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Chimeric antigen receptor (CAR) T-cell therapy entails the genetic engineering of a 
patient’s T-cells to express membrane spanning fusion receptors with defined specifi-
cities for tumor-associated antigens. These CARs are capable of eliciting robust T-cell  
activation to initiate killing of the target tumor cells. This therapeutic approach has pro-
duced unprecedented clinical outcomes in the treatment of “liquid” hematologic cancers, 
but to date has not produced comparable responses in targeting solid malignancies. 
Advances in our understanding of the immunobiology of solid tumors have highlighted 
several hurdles which currently hinder the efficacy of this therapy. These barriers include 
the insufficient accumulation of CAR T-cells in the tumor due to poor trafficking or physical 
exclusion and the exposure of infiltrating CAR T-cells to a panoply of immune suppres-
sive checkpoint molecules, cytokines, and metabolic stresses that are not conducive 
to efficient immune reactions and can thereby render these cells anergic, exhausted, 
or apoptotic. This mini-review summarizes these hurdles and describes some recent 
approaches and innovations to genetically re-engineer CAR T-cells to counter inhibitory 
influences found in the tumor microenvironment. Novel immunotherapy drug combina-
tions to potentiate the activity of CAR T-cells are also discussed. As our understanding 
of the immune landscape of tumors improves and our repertoire of immunotherapeutic 
drugs expands, it is envisaged that the efficacy of CAR T-cells against solid tumors might 
be potentiated using combination therapies, which it is hoped may lead to meaningful 
improvements in clinical outcome for patients with refractory solid malignancies.
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inTRODUCTiOn

Chimeric antigen receptor (CAR) T-cell immunotherapy reached a significant milestone in 2017, 
receiving its first approval by the U.S. Food and Drug Administration for two CD19-targeted CAR 
T-cells, Tisagenlecleucel (1) and Axicabtagene Ciloleucel (2). This achievement paves the way for 
further expansion of this therapeutic approach in the treatment of cancer. CAR T-cell therapy involves 
the isolation and ex vivo expansion of the patient’s peripheral blood T-cells, followed by genetic 
engineering of these cells to express CAR molecules on the cell surface, which have specificity for non-
HLA-restricted tumor antigens. The genetically modified and expanded T-cells are then re-infused 
back into the patient, often following the administration of lymphodepleting chemotherapy (3).

The CAR construct has become progressively more sophisticated over time as our 
knowledge of T-cell activation and the tumor microenvironment (TME) has improved. The 
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FigURe 1 | Generations of chimeric antigen receptor (CAR) molecules. First generation CARs contain a CD3ζ signaling endodomain. Second and third 
generation CARs, in addition to the CD3ζ domain, incorporate CD28 (second generation) or two or more additional co-stimulatory domains which may include 
CD27, 4-1BB, ICOS, or OX40 (third generation). Fourth generation CARs include constitutive or inducible expression of co-receptors or soluble cytokines 
alongside that of the CAR molecule which further promote T-cell activation.
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endodomain of CAR molecules, which transmits the activation 
signal from the ectodomain, contains a variety of signaling and  
co-stimulatory moieties which are indicative of their “generation” 
and can include CD3ζ, CD28, CD27, 4-1BB, ICOS, and OX40  
(4, 5) (Figure  1). As such, CAR molecules circumvent the 
requirement to engage with exogenous co-stimulatory molecules  
for T-cell activation, which can be lacking in the TME and 
compromise CD8+ T-cell responses (6). More recently, CAR 
vectors have been designed to co-express auxiliary receptors and 
cytokines to improve T-cell function, which will be discussed 
later in this review (Figure 1).

Chimeric antigen receptor T-cell immunotherapy has 
achieved unprecedented clinical outcomes in patients with 
B-cell malignancies that previously had a very poor survival 
probability. At several centers, response rates consistently 
exceeding 80% have been reported in patients with relapsed/
refractory B-cell acute lymphoblastic leukemia (ALL) (7–9) 
and lymphoma (10). Using anti-CD19 CAR T-cells in a Phase 
II trial involving 101 patients with B-cell lymphoma, 82% of 
patients had an overall objective response, and 54% had a 
complete response (2). Building on this highly impressive 
clinical data, CAR T-cells targeted against B-cell maturation 
antigen achieved a 89% overall response rate in 18 patients with 
evaluable multiple myeloma (11). Also, in a global multi-center 
Phase II trial, Tisagenlecleucel achieved an overall response rate 
of 81% in 75 pediatric and young adult patients with CD19+ 
relapsed or refractory B-cell ALL (12). With such impressive 
clinical responses, it is understandable that there has been sig-
nificant interest in applying this therapy to solid malignancies, 
which account for the majority of cancer-related morbidity and 
mortality.

