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Abstract

Chronic kidney diseases (CKD) are a major health problem affecting approximately 10% of the world’s population and posing 

increasing challenges to the healthcare system. While CKD encompasses a broad spectrum of pathological processes and 

diverse etiologies, the classification of kidney disease is currently based on clinical findings or histopathological categoriza-

tions. This descriptive classification is agnostic towards the underlying disease mechanisms and has limited progress towards 

the ability to predict disease prognosis and treatment responses. To gain better insight into the complex and heterogeneous 

disease pathophysiology of CKD, a systems biology approach can be transformative. Rather than examining one factor or 

pathway at a time, as in the reductionist approach, with this strategy a broad spectrum of information is integrated, including 

comprehensive multi-omics data, clinical phenotypic information, and clinicopathological parameters. In recent years, rapid 

advances in mathematical, statistical, computational, and artificial intelligence methods enable the mapping of diverse big 

data sets. This holistic approach aims to identify the molecular basis of CKD subtypes as well as individual determinants 

of disease manifestation in a given patient. The emerging mechanism-based patient stratification and disease classification 

will lead to improved prognostic and predictive diagnostics and the discovery of novel molecular disease-specific therapies.
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Introduction

The kidney with its multiple specialized cell populations 

interacting in the complex three-dimensional nephron 

structure is responsible for maintaining the internal homeo-

stasis of the human organism. Due to this central role, a 

dysregulation of kidney function can have a multitude of 

detrimental effects on the body. Kidney diseases are a major 

health problem with currently around 10% of the world’s 

population being affected by chronic kidney disease (CKD) 

(Collins and Foley 2012). They encompass a wide range 

of pathological processes and different etiologies which are 

a confluence of interactions of genetic, immune-mediated, 

environmental, and psycho-social factors. The classification 

of kidney diseases is currently based on clinical findings 

or histopathological categories. However, these clinical 

pathological classifications of kidney diseases lumping 

patients with similar phenotypes, but heterogenous under-

lying disease mechanisms resulting in inaccurate prediction 

of disease prognosis and treatment response. One reason for 

the slow progress in identifying and developing new thera-

pies is the classic reductionist approach of the last decades, 

which examines one factor or one pathway at a time. While 

this approach has been successful in elucidating the physi-

ological and pathophysiological function of specific genes or 

proteins in multiple monogenic kidney diseases, it has been 

less efficient in unraveling the complex interactions across 

genes, proteins, and pathways in diseases with complex dis-

ease pathogenesis. To overcome some of these challenges, 

a systems biology approach which integrates a wide spec-

trum of information including comprehensive multi-omics 

data, clinical phenotypic patient data, and clinicopathologic 

parameters, can complement the reductionist view and pro-

vide a more holistic understanding of the interacting disease 

mechanism in a given patient. In the last years, significant 

progress has been made in data modelling approaches and 

computational capabilities and methods to integrate diverse 

large sets of data. Application of different mathematical, 

statistical, and computational methods as well as the use of 
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artificial intelligence data mining strategies can help to link 

molecular insight with clinically phenotypic data to better 

classify diseases, stratify patients, and design novel diagnos-

tic and therapeutic tools.

The ultimate goal of the systems biology approach in 

medicine is to understand cellular function and interaction 

in a complex organ system and how perturbations relate to 

disease development and progression. The advancement of 

biomedical technologies able to comprehensively assess a 

specific molecular domain in human biosamples provides 

now datasets of sufficient depth to start to define cross cut-

ting disease mechanism. Most notably we have seen rapid 

adaption of next-generation sequencing technology via 

RNA-seq, and scRNA-seq, and GC–MS via metabolomics 

and proteomics to collect genome scale information from 

human renal tissue obtained by biopsy. This is particularly 

impactful for renal research, as kidney cellular physiology 

will benefit greatly from the integration of different omics 

data across the different layers of data sets and nephron seg-

ment (Subramanian et al. 2020).

Approaches

Integrating omics data can be subdivided into two main con-

cepts: the post-analysis approach and the combination approach. 

The first approach integrates omics data by analyzing each 

omics data separately and then validating the results with other, 

orthogonal omics data. This approach is based on the integra-

tion of observations from different analyses of omics data (Pinu 

et al. 2019). There are two methods: top-down and bottom-

up data reduction (Yu and Zeng 2018). The top-down method 

uses genomic and transcriptomic data to predict phenotypic 

responses and identify enriched signaling pathways, which are 

then validated by targeted metabolomics and proteomics. The 

disadvantage of this approach is that changes in genes, pro-

teins, and metabolites do not necessarily directly correlate. In 

the bottom-up approach, significantly different metabolites are 

used to focus on the upstream pathways responsible for their 

alterations. The low coverage of metabolomics (one hundred 

measured metabolites versus thousands of measured genes and 

proteins) has been a major disadvantage of this approach, which 

limited the interpretation towards a comprehensive mapping 

across the multiscalar data domains to date.

In the combination approach, omics data is combined 

prior to data interoperation and visualization. The idea is to 

identify similarities between different omics data using math-

ematical methods such as Canonical Correlation Analysis 

(CCA) (Rohart et al. 2017) and orthogonal Two-Way Projec-

tion on Latent Structures (O2PLS) (Bouhaddani et al. 2016). 

More details on the methodologies and statistics behind these 

approaches can be found in the review from Subramanian 

(Subramanian et al. 2020).

