

Paolo Lenisa Università di Ferrara and INFN - Italy

MENU 2013 - Rome, September 3rd 2013

Motivation

- The PAX collaboration proposed to investigate Drell Yan processes in scattering of polarized proton antiproton beams at the HESR (FAIR).
- Annihilation of valence quark with an antivalence quark allows direct access to: transversity,

$$A_{TT} \equiv \frac{d\sigma^{\uparrow\uparrow} - d\sigma^{\uparrow\downarrow}}{d\sigma^{\uparrow\uparrow} + d\sigma^{\uparrow\downarrow}} = \hat{a}_{TT} \frac{\sum_{q} e_q^2 h_1^q(x_1, M^2) h_1^{\bar{q}}(x_2, M^2)}{\sum_{q} e_q^2 q(x_1, M^2) \bar{q}(x_2, M^2)}$$

• <u>Requirements:</u>

Polarized proton beam Polarized antiproton beam

Selective-flip: a proposal

A surprising method for polarising antiprotons.

Th. Walcher^{1,2}, H. Arenhövel¹, K. Aulenbacher¹, R. Barday¹ and A. Jankowiak¹

¹ Institut f
ür Kernphysik, Johannes Gutenberg-Universit
ät Mainz, D-55099 Mainz, Germany
 ² Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati (Rome), Italy

Received: date / Revised version: date

Abstract. We propose a method for polarising antiprotons in a storage ring by means of a polarised positron beam moving parallel to the antiprotons. If the relative velocity is adjusted to $v/c \approx 0.002$ the cross section for spin-flip is as large as about $2 \cdot 10^{13}$ barn as shown by new QED-calculations of the triple spin-cross sections. Two possibilities for providing a positron source with sufficient flux density are presented. A polarised positron beam with a polarisation of 0.70 and a flux density of approximately $1.5 \cdot 10^{10}/(\text{mm}^2 \text{ s})$ appears to be feasible by means of a radioactive ¹¹C dc-source. A more involved proposal is the production of polarised positrons by pair production with circularly polarised photons. It yields a polarisation of 0.76 and requires the injection into a small storage ring. Such polariser sources can be used at low (100 MeV) as well as at high (1 GeV) energy storage rings providing a time of about one hour for polarisation build-up of about 10^{10} antiprotons to a polarisation of about 0.18. A comparison with other proposals show a gain in the figure-of-merit by a factor of about ten.

PACS. 13.88.+e Polarisation in interactions and scattering – 29.20.Dh Storage rings – 29.25.Bx Electron sources – 29.27.Hj Polarised beams

Eur. Phys. J. A 34, 447 (2007)

Spin-flip studies at COSY

- Use proton beam and co-moving electrons
- Turn experiment around: $p \stackrel{\bullet}{e} \rightarrow \stackrel{\bullet}{p} e$ into $\stackrel{\bullet}{p} e \rightarrow p \stackrel{\bullet}{e}$
 - i.e. observe depolarization of a polarized proton beam

Spin-filtering

11

$$\sigma_{tot} = \sigma_0 + \sigma_1(\vec{P} \cdot \vec{Q}) + \sigma_2(\vec{P} \cdot \hat{k})(\vec{Q} \cdot \hat{k})$$

P...beam particle spin orientation Q...target particle spin orientation k // beam direction

$$P(t) = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} = \tanh\left(\frac{t}{\tau_{1}}\right) \approx t \cdot \tilde{\sigma}_{1} \cdot Q \cdot d_{t} \cdot f$$

Spin-filtering

12

$$\sigma_{tot} = \sigma_0 + \sigma_1(\vec{P} \cdot \vec{Q}) + \sigma_2(\vec{P} \cdot \hat{k})(\vec{Q} \cdot \hat{k})$$

P...beam particle spin orientation Q...target particle spin orientation k // beam direction

$$P(t) = \frac{N_{\uparrow} - N_{\downarrow}}{N_{\uparrow} + N_{\downarrow}} = \tanh\left(\frac{t}{\tau_1}\right) \approx t \cdot \tilde{\sigma}_1 \cdot Q \cdot d_t \cdot f$$

PAX submitted new proposal to find out how well does spin filtering work for antiprotons Measurement of the Spin-Dependence of the pp Interaction at the AD Ring (CERN-SPSC-2009-012 / SPSC-P-337)

Measurements at AD (CERN) •Aim: 1st measurement of the spin-dependence of the pbar-p cross section •Method: measurement of polarization build-up by spin-filtering Antiproton Decelerator 06/04/200 PAX target section

Spin-dependence of the pbar-p interaction

- **Model A:** T. Hippchen et al., Phys. Rev. C 44, 1323 (1991).
- Model OBEPF: J. Haidenbauer, K. Holinde, A.W. Thomas, Phys. Rev. C 45, 952 (1992).
- **Model D:** V. Mull, K. Holinde, Phys. Rev. C 51, 2360 (1995).

Oct. 2009 SPS Committee:

... Taking into account the timeline and constraints of the various projects concerned, the SPSC encourages the PAX Collaboration to first perform their spin filtering measurements at COSY...

Spin Filtering at COSY

16

Spin filtering with protons for better understanding of the underlying processes and commissioning of the experimental setup

- Length: 183.4 m
- Injection energy: 45 MeV
- Electron cooling for long lifetimes up to 600 MeV/c (p)

Beam polarimeter

21

- Measurement of asymmetry in pd-elastic scattering
- 2 Silicon Tracking Telescops left and right of the COSY beam
- Deuterium Cluster Target $(d_t = 10^{14} a toms/cm^2)$

Milestone for the field

Confirms understanding of spin-filtering as a viable method to polarize a stored beam.

Confirms complete control of the systematics of the experiment.

Mar. 2012 SPS Committee:

... many positive developments have occurred at the AD, leading to an updated program for the coming yearsWe consider that PAX is **now** incompatible with this program.

Future plans

Waiting for approval at CERN (or construction of FAIR facility) Longitudinal spin-filtering test at COSY

Superconducting 4.7 Tm solenoid ordered

Longitudinal beam polarimeter in preparation

Status:

- Successfull spin filtering measruement at COSY on transverse polarized target.
- Excellent agreement with theoretical predictions for protons
- Successfull commissioning of experimental setup for experiments with antiproton

Future plans at COSY

- Spin filtering with protons and a longitudinally polarized gas target at COSY at $T_p=130~\text{MeV}~(\vec{p}\vec{p}~\text{scattering})$

Still pending:

 Spin-filtering experiments at AD exploring the systems p(bar)p, p(bar)d, (p(bar)³He) (transverse and longitudinal polarization)

Thank you!

26)

Spin Filtering with Longitudinal Polarization

- Buildup of longitudinal beam polarization due to repeated interaction with a longitudinally polarized hydrogen target
- $T_p \approx 45$ 130 MeV kinetic proton energy
- <u>Detector</u>: Measurement of longitudinal beam polarization using $\vec{p}\vec{p}$ elastic scattering
 - Measurement during filtering with hydrogen target possible
 - Spin correlation coefficient (~ 0.5)
 - o No background