CLiniCAL evALUATiOn OF CAR T-CeLL 
iMMUnOTHeRAPY FOR SOLiD TUMORS

Chimeric antigen receptor T-cells have been evaluated for the 
treatment of a variety of solid tumors (13–17). However, the pro-
portion of patients responding with a measurable objective clinical 
response in these trials has been variable. Anti-disialoganglioside 
GD2 CAR T-cells have been used to treat evaluable pediatric 
patients with neuroblastoma, where 3 of 11 patients with active 
disease achieved complete remission (13, 18). However, in a trial 
using epidermal growth factor receptor-targeted CAR T-cells 
in patients with non-small cell lung cancer, partial disease 
remission in 2 of 11 patients was the best clinical response (15). 
There are also instances, using other CAR targets, where stable 
disease was the best clinical response (19, 20) or no objective 
clinical responses (21–23) have been detected. Although clinical 
responses of CAR T-cell therapy in solid tumors to date have not 
paralleled the success seen in liquid cancers [extensively reviewed 
(16)], the fact that clinical responses have been observed provides 
some encouragement.

CAR TARgeT SeLeCTiOn FOR SOLiD 
TUMORS

A major hurdle in implementing CAR T-cell therapy against 
solid tumors is target selection. Since most solid tumors are of 
epithelial origin, the presence of tumor-specific antigens, which 
are absent on normal epithelial cells, is rare (24). This has resulted 
in instances of on-target off-tumor toxicities, such as was observed 
using Her2/neu targeted CAR T-cells in a patient with breast 
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cancer (25). To expand the range of tumor-associated antigens 
(TAAs) that can be targeted, T-cell receptor (TCR)-mimetic CARs 
with specificity to HLA-presented antigens have been tested (26). 
CAR expression systems which exploit combinations of antigens, 
for example where ligation of a synthetic Notch receptor induces 
CAR expression (27), or tuning CAR affinity to preferentially 
target high density antigens (28), provide approaches to improve 
specificity. Dual-antigen targeting, where the CAR molecule 
can engage two separate TAAs can also be used to overcome 
antigen escape (29). Alternatively, the inclusion of inducible 
suicide switches which render CAR T-cells apoptotic have also 
been explored as a safety mechanism should toxicities arise  
(30, 31). The tumor stroma, which plays an important role in 
disease progression, has also been evaluated as a target. CAR 
T-cells targeting fibroblast activation protein alpha (FAP) which 
is expressed on the surface of cancer associated fibroblasts have 
shown efficacy in controlling tumor growth in preclinical models 
(32–34). However, as FAP+ stromal cells also play important roles 
in the periphery (35), off-tumor targeting of these populations by 
CAR T-cells results in cachexia and hematological toxicities in 
murine models, raising potential concern over FAP as a target (36).

Solid tumors contain various physical and environmental 
barriers which are not present in liquid cancers, and need to be 
considered. In the sections that follow, we consider the hurdles 
that T-cells encounter in the solid TME and how these may be 
overcome using novel innovations in CAR engineering or immu-
notherapeutic approaches.

PHYSiCAL AnD enviROnMenTAL 
BARRieRS TO CAR T-CeLL THeRAPY  
in SOLiD TUMORS

not enough “Traffic” for CAR T-Cells
Unlike hematologic cancers where the infused CAR T-cells and 
tumor cells co-circulate in the blood, bone marrow, and lymphat-
ics with ample opportunity for interaction, solid tumors represent 
discrete foci to which infused cells must migrate in order to con-
tact the tumor cells and engage antigen. This involves chemotaxis 
in response to chemokines, such as CXCL-9, -10, and -11 (37). 
Since many human cancers display poor T-cell infiltration (“cold 
tumors”) (38), it is unsurprising that migration of CAR T-cells 
to the TME can be inefficient. Even the i.v. infusion of large 
numbers of CAR T-cells does not improve the clinical outcomes 
when tackling solid tumors, especially in patients with bulky 
disease; however, these trials were using the early first generation 
CARs (39, 40) (Figure 1). When clinically feasible, intra-tumoral 
injection has been demonstrated in  vivo to circumvent poor 
trafficking of CAR T-cells, leading to tumor regression without 
systemic toxicity (41). In addition to the lack of T-cell chemokines 
being secreted by the TME, there are other chemokines, such as 
CXCL12, which actively inhibit T-cell migration into the tumor 
through engaging CXCR4 on their cell surface (42, 43). CXCL12 
is highly expressed in variety of carcinomas, including pancreatic 
(44, 45), ovarian (46), and breast (47). However, pharmacologi-
cally blocking CXCR4 on the T-cell surface facilitated infiltration 
of T-cells into a spontaneous murine model of pancreatic ductal 