Which datasets can be used in systems 
nephrology

Omics data

Genomics

Genome-wide association studies (GWAS) have become a valu-

able tool to decipher the polygenic architecture of complex dis-

eases such as chronic kidney disease by identifying common 

genetic variants that are associated with complex diseases and 

traits. Despite the identification of thousands of disease- and/or 

trait-associated single-nucleotide polymorphisms (SNPs), the 

mechanism how these genetic variants impact gene regulation 

and the pathophysiological context is still largely unknown. 

One approach to investigate the influence of genetic variants 

on disease development is the integration of GWAS data with 

expression of downstream efforts, i.e., transcriptome data, 

so-called eQTL studies. In recent years, kidney compartment-

based eQTL studies have started to provide context of disease-

relevant processes and new targets as well as to establish kid-

ney relevant eQTL databases. (NephQTL: http:// nephq tl. org; 

Human kidney eQTL atlas: http:// suszt aklab. com/ eqtl/) (Gillies 

et al. 2018; Qiu et al. 2018).

In order to obtain information regarding the whole spec-

trum of genetic mutations such as deletions, substitutions, 

and copy number variations, the technological develop-

ment of whole exome sequencing (WES) or whole genome 

sequencing (WGS) can be deployed on kidney disease popu-

lations. These applications are already playing an important 

role in pediatric renal diseases, since about 70% of inherited 

kidney diseases are associated with childhood CKD (Gulati 

et al. 2020). Intriguingly also in adults about 10% of kidney 

diseases are due to a genetic cause (Groopman et al. 2019). 

Thus, these new technologies may lead to new insights in 

adult nephrology allowing a reclassification of diagnosis and 

treatment (Leveson and Oates 2020; Wilson et al. 2020).

Epigenomics

The advances in high-throughput sequencing technolo-

gies in recent years also facilitate a precise analysis of the 

epigenetic landscape. Approaches include among others 

the measurement of transcription factor (TF) binding and 

histone modifications by chromatin immunoprecipitation 

sequencing (ChIP-seq), and the detection of DNA meth-

ylation by bisulfite sequencing, the analysis of chromatin 

accessibility using the Assay of Transposase Accessible 

Chromatin Sequencing (ATAC-seq) (Li et al. 2019; Wilson 

et al. 2020).

DNA methylation represents an important epigenetic 

alteration that strongly influences gene expression and 
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thereby playing an important role in regulating various 

physiological and pathological processes. In mammalians, 

DNA methylation occurs mainly at C5 of the cytosine ring 

within cytosine guanine (CpG) dinucleotides and is often 

found bundled in so called “CpG islands” at gene regula-

tory sites such as promoter regions. Several methods exist to 

study DNA methylation, with bisulfite sequencing being the 

gold standard for measuring the DNA methylation status of 

a genome. The analysis of the DNA methylation status can 

help us to extend our understanding of kidney development 

(Wanner et al. 2019) (and the pathophysiology of kidney 

diseases (Bansal et al. 2020).

Sequencing methods such as ATAC-seq (Assay of Trans-

posase Accessible Chromatin) allow the systematic investi-

gation of epigenetic mechanisms responsible for chroma-

tin accessibility. In recent years single-cell/single-nucleus 

ATAC-Seq (scATAC/snATAC-seq) has been developed, 

which enables the analysis of cell type-specific chromatin 

accessibility in complex tissue with substantial cellular het-

erogeneity (Klemm et al. 2019). The identification of open 

chromatin in the genome at the single-cell level helps to 

refine our understanding of the functional heterogeneity and 

gene regulatory mechanisms in tissue such as the nephron 

(Muto et al. 2020).

Transcriptomics

RNA‑seq/scRNA‑seq RNA sequencing is one of the next-

generation sequencing technologies developed for the study 

of RNA expression, translation, and structure (Stark et al. 

2019). Primary application and a routine research tool of 

RNA-seq is the identification of differential gene expression 

(DEGs), where we compare transcriptomic data from differ-

ent samples and from different conditions. In bulk RNA-seq 

analysis, the average expression level for each gene present 

in the cell population is measured over a large number of 

input cells.

The kidney represents one of the most complex organs 

in the body, posing a major challenge in terms of resolving 

cellular heterogeneity. To better understand the complexity 

of the kidney, various approaches have long been pursued 

to identify cell-specific signals from complex signatures, 

including microdissection into individual compartments, 

enrichment of single-cell types, or computational meth-

ods such as in silico deconvolution (Cohen et al. 2002; Ju 

et al. 2013; Rinschen et al. 2018; Soutourina et al. 2005). 

With the ongoing development of new technologies such 

as single-cell RNA-seq (scRNA-seq) or single-nucleus 

RNA-seq (snRNA-seq), alternative approaches for meas-

uring expression levels for each gene in individual cells 

become available to better resolve cellular heterogeneity 

and diversity in the kidney in an unbiased way. Multiple 

cellular dissociation protocols have been developed to 

obtain single-cell or single-nuclear profiles from complex 

human tissues with complimentary advantages of the dif-

ferent technologies towards comprehensive coverage of tis-

sue resident cell types (Slyper et al. 2020; Wu et al. 2019). 

