used in the context of clinical trials or
routine diagnosis across a range of different scanning
platforms.

THE MULTICENTER ASPECT
OF MULTIMODAL IMAGING STUDIES

A multicenter study design allows the recruitment
of a relatively large number of subjects, such as that
required for Phase II and III clinical trials, while
keeping the time to completion of the study short.
In addition, multicenter studies provide the opportu-
nity to examine the reliability of diagnostic biomarkers
such as MRI neuroimaging derived biomarkers for the
diagnosis of AD [134]. Calibration studies on mul-
ticenter MRI have shown that inter-center variability
of scanner performance is an important factor that
can influence the assessment of regional grey mat-
ter volume measurement in a multicenter study [135,
136]. Whereas the test-retest reliability of repeated
MRI measurements on the same scanner—even in face
of scanner changes regarding field inhomogeneities,
voxel scaling factors, or scanner upgrades—is rel-
atively high, the differences in MRI measurements
between scanners are significant [137]. The portion
of variability that can be attributed to scanner differ-
ences for the measurement of neuroimaging markers
such as the hippocampus volume was reported to be as
large as 16% when assessed in patients with MCI and
AD dementia [138]. Larger MRI multicenter studies
such as the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) which includes 90 MRI scanners at
58 sites to examine neuroimaging and other types of
biomarkers of AD (http://www.adni-info.org/), have
therefore developed a specific MRI multicenter pro-

tocol to minimize multicenter MRI effects. Such a
protocol includes, for example, the introduction of
a standardized MRI image acquisition protocol, the
restriction to a selected number of scanner models,
phantom-based scanner calibration, and image correc-
tion [139, 140]. Even with such an optimized MRI
acquisition protocol, a study showed that for volu-
metric measures the between-scanner variance was
still up to 10 times higher than the intra-scanner vari-
ance of repeated measures [136]. Encouraging results
come from multicenter studies including studies such
as ADNI that show that the effect size and thus the sta-
tistical power to detect regional brain atrophy, when
using manual volumetry or automated cortical thick-
ness measurements, are not significantly diminished in
a multicenter study design compared to single-center
assessments [135, 137, 141, 142]. Furthermore, the
multi-center variability does not seem to be different
in patients with AD when compared to healthy con-
trols, suggesting that a multicenter design does not
introduce a disease-specific bias [143, 144]. Estima-
tions of the statistical power to detect brain atrophy
in AD have been conducted for multicenter studies.
Taking multicenter MRI variability of hippocampus
volume measurement into account, Jovicich and col-
leagues estimated that about 36 subjects per treatment
arm are required in order to detect a 50% treatment-
induced reduction of the hippocampus atrophy rate
in patients with AD, at a statistical power of 90%
(alpha = 5%) [137]. The statistical model to control
for multicenter effects may also have a significant
impact on the power to detect treatment effects [145].
Together, these results suggest that overall a multi-
center MRI study design is associated with acceptable
MRI measurement precision and demonstrates its util-
ity for clinical trials. However, it should be emphasized
that despite relatively good precision of multicenter
MRI measurements, the use of different scanners can
introduce a systematic bias in measurement [137] so
that treatment groups should be distributed equally
across different scanners and repeated longitudinal
MRI assessments should be done on the same scanner
using the same imaging protocol [137]. Furthermore,
it should be cautioned that the use of optimized MRI
acquisition protocols such as employed in the ADNI
may lead to an underestimation of scanner effects if
MRI findings are to be generalized toward scanners
and acquisition protocols outside such monitored clin-
ical research networks, i.e., within a wider clinical
context [144]. Calibration methods based on phan-
tom measurements need to be further investigated for
the derivation of scanner specific correction factors to

http://www.adni-info.org/
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increase the reproducibility and accuracy in a clinical
context.

Multicenter diffusion tensor imaging

Several multicenter studies on DTI have docu-
mented the susceptibility of DTI derived measures to
multicenter scanner effects [146–150]. The multicenter
effects on DTI measures are in general stronger when
compared to volumetric MRI measures of regional grey
matter volume [150]. Interdependencies between DTI
acquisition parameters, scanner hardware, spatial nor-
malization approaches, and fiber tract properties result
in a measurement variability that is not well understood
[151, 152]. Consequently, no clear recommendations
on the optimization on DTI protocols for multicenter
acquisition have yet emerged. The multicenter vari-
ability of DTI derived FA values is especially high in
brain regions that show low FA values, e.g., in small
structures where partial volume effects are stronger
or structures where crossing fiber are prevalent [152].
White matter regions such as the corpus callosum,
which show high FA values and are relatively large,
show in general the best reproducibility across centers
[150]. Statistical approaches have been proposed to
reduce the brain-region dependent influence of multi-
center variability. Based on a bootstrapping technique
called wild bootstrapping [153, 154] that allows for the
assessment of the precision of the tensor estimation,
voxel values that show high imprecision of diffusion
tensor estimation due to inter-scanner variability can
be identified. In proportion to the estimated multicen-
ter variability, such data points of high variability are
being weighted less in group comparisons of DTI or
when computing average DTI voxel values within a
particular white matter ROI. These approaches have
been shown to significantly reduce the multicenter
variability in ROI values of common DTI parame-
ters such as FA [152], and thus increase the utility of
DTI derived measures for clinical application. How-
ever, compared to MRI volumetric measures of grey
matter, the standardization and establishment of DTI
derived measures with a robust performance within a
multicenter context is less well developed. Therefore,
DTI measures have not yet been recommended as neu-
roimaging biomarkers for the research diagnosis of AD
[51].