adenocarcinoma (43). As such, the CXCR4/CXCL12 axis may 
represent a therapeutic target to facilitate CAR T-cell infiltration 
in some solid tumors. Extravasation of T-cells into the tumor from 
the blood can also be inefficient due to the expression of molecules 
such as endothelin B receptor (ETBR) on the endothelium of the 
blood vessels within the tumor. High ETBR expression results in 
the nitric oxide-mediated deregulation of endothelial ICAM-1 
expression, which reduces T-cell adhesion and compromises their 
ability to extravasate (48). Several attempts have been made to 
improve CAR T-cell trafficking to tumors (49–51). Kershaw and  
colleagues have demonstrated that expression of CXCR2 improved 
T-cell migration in a melanoma tumor which produced CXCL1, 
a chemokine commonly secreted by tumor cells (52). Similarly, 
CCR2b, the chemokine receptor for CCL2, has been co-expressed 
on CAR T-cells to exploit the CCR2/CCL2 axis, which facilitates 
myeloid cell recruitment into the tumor. CCR2b-expressing 
GD2-specific CAR T-cells had a 10-fold improvement in their 
migration to CCL2-producing neuroblastoma and demonstrated 
better in vivo antitumor activity in murine models (50). A similar 
observation was also achieved using mesothelin-directed CAR 
T-cells in murine models of mesothelioma (51). Others have 
improved CAR T-cell trafficking and the antitumor response 
in  vivo using CAR T-cells that express a regulatory subunit I 
anchoring disrupter (RIAD) peptide that inhibits the protein 
kinase A-mediated suppression of the TCR, which can occur in 
the TME (53).

There are also physical barriers that restrict T-cell infiltra-
tion within solid tumors, where extracellular matrix proteins, 
such as proteoglycans and collagen, can restrict entry (54, 55). 
To overcome this, CAR T-cells have been engineered to express 
heparanase, which degrades heparin sulfate proteoglycans (56). 
This approach enhanced CAR T-cell infiltration within the tumor, 
leading to improved overall survival in xenograft tumor models.

immune Checkpoint Molecules
Intra-tumoral T-cells are often functionally tolerant, or sup-
pressed, displaying reduced effector functions compared to 
peripheral T-cell pools, including lowered cytokine, perforin, and 
granzyme-B expression (57, 58). This phenomenon has also been 
observed for CAR T-cells (59). Two receptors that have been of 
particular interest in inducing this anergic T-cell state are PD-1 
and CTLA-4, which represent part of a family of regulatory recep-
tor known as checkpoint molecules, which prevent inappropriate 
immune activation, but can be exploited by cancer. For example 
the ligands for PD-1, PDL-1 and PDL-2, can be found expressed 
on a variety of tumor and stromal cells (60–62). Antibody-
mediated blockade of immune checkpoint receptors that are 
expressed on the T-cell surface have shown unprecedented 
clinical activity in the treatment of solid tumors by sustaining 
endogenous antitumor immune responses, most notably in 
melanoma (63). The checkpoint molecules offer significant scope 
as therapeutic targets for combination therapy, as these molecules 
behave in a hierarchical structure within each TME (43, 61). 
Indeed, combined PD-1 and CTLA-4 blockade (using nivolumab 
and ipilimumab, respectively) has improved response rates in 
patients with advanced melanoma, compared to that of the single 
therapies (64). Importantly, regulatory molecules such as PDL-1 
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are upregulated by effector molecules of T-cell activation, such as 
interferon (IFN)-γ (60, 65), suggesting that the greater the T-cell 
activity, the more suppressive the TME becomes. Anti-HER2 
CAR T-cell therapy has an enhanced antitumor response in 
preclinical murine models when combined with PD-1 blockade 
(66). The combination of immune checkpoint blockade with CAR 
T-cell immunotherapy is now under study in clinical trials (67). 
Innovations to CAR T-cells to permit insensitivity to immune 
checkpoints are also under investigation at the preclinical stage, 
involving such approaches as genetic inactivation of the PD-1 gene 
(68), co-expressing dominant-negative variants of the inhibitory 
phosphatases, such as Src homology 2 phosphatase (SHP-2), 
which mediate the signaling of checkpoint receptors (69), or the 
expression of PD-1 receptors with no signaling moiety as decoy 
molecules (70). Others have attempted to positively exploit 
the interaction by fusing the PD-1 ectodomain to the CD28 
cytoplasmic tail to induce a co-stimulatory, instead of inhibi-
tory, signal upon PDL-1 binding (71). Brentjens et al. enhanced 
the antitumor efficacy of CD19-specific CAR T-cell in  vivo by 
co-expressing the activating checkpoint molecule, CD40-ligand 
(72). CD40L co-expression resulted in an increased CAR T-cell 
proliferation, Th1 cytokine secretion, and increased cytotoxicity 
in vivo. The stroma, as well as the tumor cells, play a fundamental 
role in suppressing T-cells responses in the TME. Our group has 
shown that tumor-associated macrophages (TAMs) can inhibit 
immune-mediated tumor rejection in vivo through their expres-
sion of the heme-degrading enzyme heme oxygenase-1 (HO-1) 
(61, 73). Carbon monoxide is one of the by-products of heme 
catabolism by HO-1 and has been demonstrated to be capable of 
suppressing T-cell proliferation, IL-2 secretion (74), and T-cell 
effector function (61, 75, 76). The pharmacological inhibition 
of this enzyme within the TME of a murine model of breast 
cancer resulted in a rapid restoration of a chemotherapy-elicited 
antitumor CD8+ T-cell response and immunological control of 
tumor growth, leading us to propose that HO-1 should also be 
considered as an immune checkpoint molecule (61). As HO-1 is 
expressed in a variety of cancers (77), it may warrant therapeutic 
targeting in CAR T-cell therapy. Together, these considerations 
present a strong rationale for combining CAR T-cell and immune 
checkpoint blockade therapies. Appropriate combinations of 
these therapies may improve CAR T-cell efficacy in the TME and 
support more favorable clinical response rates.