The identification of rare cell populations and definition 

of cellular heterogeneity can provide great insights into 

the pathogenesis of kidney diseases and kidney develop-

ment (Abedini et al. 2021; Lake et al. 2019; Lindström 

et al. 2018; Subramanian et al. 2019; Wang et al. 2018; 

Wu et al. 2019, 2018a; Zheng et al. 2020). One problem 

with scRNA-seq protocols is that due to dissociation in 

single-cell suspensions, cells lose their spatial arrange-

ment information. However, spatial arrangement within 

an organ plays an important role to understand cell–cell 

interactions and their functions in an organ. In recent years, 

promising approaches to spatially resolved transcriptomics 

have been developed that attempt to combine the infor-

mation richness of single-cell technology with spatial 

resolution (Liao et al. 2021). Further developments are 

needed to achieve high spatial resolution combined with 

high throughput scRNA-Seq. These new approaches will 

improve our understanding of molecular mechanisms and 

cell–cell interactions in the kidney, aiding in the develop-

ment of more accurate kidney disease classification, patient 

stratification, and novel therapeutic approaches.

CITE‑seq One of the innovative new tools for studying 

single-cell biology is the cellular indexing of transcrip-

tomes and epitopes by sequencing (CITE-seq). CITE-Seq 

represents a multimodal assay that allows simultaneous 

transcriptomic and proteomic phenotyping at the single-

cell level. Oligonucleotide-labeled antibodies are used 

to efficiently integrate cellular protein and transcriptome 

measurements (Stoeckius et al. 2017).

Proteomics

The qualitative and quantitative protein composition of a cell 

is influenced by various factors such as the expression level 

of the respective gene, posttranslational modifications, or 

environmental factors. High-throughput analysis of protein 

expression, protein modification, and protein–protein interac-

tions can be investigated using mass spectrometry (MS)-based 

techniques such as tandem MS. There are several studies that 

have employed urine proteomics for the non-invasive early 

detection of kidney disease (Bellei et al. 2018). In the future, 

newly developed technologies such as spatial proteomics will 

allow us to obtain information of individual proteins on sub-

cellular level and thus help us to better understand cell biology 

(Bottek et al. 2020; Lundberg and Borner 2019).

Since the protein concentration does not only depend 

on the mRNA abundance but is also regulated by 
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posttranscriptional processes, frequently only a moderate 

correlation between transcript level and protein level is 

observed (Liu et al. 2016). Integration of multiple omics-

platforms might help to overcome this problem and help 

to gain further insights into kidney biology. By combin-

ing deep proteome data with mRNA sequencing data from 

native mouse podocytes, a comprehensive and quantitative 

map of mammalian podocytes has recently been created 

(Rinschen et al. 2018). This multi-layered expression atlas 

not only allows the identification of characteristic features 

of podocytes but also opens the way to the discovery of 

new disease genes for human proteinuric kidney disease, 

potential drug targets, and the prioritization of these for 

follow-up studies by integrating further data from e.g. 

human studies.

Metabolomics/Lipidomics

The metabolome, i.e., the entirety of all metabolites and 

small molecules of a biological sample, is the product of 

the interaction of the genome with its environment. Cur-

rently, around 40 k primary and secondary human metabo-

lites have been identified (Wishart et al. 2018). Using NMR-

spectroscopic and MS-based technologies such as liquid 

chromatography (LC), gas chromatography (GC), or capil-

lary electrophoresis (CE) mass spectrometry, hundreds to 

thousands of metabolites can be precisely measured simul-

taneously. Metabolomics provides insight into the mecha-

nisms of kidney disease (Abbiss et al. 2019), the discovery 

of new therapeutic options (Rhee 2015), and the early detec-

tion of chronic kidney disease (CKD) (Chen et al. 2019; 

Grams et al. 2018). The next challenge in metabolomics is 

to develop a mechanistic understanding of metabolic pro-

cesses in space with cellular and subcellular spatial resolu-

tion (Neumann et al. 2020).

The lipidome represents a subset of the “metabolome” that 

describes the lipid profile within a cell. In recent years, rapid 

developments in mass spectrometry and NMR spectrometry 

have stimulated research investigating the role of lipids in kid-

ney disease (Afshinnia et al. 2018b; Avela and Siren 2020). 

Lipidomics can provide further insights into the mechanistic 

understanding of dyslipidemia in CKD patients. For exam-

ple, different studies have shown that with progression of 

renal insufficiency elevation of saturated free fatty acids is 

observed, which is accompanied by a decreased efficiency 

of beta-oxidation (Afshinnia et al. 2018a; Rhee et al. 2010). 

Additionally, lipidomics can serve as a source for identify-

ing potential biomarkers for disease progression as shown in 

type 2 diabetic kidney disease (Afshinnia et al. 2019) or in a 

subcohort of the Chronic Renal Insufficiency Cohort (CRIC), 

a longitudinal outcome study of patients with different CKD 

stages (Afshinnia et al. 2016).

Large‑scale biological data beyond omics

Multiple additional biomedical large-scale data sources for 

integrative biology are currently emerging. New imaging 

techniques and analysis methods based on deep digital spatial 

image capture linked with machine learning–driven analysis 

algorithms have revolutionized the information content and 

usefulness which was reserved so far to the qualitative image 

analysis by the human expert. For example, digitalized whole-

slide images of kidney biopsies can be used to automatically 

extract descriptive and quantitative histopathological features, 

which in turn can be then linked with AI-driven pattern extrac-

tion to improve be diagnostic classifications, disease progno-

sis, and therapy response (for further information see (Becker 

et al. 2020). Quantitative analysis of cross-sectional imaging, 

in particular magnetic resonance imaging (MRI), positron 

emission tomography (PET), computed tomography (CT), 

and ultrasound (US), is increasingly proposed as an alterna-

tive source of biomarkers to inform chronic kidney disease 

(CKD) management (Gooding et al. 2020). In recent years, 

the interest is increasingly moving towards advanced imag-

ing techniques that are sensitive to structural and functional 

tissue characteristics such as perfusion, oxygenation, blood 

flow, glomerular filtration, tubular flow, fibrosis, inflammation, 

metabolism, and tissue composition (Granda et al. 2018; Jiang 

et al. 2019). Additional utility derives from the fact that these 

characteristics can be measured separately for left and right 

kidney and for cortex and medulla and that they can character-

ize functional and structural heterogeneity within those areas.

