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MOST PIONEERING FINDINGS IN AD OF LIPIDS

Microbiology of AD of lipids: opening the black box Full-scale reactors designed for AD of lipids

IASB, reactor operated in

downflow mode, utilises

the flotation as sludge

retaining mechanism, and

promotes the contact

between feed and settled

biomass for improving

biodegradation

BIOPAQ®AFR, by

Paques, utilises an

integrated flotation unit

where solids and fats are

floated using biogas, and

are recirculated back into

the reactor for further

digestion.

MEMTHANE®, by Veolia,

retains the biomass inside

the reactor by using a

membrane coupled to the

anaerobic digester/

reactor.

Full-scale application of these bioreactor configurations is recent and promise future

possibilities for energy recovery from lipids wastewater.

FUTURE PERSPECTIVES IN AD OF LIPIDS

INTRODUCTION
Lipid-rich wastewaters are ideal sources for methane production, but lipids are generally separated and removed prior to anaerobic treatment to avoid sludge flotation and microbial
inhibition. In this work, we review the major technological and microbiological advances in the anaerobic digestion (AD) of lipids, while highlighting the most important breakthroughs in
the field and identifying the future perspectives.

Slaughterhouses

45 – 700 mg Lipids L-1

Dairy industry

500 – 9500 mg Lipids L-1

Edible oils production

2000 – 15000 mg Lipids L-1

Lipid-rich wastewater has high energy potential

1981 20161981 1984 1987 1990 1993 1996 1999 2002 2005 2008

1981, Hanaki et al.
LCFA inhibit essential reactions in AD 
due to their toxic effect towards 
anaerobic microorganisms. 

1992, Angelidaki & Ahring
LCFA exerts a permanent and 

irreversible toxic effect towards 
methanogens.

1994, Rinzema et al.
LCFA were considered 
to be bactericidal to 
methanogens.

2001, Alves et al.
The LCFA adsorbed to biomass 

can be converted to methane. 
The contact with lipid-rich 

effluents improve the tolerance 
of the anaerobic sludge to the 

oleate toxicity.

2002, Pereira et al.
Palmitate identified as 
the main intermediate 
in oleate degradation.

2007, Alves et al.
New reactor was designed –IASB. This 

reactor optimizes the LCFA adsorption and 
uses the flotation to retain biomass.

2009, Cavaleiro et al.
A step feeding start-up 
promoted the 
development of a 
community able to 
mineralize LCFA, in 
continuous, with OLR up 
to 21 kgCOD m-3 d-1.

1987, Koster & Cramer
Lipids inhibition more correlated with 

LCFA concentration than with the 
amount of LCFA per unit of biomass.

1993, Rinzema et al.
Sludge flotation and washout cause treatment failure in 
UASB reactors treating lipids-containing wastewaters. 1997, Hwu et al.

Usual operating parameters of EGSB reactors result in poor 
treatment of LCFA. Though, recirculation may improve the process.

2002, Lalman & Bagley
LCFA chain length and the degree of saturation affects 
the level toxicity.

2005, Pereira et al.
Toxic effect of LCFA are related to 
accumulation onto the sludge, creating a 
physical barrier to the transfer of 
substrates/products.

The most pioneering 

findings in the 

process of lipids AD
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β-oxidation: the suggested route for Lipid degradation

• Thermodynamically feasible (Low hydrogen partial pressure)

• This generally accomplished through syntrophic cooperation with hydrogenotrophic archaea.

Nevertheless, Cavaleiro et. al (2016) proved that the initial steps of unsaturated LCFA degradation

may proceed uncoupled from methanogenesis, and that palmitate production may involve the

activity of facultative anaerobic bacteria.

Knowledge Gaps remain in the understanding of microbial communities and microbial

interactions in anaerobic lipid digestions:

• Specific and targeted experiments are needed across the field

• Further targeted use of new and expanding Omic and Analytical technologies

• A strong link between industrial and academic sectors within these experiments will

yield greater leaps for the field.

Further expansion to solve the basic issues is needed.

• Experiments should be more focused to specific and comparable (synthetic)

wastewaters prior to moving toward ‘real’ WW –both with industry & academia.

• A solution for to solve the issues for UASB and EGSB style reactors would be a large

leap for the field.
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