The Anti-inflammatory Cytokine 
environment
The TME is a chronic inflammatory site and contains a variety 
of cytokines and chemokines, which influence the immune 
response. The TME is often skewed toward favoring pro-tumor 
Th2 cytokines, such as IL-4 and IL-13, rather than antitumor Th1 
cytokines like IFN-γ and tumor necrosis factor-β (78). Cytotoxic 
T-cell function is depressed by cytokines, such as IL-4, IL-10, and 
transforming growth factor (TGF)-β, which are prevalent in the 
TME (79, 80). TAMs are an abundant stromal cell type in solid 
tumors and have been shown to secrete IL-10 as well as IL-6, 
which also suppresses T-cell cytolytic function and proliferation 
(81, 82). Similarly, regulatory T-cells (Tregs; CD4+ CD25+ FoxP3+) 
produce significant quantities of suppressive cytokines, including 

IL-10, TGF-β (83), and IL-35 (84). T-cells, which were engineered 
to express a dominant-negative form of the TGF-β receptor, have 
been demonstrated to have augmented antitumor responses in 
TGF-β producing tumors (85, 86). Alternatively, IL-4 signaling 
has been exploited to promote CAR T-cell expansion and activity. 
In one such approach, the IL-4 ectodomain has been fused to the 
common β chain of IL-2 and IL-15 receptors in order to achieve 
selective ex vivo amplification of CAR transduced T-cells. This 
approach renders it feasible to manufacture CAR T-cells from 
whole blood, circumventing the need for leukapheresis (87) and 
has the added benefit of augmenting CAR T-cell responses against 
tumors containing IL-4 in the TME (88, 89). Alternatively, the 
IL-4 receptor ectodomain was fused to the IL-7 receptor endo-
domain and co-expressed in prostate stem cell antigen-specific 
CAR T-cells in order to transduce a T-cell proliferation signal in 
response to IL-4 (90). The co-expression of this receptor led to 
improved in vivo CAR T-cell expansion and antitumor response. 
IL-12 is a potent inflammatory cytokine which enhances T-cell 
expansion and antitumor immune responses (91, 92). In murine 
preclinical tumor models, CAR T-cells which constitutively 
express IL-12 have been demonstrated to have enhanced prolife-
ration, in  vivo expansion, cytotoxicity, and antitumor efficacy 
(93–95). To circumvent off-target toxicities of this approach to 
expedite clinical translation, inducible IL-12 expression linked to 
CAR engagement has also been demonstrated to improve anti-
tumor responses (96). CAR T-cells co-expressing IL-18 (97, 98), 
a constitutively active IL-7 cytokine receptor (99) or a tethered 
form of IL-15 (IL-15 peptide fused to IL-15Rα via flexible linker) 
(100) have also all augmented their antitumor response in vivo. It 
is clear that the cytokine environment within the TME is not con-
ducive to permitting CD8+ T-cell activation and effector function. 
However, innovative ways to modulate and positively exploit the 
response of the CAR T-cells, such as through hybrid receptors, 
or IL-12 (Figure  1) show promising preclinical data and have 
started to progress through to clinical trials (NCT02498912 and 
NCT01818323).