Besides imaging data, clinical phenotypic data such as 

electronic health records, lifestyle data, or environmen-

tal exposures are an information-rich data source that can 

be incorporated into the systems biology workflow (Wu 

et al. 2017). In addition to electronic health records (EHRs) 

that contain information on the clinical profile of the patient 

such as diagnosis, biochemical parameters, or medication, 

lifestyle measurements such as physical activity, heart rate, 

sleep quality, or potassium level in sweat derived from health 

mobile applications (eHealth apps) as well as wearables have 

the potential to increase our understanding of disease epi-

demiology and help to detect patients at risk and improve 

patient compliance in disease management (Fig. 1).

Data integration and network analysis

To gain a more holistic understanding of cellular function 

and interaction in the kidney and to learn how the phenotype 

of kidney disease is influenced by factors such as genes, pro-

teins, or epigenetic factors, the integration of different levels 

of data is an important tool. Due to the complexity of the 

data, this poses a greater challenge. In recent years, however, 
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Fig. 1  Schematic workflow of 

systems nephrology
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various methods of data integration have been established 

which attempt to integrate specific subsets of omics data. 

This can be achieved using unsupervised and supervised 

approaches, including statistical or machine learning based 

methods, which can be further categorized into matrix fac-

torization methods, correlation-based analysis, Bayesian 

methods, network-based methods, multiple kernel learn-

ing, and multi-step analysis. A complete survey of different 

methodologies is beyond the scope of this paper. A good 

overview of the different methodologies, limitations of the 

tools, and challenges of multi-omics data integration can be 

found in Huang et al. (2017) and Subramanian et al. (2020).

One of the data integration approaches involves network-

based analysis. Biological networks aim to analyze different 

biological entities such as metabolites, genes, and proteins 

as an interacting system and its association with disease pro-

gression. There exist different types of biological networks 

such as protein–protein interaction (PPI), gene regulatory 

networks (GRN), signaling networks, neuronal networks, 

and metabolomics networks. Biological networks consist of 

two components, nodes and edges. While nodes can rep-

resent different biomolecules such as genes, proteins, and 

metabolites, edges represent the interaction of these bioenti-

ties. The type of interaction shown in the network depends 

on the definition of the interaction, i.e., for example, is it a 

physical interaction as in a PPI network or a regulation as 

in a GRN. Nodes with high connectivity represent a central 

gene, protein, or metabolite that serves as bridge between 

different portions of the network.

Many tools have been developed to create, visualize, and 

analyze biological networks. For example, correlation networks 

using WGCNA (Langfelder and Horvath 2008) and DiffCorr 

(Fukushima 2013) have been applied, e.g., to compare networks 

across health and disease stages and to evaluate how the connec-

tion of nodes is affected by disease state compared to healthy 

state. For scientists without programming skills, the web-

based tool webCEMiTool https:// cemit ool. sysbio. tools/ offers 

a comprehensive modular analysis in a fully automated man-

ner to perform WGCNA-based analysis of their data (Cardozo 

et al. 2019). In recent years, many user-friendly computational 

tools for scientists without a computational background have 

been build, which allow multi-omics data visualization, analysis 

and construction of correlation, gene regulatory, and PPI net-

works including Networkanalyst https:// www. netwo rkana lyst. ca/ 

(Zhou et al. 2019), RegNetwork http:// www. regne twork web. org/ 

home. jsp (Liu et al. 2015), OmicsNet http:// www. omics net. ca 

(Zhou and Xia 2018), Mibiomics https:// shiny- bird. univ- nantes. 

fr/ app/ Mibio mics (Zoppi et al. 2021), Paintomics http:// www. 

paint omics. org/ (Hernandez-de-Diego et al. 2018), or Metabo-

analyst https:// www. metab oanal yst. ca/ (Chong et al. 2018). One 

of the best and very powerful network visualization and integra-

tion tool is Cytoscape https:// cytos cape. org/ (Otasek et al. 2019; 

Shannon et al. 2003). Since its launch in 2003, more than 200 

apps have been developed for complex network analysis and 

visualization. For further information on network-based analysis, 

refer to Ramos et al. (2019).

Consortia

The comprehensive investigations of kidney disease patients 

using omics and non-omics data can hardly be accomplished 

by an individual research group or center but requires the 

establishment of complex infrastructures utilizing a distrib-

uted research networks of clinical centers, biobanks, regis-

tries, and highly specialized analytical laboratories, as is also 

done within the framework of the Collaborative Research 

Center described in this issue.

As potential molecular disease mechanism or identified 

biomarkers emerge a crucial part pertains to the validation in 

independent cohorts with different clinical, environmental, 

and genetic exposures.

In the past 20 years, many cohorts/consortia have been 

initiated to enable comprehensive studies of different kidney 

diseases and provide resources to the research community. 

Cohorts with relationship to the Collaborative Research 

Center are among others the ERCB (European Renal cDNA 

Bank), NEPTUNE (Nephrotic Syndrome Study Network), 

C-Probe (Clinical Phenotyping Resource and Biobank Core), 

the CRIC cohort (Chronic Renal Insufficiency Cohort), and 

the Kidney Precision Medicine Project (KPMP).