CONCLUSIONS

Already now, the discussion on the new diagnos-
tic criteria has pushed the development of novel study

designs for preventive trials in at risk and prodromal
stages of AD. In the future, the integration of more
than one imaging or biomarker modality will increase
the accuracy of risk prediction and therefore increase
the power of clinical trials to detect disease modify-
ing or preventive treatment effects. At the same time,
these markers will serve to define different stages on
the transition from healthy aging to AD dementia so
that individual counseling becomes possible. Similar
to other areas of research, what used to be a sophis-
ticated measure in single expert centers or dedicated
international networks now has won increasing interest
from industry, including the development of diagnostic
expert systems on a new generation of MR scan-
ners and the marketing of PET, CSF, and eventually
blood biomarkers of AD [155]. Therefore, the devel-
opment of multimodal imaging biomarkers has gained
a strong momentum and confronts us with several
challenges:

1. The broader availability of non-invasive imaging
markers and risk markers of neurodegenerative
disease has already led and will increasingly lead
to the use of these markers outside of clinical
care or clinical studies for the counseling of
cognitively healthy subjects who want to learn
about their risk of dementia at an age of maybe
50 to 60 years. Today, it is not sufficiently dis-
cussed how these people should be advised if
amyloid accumulation is detected. There is not
yet sufficient evidence to suggest if these rela-
tively young subjects indeed have an increased
risk for the development of neurodegenerative
disease over the following decade and even less
is known if any measure could be advised for
them to decrease such a potential risk. This lack
of established clinical validity renders uncritical
application of advanced imaging techniques for
“screening” of AD risk an ethical challenge.

2. The availability of non-invasive imaging markers
will considerably influence the rate of diagnosis
of dementia and prodromal AD in the population
because imaging is often easier accessible for pri-
mary care physicians and their patients than is
complex neuropsychological testing. If this ten-
dency should continue over the next years, one
has to discuss the question whether the broad
availability of new diagnostic markers will lead
to a de-compensation of the present health sys-
tem which already now has difficulties to cope
with an increasing number of subjects who are
only clinically—and, hence, at a very late stage
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according to the new paradigm—diagnosed.
Given that today at most 40 to 50% of the
subjects with dementia receive a diagnosis of
dementia within the primary care system [156],
one wonders what will happen if this propor-
tion will increase significantly. The number of
patients will increase even further when prede-
mentia stages will be identified, a presumably
much larger group in the population. The health
care system in its present state will be challenged
to adequately support a multiple of the current
number of diagnosed subjects and at present
there is no evidence to guide the provision of
the appropriate, if any, therapy. This renders the
development of disease modifying and preven-
tive treatments the key issue in future dementia
care. It is here, where the access to accurate
instruments to precisely define and select at risk
samples for clinical trials becomes imperative.
The novel multidimensional paradigm provides a
considerable potential to improve future clinical
trials, and, thus, the chance to validate effective
treatment modalities.

In the future, we might expect to find constella-
tions of imaging and biomarkers in subjects who later
develop clinical AD which disagree with the proposed
model of a primary molecular lesion and subsequent
downstream effects. Thus, one may find subjects which
display low levels of amyloid, but exhibit a typical
pattern of cortical structural and functional discon-
nection and later develop clinical signs of AD. It is
the great advantage of an in vivo model of stage-
specific biomarker dynamics to enable us to falsify
or modify this model on AD pathogenesis based on
clinical and epidemiologic evidence. This will increase
the heuristic value of each single multimodal imaging
and biomarker study in AD, because all these studies
then will contribute a little piece to the same jigsaw-
puzzle and will no longer stand alone as an isolated
finding.

This integrating function of a multimodal stage
model of AD based on biomarkers could become one
of the most important advances in clinical research on
AD of the last decade. It provides us with a heuris-
tic paradigm to test the validity of biological models
on AD pathogenesis. It also allows for a systematic
diagnostic algorithm for the risk stratification of sam-
ples for clinical trials. Finally, the multimodal stage
model laid down provides a potential future instrument
to inform and counsel elderly subjects with cognitive
impairments.
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