Metabolism-Associated immune 
Suppression in the TMe
Tumor cells are highly metabolically active with increased glyco-
lysis and glutaminolysis (101). These metabolic pathways result 
in a distinct accumulation of metabolites in the TME which can 
compromise CAR T-cell function. Lactate is a metabolite derived 
from the glycolytic-pathway that is highly produced by tumor 
cells and directly suppresses proliferation, cytokine produc-
tion, and effector function of human cytotoxic T  lymphocytes 
(102). Prostaglandins, which are derived from prostaglandin E2 
synthase and cyclooxygenase (COX)-1/2-mediated catabolism of 
arachidonic acid, can also suppress T-cell function (103). In keep-
ing with this, aspirin (a COX inhibitor), has been demonstrated to 
potentiate immune checkpoint therapy in improving CD8+ T-cell 
responses (104) and may warrant investigation in combination 
with CAR T-cell immunotherapy.

A number of amino acid-degrading enzymes that are com-
monly expressed in the TME can also suppress T-cell function. 
These include indoleamine-2,3-dioxygenase (IDO) and tryp-
tophan-2,3-dioxygenase (TDO) which degrade tryptophan, 
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and arginase-1 and nitric oxide synthase (NOS) which degrade 
l-arginine. T-cells have been demonstrated to be particularly 
sensitive to the depletion of these amino acids, resulting in 
impaired proliferation and effector function (105–107) and 
increased T-cell apoptosis (108, 109). As well as the physical 
depletion of these amino acids, the catabolites of tryptophan 
degradation such as l-kynurenine and 3-hydroxyanthranilic 
acid have also been demonstrated to be immunosuppressive 
(110, 111). IDO inhibitors have been demonstrated to enhance 
CAR T-cell efficacy (111), and these are now being evaluated in 
clinical trials (112, 113). Arginase activity has also been demon-
strated to inhibit proliferation and cytotoxity of GD2-specific 
CAR T-cells (114). The degradation of l-arginine by the NOS 
pathway also results in the generation of reactive nitrogen spe-
cies (RNS). Myeloid-derived suppressor cells (Gr-1+ CD11b+ 
cells) and TAMs are potent sources of reactive oxygen species 
(ROS), which inhibit T-cell function (115). Both ROS and RNS 
are believed to induce T-cell tolerance by altering the flexibility 
of the TCR chains, which impairs the binding and responsive-
ness of CD8+ T-cells to peptide–MHC complexes (116). It would 
be interesting to consider how ROS/RNS modifications might 
also influence the antigen binding capabilities of the CAR. 
ROS/RNS may also inhibit T-cell infiltration into the tumor 
through inactivating CCL2 by nitration (117). Metabolites 
generated in the tumor, once regarded as by-products, are 
now accepted as crucial immune-modulatory molecules in 
their own right. As such, the metabolic pathways that facilitate 
immune-regulation may require therapeutic targeting along-
side CAR T-cell therapy, such as IDO, which is currently under  
clinical investigation.

COnCLUSiOn

The success of CAR T-cell immunotherapy for hematological 
malignancies heralds a new era in the treatment of malignant 
disease. However, as this review has highlighted, the attainment 
of comparable clinical outcomes for patients with solid tumors 
will require considerable refinement of this therapeutic approach. 
Although there have been some encouraging recent case reports 
(118), CAR T-cells are subject to several additional constraints 
in patients with solid tumors which has hindered progress 
(Figure 2). The parallel success of immune checkpoint blockade 
therapies presents an opportunity for realignment of these distinct 
forms of immunotherapy through combinatorial therapeutic 
regimens. Similar pharmacologic opportunities are presented by 
the combination treatment with traditional cancer therapeutic 
modalities including radiotherapy (119) and chemotherapy (120), 
which have been demonstrated to sensitize tumors to CAR T-cell 
therapy, or molecular antagonists of inhibitory mechanisms that 
operate in the TME (e.g. IDO or HO-1 inhibitors). Equally, there 
are many opportunities for innovative re-engineering of CAR 
T-cells to deal with the physical and environmental barriers found 
in the solid TME. The configuration of these therapies represents 
the next challenge for the CAR T-cell field and will no doubt lead 
to meaningful improvements in the clinical response rates for the 
application of CAR T-cell therapy against solid malignancies.
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