The ERCB has been launched more than 20 years ago and 

represents one of the first multi-center initiatives for compre-

hensive tissue level molecular analysis of human renal biopsies 

from patients with different chronic kidney diseases (Cohen 

et al. 2002). While the ERCB covers the entire renal disease 

spectrum observed in Europe, the NEPTUNE cohort study 

focuses mainly on patients with primary glomerular diseases 

(minimal change disease, focal segmental glomerulosclerosis, 

membranous nephropathy) (https:// www. neptu ne- study. org/). 

NEPTUNE includes not only sampling of kidney biopsies but 

also urine and blood samples, collection of a wide range of 

demographic and clinical data, histopathological scoring and 

morphometry, whole genome sequencing, kidney compart-

ment specific gene expression profiles, and comprehensive 

follow-ups of at least 36 months (Gadegbeku et al. 2013), 

with more than 800 patients enrolled. Two other cohorts of 

well-characterized patients with chronic kidney disease are 

C-PROBE (https:// kidne ycent er. med. umich. edu/ clini cal- 

pheno typing- resou rce- bioba nk- core) and the CRIC-study 

(http:// www. crist udy. org/ Chron ic- Kidney- Disea se/ Chron ic- 

Renal- Insuffi cie ncy- Cohort- Study/). C-PROBE is an ongo-

ing, prospective multi-center cohort study of currently more 

than 1600 adult and pediatric participants with kidney disease 

from diverse clinical, ethnical, and socio-economic back-

grounds. It encompasses a deep clinical phenotyping, as well 
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as a collection of urine, blood, DNA, renal tissue biospecimen, 

and a longitudinal follow-up. The CRIC-study is one of the 

largest data and biospecimen collection in nephrology. To date, 

around 5.500 patients with different severity of CKD have been 

enrolled and characterized, more than 150.000 blood and urine 

biosamples as well as clinical data, data on quality of life, life 

style data and others, and longitudinal follow-ups have been 

collected. The KPMP project is a multidisciplinary effort by 

the nephrology research community with the goal to apply-

ing cutting-edge OMICs as well as imaging technologies on 

biopsy tissue obtained by research renal biopsies from AKI 

and CKD patients (https:// www. kpmp. org/).

These data and samples serve as resources to the research 

community and help to pave the way to a more personalized 

medicine by defining disease subgroups, identifying cells, 

pathways, and targets for novel therapies.

Application of systems biology approaches 
in Nephrology

An accurate disease taxonomy is important for the diagno-

sis and treatment of patients with CKD. At present, however, 

many patients with CKD often do not respond to treatment. 

The reason for this is, amongst others, the descriptive clas-

sification of diseases according to primarily presenting clini-

cal symptoms and histopathological findings. Despite its 

comprehensive clinical application, this classification system 

does not reflect well individual patient factors and lacks the 

necessary understanding of the underlying molecular mecha-

nisms required for effectively targeted treatment strategies. The 

employment of systems biology approaches can enable the 

identification of the underlying molecular disease mechanisms, 

individual patient factors, mechanism-based patient stratifica-

tion, and disease classification as well as mechanism-based 

diagnostics using diagnostic and prognostic biomarkers and 

the discovery of new molecular, disease-specific therapies.

Disease mechanism and disease classification

One goal of systems medicine is the identification of molec-

ular disease mechanisms, which in turn enables the reclas-

sification of diseases based on the underlying molecular 

mechanism and patient stratification based on their molecu-

lar characteristics. Linking molecular programs to structure 

and function on a cellular level has become an important 

tool not only for identifying and classifying cell types but 

also for uncovering disease mechanisms and refining disease 

classifications.

A recent study of the Kidney Precision Medicine Project 

(KPMP) (www. kpmp. org) can be used to illustrate the power 

of these approaches. The study used a deconvolution strategy 

by integrating scRNA data from human reference biopsy 

samples with bulk RNA seq data from patients with various 

chronic kidney diseases to identify cell type–specific gene 

signatures and define molecular subgroups in glomerular 

diseases (Kammer et al. 2019). Different reference tissue 

sources were used to create a reference atlas of 31 different 

renal cell types, including three different endothelial cell 

clusters. The scRNAseq-directed endothelial cell gene sig-

natures enabled the generation of a glomerular endothelial 

cell (GEC) score, which after integration with CKD bulk 

RNA data led to the identification of two distinct groups 

of FSGS patients and showed an association between GEC 

activation and exposure to immunosuppressive treatment at 

time of biopsy. The analysis of the molecular endothelial 

gene signatures of the two FSGS subgroups revealed sig-

nificant differences in intrarenal α-2-macroglobulin (A2M) 

gene expression levels and an association of A2M transcript 

levels with disease progression, suggesting A2M as a cell 

type-specific outcome predictor.

In studies published in 2019 (Arazi et  al. 2019; Der 

et al. 2019), single-cell RNA-Seq technique has been applied 

to explore the heterogeneity of lupus nephritis (LN), deci-

pher intercellular interactions, and identify novel prognostic 

markers. For this purpose, kidney and skin biopsy samples 

from patients with LN and healthy controls were analyzed. 

The scRNA-Seq analyses indicated that lupus patients 

experienced a higher IFN response in renal tubule cells and 

keratinocytes compared to healthy controls and that these 

correlated strongly with each other. Furthermore, they could 

show that specific molecular signatures of tubular epithelial 

cells and keratinocytes such as the upregulation of type I 

IFN-response and TNF signaling differentiated patients with 

proliferative LN from membranous or mixed LN. Besides 

the dysregulation of immune-related pathways, patients with 

lupus nephritis exhibited an upregulation of fibrosis markers 

in tubular epithelial cells and keratinocytes which also cor-

related with each other in the individual patients. Based on 

these results, Der and colleagues were able to establish IFN-

response and fibrosis signatures in tubular epithelial cells, 

which allowed a prediction of treatment response 6 months 

after biopsy and might be used as potential prognostic 

biomarkers and stratification tools in the future. Finally, 

single-cell analysis of matching urine samples allowed the 

definition of a macrophage subtype present in both kidney 

tissue and urine with the potential for effective non-invasive 

monitoring of the intrarenal states.

Another interesting and powerful tool that has been 

developed in recent years for the identification and analysis 

of disease mechanisms are kidney organoids derived from 

human-induced pluripotent stem cells (iPSCs). By applying 

single-cell RNASeq technologies to kidney organoids, recent 

studies have shown on the one hand that the reproducibil-

ity and quality of kidney organoids derived from different 

human iPSC lines can be reliably assessed with scRNA-Seq 
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(Subramanian et al. 2019). Secondly, data integration analy-

sis of different single-cell data sets demonstrated the conser-

vation of different cell types between kidney organoids and 

fetal kidney and provided evidence that kidney organoids 

can mimic normal fetal development in terms of cellular 

identity and complexity (Combes et al. 2019). In another 

study, a combination of single-cell data sets and bulk RNA-

Seq data not only identified robust and reproducible gene 

expression signatures of cells present in organoid cultures 

shared with developing human kidneys but also detected a 

gene expression signature characteristic of developing glo-

merular epithelial cells in glomerular tissue of patients with 

CKD (Harder et al. 2019).

Biomarker discovery

In addition to elucidating molecular mechanisms and reclas-

sifying diseases, systems biology plays an important role in 

the discovery and development of diagnostic and prognostic 

biomarkers. Prediction of renal function loss is still difficult 

to achieve, as until now there are no reasonable biomarkers 

available in routine diagnostics that could improve the pre-

dictive power beyond the established markers ofc proteinu-

ria and eGFR. In recent years, however, systems biology 

approaches have been used to identify prognostic markers 

for the differentiation of courses in CKD patients.

A recently published study explored the potential of multi-

omics-derived biomarkers to improve the prediction of disease 

courses in patients with type 2 diabetes and incident or early 

CKD in addition to existing clinical predictors (Kammer et al. 

2019). Applying Bayesian multi-variable logistic regression 

models, the authors analyzed 402 potential biomarker can-

didates, including clinical parameters, proteome, lipidome, 

and metabolome panel data, for their prognostic potential to 

distinguish eGFR trajectories in a cohort of patients with a 

stable eGFR course and with a rapid eGFR decline. Of these 

candidates, only KIM-1 and NTproBNP together with base-

line eGFR contributed to a refined, but modest differentiation 

between stable and progressive courses, while the metabo-

lomic and lipidomic biomarkers seemed to have no impact 

on the prognostic capability.

In recent years, several studies have suggested an influence 

of inflammation and inflammation-associated factors on DKD 

progression. For instance, the circulating TNFR family mem-

bers TNFR1 and 2 have been shown to be promising predic-

tive biomarkers for DKD progression in patients with type 1 

and type 2 diabetes (Gohda et al. 2012; Niewczas et al. 2012). 

Using a customized SOMAscan platform of 194 inflamma-

tory proteins, Niewczas and colleagues recently succeeded 

in identifying a kidney risk inflammatory signature (KRIS) 

consisting of 17 proteins associated with the development of 

ESRD (Niewczas et al. 2019). Among these 17 proteins, 6 

were members of the TNFR superfamily, including TNFR1 

and 2, serving as predictive biomarkers for renal outcome in 

patients with type 1 and type 2 diabetes.

Another example represents urinary EGF, which was 

identified as a prognostic marker for CKD progression 

through a systems biology approach based on kidney biopsy 

transcriptome data, urinary proteome data, and clinical 

follow-up data from CKD patients with different disease 

entities (Ju et al. 2015). Ju et al. did not only show that uri-

nary EGF protein correlated positively with intrarenal EGF 

mRNA, which is mainly expressed in the distal tubules, but 

could also predict the risk of disease progression as demon-

strated by the positive correlation of EGF with eGFR slope 

as a measure of loss of renal function. The integrative use 

of urinary EGF with the standard parameters proteinuria 

or eGFR could enhance their predictive power of disease 

outcome. Further studies have validated and confirmed the 

potential of urinary EGF as a prognostic marker for loss of 

renal function in a wide range of CKD patients with differ-

ent disease entities (Azukaitis et al. 2019; Li et al. 2018; 

Segarra-Medrano et al. 2017; Wu et al. 2018b).

Drug target discovery and drug repurposing

A key goal of systems medicine is the discovery of new 

therapeutic targets. To improve the process of target identi-

fication and drug development novel strategies are currently 

emerging. This includes systems-biology-based target dis-

covery, drug repurposing, a process which attempts to iden-

tify new targets for already approved or investigational drugs 

as well as novel model systems like kidney organoids as drug 

screening platforms.

A good example of systems biology-based drug target 

discovery is the identification of JAK-STAT as a potential 

drug target for diabetic kidney disease (DKD). Using cross-

species transcriptome analysis, Hodgin et al. demonstrated 

a key role for the JAK-STAT pathway in diabetic kidney 

disease (Hodgin et al. 2013). The causal role of the pathway 

was supported by podocyte-specific overexpression of JAK2 

and treatment of mice with an oral JAK inhibitor (Zhang 

et al. 2017), ultimately leading to a phase 2 clinical trial in 

diabetic kidney disease. Treatment with the selective JAK1 

and JAK2 inhibitor baricitinib resulted in a dose-dependent 

decrease in albuminuria, indicating a potential benefit of 

JAK1/JAK2 inhibitors as a new therapy for DKD patients 

(Tuttle et al. 2018). Another study in patients with focal 

segmental glomerulosclerosis (FSGS) demonstrated activa-

tion of the JAK/STAT pathway as a marker of renal disease 

progression, suggesting this pathway might be affected by 

drug treatment in patients with FSGS (Tao et al. 2018).

An attractive strategy to identify novel therapies for kidney 

diseases is drug repurposing, which can help reducing risks, 

costs, and time in drug development. In drug repurposing, both 

computational and experimental approaches can be employed. 
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Computational approaches can include both omics data (such 

as transcriptome, genomic, or proteome data) as well as non-

omics data of any kind (e.g., chemical structure or electronic 

health records (EHRs)). For the systematic analysis of the data, 

different approaches such as signature matching, pathway map-

ping, or genetic association can be applied individually or in 

combination (Pushpakom et al. 2019). For example, by using 

a transcriptome-based signature matching approach, Williams 

and colleagues were able to identify lysine deacetylase inhibi-

tion as a potential new treatment option for progressive CKD 

(Williams et al. 2020). In a first step, a chronic renal disease 

progression signature was defined using Col4a3-/- mice, which 

showed proteinuria and progressive loss of renal function. A 

comparison of this signature with the molecular signatures in 

the Connectivity Map database identified vorinostat, a lysine 

deacetylase inhibitor, as a candidate with potential impact on 

CKD progression. Treatment of Col4a3-/- mice with vorinostat 

was shown to significantly prolong the lifespan of the animals 

and exert renoprotective effects, indicating lysine deacetylase 

inhibition as potential treatment approach for chronic kidney 

disease. Previous studies in diabetic mice could already dem-

onstrate renoprotective effects of vorinostat. The drug not only 

reduced albuminuria, mesangial collagen IV deposition, and 

oxidative-nitrosative stress in streptozotocin (STZ)-treated 

mice (Advani et al. 2011) but also revealed an inhibitory effect 

on diabetes-associated renal growth in STZ-treated rats, partly 

due to modulation of the EGF-EGFR axis (Gilbert et al. 2011), 

further supporting the potential of vorinostat as a treatment 

strategy for chronic kidney disease and the important role of 

the EGF pathway in CKD.

Defining pattern in large data sets via artificial 
intelligence

The accumulation of large omics and non-omics data over 

the last two decades, advances in computer performance and 

the development of algorithms for deep and machine learn-

ing have fostered many applications of AI to develop data-

driven early detection, diagnosis, and management of kidney 

disease (PD) (Yuan et al. 2020). One of the most recent AI 

applications in KD is a deep learning program developed 

by Google called “Deepmind” that can predict acute kid-

ney injury (AKI) based on patient electronic health records 

(EHR) (Powles and Hodson 2017). Deepmind trained and 

tested on 703,782 adult patients and 620,000 characteristics 

in over 1243 healthcare facilities (sites) in the UK and the 

USA. The model was able to predict AKI episodes of hos-

pitalized patients with a sensitivity of 55.8% up to 48 h in 

advance and a false alarm rate of 2:1, allowing physicians 

to intervene early enough to prevent patients’ kidney failure. 

Although Deepmind is still in need of improvement in terms 

of its accuracy and further validation on other independent 

and more comprehensive population data sets (e.g., only 6% 

of the patients studied were female in the Deepmind train-

ing set), it opens the door for the incorporation of artificial 

intelligence into the clinical setting and could represent a 

potential approach to risk prediction for AKI in the future.

Another application of AI in non-omic data is the devel-

opment of an automated computerized pipeline for anno-

tation and classification of human kidney biopsies from 

digitized histological images. Recent studies demonstrated 

the successful use of convolutional neural networks (CNN) 

to automatically segment and classify transplant biopsies 

(Hermsen et al. 2019), biopsies of patients with diabetic 

kidney disease (Ginley et  al. 2019), and the automated 

interpretation of immunofluorescence specimen of kidney 

biopsies (Ligabue et al. 2020). By applying deep-learning 

algorithms on whole slide images (WSI), Hermsen and col-

leagues achieved a multiclass segmentation of renal tissue 

in routinely PAS-stained sections. The algorithm displayed a 

robust performance in terms of sample preparation, scanning 

performance, and inter-laboratory differences and was able 

to successfully analyze both healthy and pathological tissue 

samples. In addition, significant concordance was achieved 

in the quantification of CNN segmentation data and the com-

ponents of the Banff classification system visually assessed 

by renal pathologists in whole transplant biopsies (Hermsen 

et al. 2019). In the second study by Ginley et al., the authors 

successfully extracted and segmented glomerular bounda-

ries, nuclei, and glomerular structures from whole slide 

images (WSIs) of human and murine diabetic kidney tissue 

using an iterative whole-slide CNN training interface—the 

human-artificial-intelligence-loop (HAIL). Despite the small 

sample size used, the classification approach showed a high 

sensitivity and specificity of the newly developed method 

and a moderate Cohen’s Kappa k = 0.55 compared to senior 

pathologists, which is similar to a comparison among pathol-

ogists. Due to the flexibility of the pipeline, this work could 

be extended to other diseases such as IgA nephropathy or 

lupus nephritis and used for outcome prediction of numeric 

labels such as proteinuria. In addition to analyses of PAS 

images, immunofluorescence staining plays an important 

role in the histopathological evaluation of a disease (Ginley 

et al. 2019). The recent study by Ligabue and colleagues 

represents a first attempt to use AI-based methods in the 

evaluation and classification of IF-detected immune depos-

its in kidney biopsies. By analyzing 12,259 immunofluo-

rescence images from 2542 kidney biopsies taken over the 

last 18 years, they were able to build an automated report-

ing pipeline of the key characteristics normally collected 

in immunofluorescence analysis of kidney biopsies using 

conventional neural networks. This was accomplished with 

a significant accuracy and comparable performance to visual 

inspection by human experts (Ligabue et al. 2020).

These studies show that AI can be a useful tool to improve 

research of kidney diseases and support clinical practice. 
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However, till these methods can be introduced into routine 

diagnostics and clinical practice, further validations and 

improvements in algorithms are needed.

Conclusion and outlook

As described in this review, emerging technologies and rapidly 

developing computer methods are opening up new horizons in 

nephrology. In this context, data integration of different data 

layers (omics and non-omics data) plays a crucial role.

However, despite major efforts to collect more accessible 

multi- and non-comics data, data integration still has many 

challenges (Subramanian et al. 2020). One of these chal-

lenges is the variety of protocols used to collect and store 

omics data, which are only suitable for individual types of 

omics. Therefore, minimum standards such as the already 

established quality standards for microarray (MIAME), 

RNA-Seq (MINSEQ), or proteome (MIAPE) experiments 

should generally be agreed upon for the design of experi-

ments (data preparation and extraction) in order to allow data 

comparison between different omics types. This would lead 

to a general improvement in the quality of research when 

integrating omics data. On the other hand, the transparency 

and reproducibility of multi-omics data is a critical point. 

For example, most omics studies require samples to be stored 

at −80 °C or below and a fast processing time to prevent 

degradation of RNA, proteins, and metabolites. However, 

some omics experiments, such as metabolomics, are more 

sensitive to environmental disturbances such as temperature 

and humidity than other omics experiments such as proteom-

ics, genomics, and transcriptomics. These interfering factors 

should be reported, documented, and published for each sam-

ple so that these factors can be taken into account by other 

researchers. Third, many omics data such as metabolomics, 

proteomics, and transcriptomics are poorly reproducible 

when produced on different platforms and in different labo-

ratories, which limits the generalization of results. The use of 

reference standards, standardized protocols for sample stor-

age and preparation, and quality control samples can improve 

the reproducibility of studies with omics data, while other 

factors such as the inherent bias of sampling are difficult to 

avoid. For an example of a comprehensive capture of omics 

related experimental data sets with a focus on experimental 

metadata see (El-Achkar et al. 2020).

In addition to these challenges, there are other factors that 

play a critical role and should be considered when integrat-

ing data. For example, the relationship from gene to protein 

to metabolite is not necessarily linearly proportional. There-

fore, the correlation is not always associated with functional 

differences. Secondly, poorly designed multi-omics studies 

lead to false positive and negative results; i.e., the quality 

of the individual omics data must be checked and validated 

before integrating the various omics data. Furthermore, the 

number of samples required to extract meaningful results 

should be calculated for each omics study, because each 

individual omics data requires a different sample size; for 

example, untargeted metabolomics and proteomics studies 

(non-quantitative experiments) require a larger sample size 

than targeted experiments (quantitative experiments).

The recent efforts by many international projects such as 

KPMP (de Boer et al.  2021; Hansen et al. 2020) and HuB-

MAP (Hu 2019) try to overcome these challenges by providing 

access to large number of patients, standard operating proce-

dures for sample and data collection, and data analysis. While 

with the current scRNA-seq and snRNA-SEQ omics technol-

ogies the mRNA expression from thousands of cells can be 

measured, the spatial locations of these cells are lost due to the 

required cell dissociation (Wilbrey-Clark et al. 2020). As the 

cell location in the tissue is important to understand its func-

tion, therefore, new technologies such as spatial transcriptom-

ics (Lindström et al. 2020) which combines transcriptomics 

with imaging techniques have developed that help us putting 

cells into tissue context. The technology of spatial transcrip-

tomics is still in a maturing phase, requires expensive imaging 

equipment, and is time- and labor-intensive and difficult to 

interpret in complex tissue such as the kidney. Meanwhile, 

many other tools have been developed to reconstruct 3D organs 

from RNA and proteins, such as CLARITY (Du et al. 2018) in 

the mouse and 3DISCO (Zhao et al. 2020), the first example 

in which an entire human brain and kidney were reconstructed 

in 3D using tissue clearing and deep learning methods. This 

in turn opens up new ways to better understand the molecular 

and structural architecture of organs. Other omics data technol-

ogy such as spatial metabolomics (Neumann et al. 2020) have 

emerged providing further insights in a cell state.

In the near future, these new technologies and integrative 

analytical methods will contribute to a better understanding 

of the molecular pathophysiology kidney disease, molecular 

disease classification, and mechanistic patient stratification 

for clinical studies. This in turn will lead to improved diag-

nostics and to selecting the right treatment for each patient. 

Precision nephrology is moving ever closer.
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