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Perspectives on ENCODE
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The Encylopedia of DNA Elements (ENCODE) Project launched in 2003 with the 

long-term goal of developing a comprehensive map of functional elements in the 

human genome. These included genes, biochemical regions associated with gene 

regulation (for example, transcription factor binding sites, open chromatin, and 

histone marks) and transcript isoforms. The marks serve as sites for candidate 

cis-regulatory elements (cCREs) that may serve functional roles in regulating gene 

expression1. The project has been extended to model organisms, particularly the 

mouse. In the third phase of ENCODE, nearly a million and more than 300,000 cCRE 

annotations have been generated for human and mouse, respectively, and these have 

provided a valuable resource for the scienti�c community.

The ENCODE Project was launched in 2003, as the first nearly complete 

human genome sequence was reported2. At that time, our understand-

ing of the human genome was limited. For example, although 5% of the 

genome was known to be under purifying selection in placental mam-

mals3,4, our knowledge of specific elements, particularly with regards 

to non-protein coding genes and regulatory regions, was restricted to 

a few well-studied loci2,5.

ENCODE commenced as an ambitious effort to comprehensively 

annotate the elements in the human genome, such as genes, control 

elements, and transcript isoforms, and was later expanded to annotate 

the genomes of several model organisms. Mapping assays identified 

biochemical activities and thus candidate regulatory elements.

Analyses of the human genome in ENCODE proceeded in succes-

sive phases (Extended Data Fig. 1). Phase I (2003–2007) interrogated 

a specified 1% of the human genome in order to evaluate emerging 

technologies6. Half of this 1% was in regions of high interest, and the 

other half was chosen to sample the range of genomic features (such 

as G+C content and genes). Microarray-based assays were used to map 

transcribed regions, open chromatin, and regions associated with 

transcription factors and histone modification in a wide variety of 

cell lines, and these assays began to reveal the basic organizational 

features of the human genome and transcriptome. Phase II (2007–2012) 

introduced sequencing-based technologies (for example, chromatin 

immunoprecipitation with sequencing (ChIP–seq) and RNA sequencing 

(RNA-seq)) that interrogated the whole human genome and transcrip-

tome7. General assays such as transcript, open-chromatin and histone 

modification mapping were used on a wide variety of cell lines, while 

more specific assays, such as mapping transcription factor binding 

regions, were performed extensively on a smaller number of cell lines 

to provide detailed annotations on, and to investigate the relationships 

of, many regulatory proteins across the genome. Transcriptome analy-

sis of subcellular compartments (the nucleus, cytosol and subnuclear 

compartments) of these cells enabled the locations of transcripts to 

be analysed7.

ENCODE phase III

ENCODE 3 (2012–2017) expanded production and added new types 

of assays8 (Fig. 1, Extended Data Fig. 1), which revealed landscapes of 

RNA binding and the 3D organization of chromatin via methods such as 

chromatin interaction analysis by paired-end tagging (ChIA-PET) and 

Hi-C chromosome conformation capture. Phases 2 and 3 delivered 9,239 

experiments (7,495 in human and 1,744 in mouse) in more than 500 

cell types and tissues, including mapping of transcribed regions and 

transcript isoforms, regions of transcripts recognized by RNA-binding 

proteins, transcription factor binding regions, and regions that harbour 

specific histone modifications, open chromatin, and 3D chromatin 

interactions. The results of all of these experiments are available at 

the ENCODE portal (http://www.encodeproject.org). These efforts, 

combined with those of related projects and many other laborato-

ries, have produced a greatly enhanced view of the human genome 

(Fig. 2), identifying 20,225 protein-coding and 37,595 noncoding genes 
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(Fig. 2a), 2,157,387 open chromatin regions, 750,392 regions with modi-

fied histones (mono-, di- or tri-methylation of histone H3 at lysine 4 

(H3K4me1, H3K4me2 or H3K4me3), or acetylation of histone 3 at lysine 

27 (H3K27ac)), 1,224,154 regions bound by transcription factors and 

chromatin-associated proteins (Fig. 2c), 845,000 RNA subregions occu-

pied by RNA-binding proteins, and more than 130,000 long-range 

interactions between chromatin loci. These annotations have greatly 

enhanced our view of the human genome from its original annotation in  

2003 to a much richer and higher-resolution view (for example, Fig. 2d, e).  

Indeed, although the number of human protein-coding genes known 

has changed only modestly, the number of transcript isoforms, long 

noncoding RNAs (lncRNAs), and potential regulatory regions identified 

has increased greatly since the project began (Fig. 2a–c). An important 

part of ENCODE 3 is that the regulatory mapping efforts have now been 

integrated and synthesized into the first version of an encyclopedia, 

highlighting a registry of 0.9 million cCREs in human and 0.3 million 

cCREs in mouse. Details can be found in the accompanying ENCODE 

paper8 and companion papers in this issue and other journals9–14.

Technology, quality control and standards

Reaching the present annotation required a substantial expansion of 

technology development, from ENCODE groups and others, as well as 

the establishment of standards to ensure that the data are reproduc-

ible and of high quality. Most ENCODE 2 assays used sequence-based 

readouts (for example, RNA-seq15,16 and ChIP–seq17,18) rather than the 

array-based methods19,20 used in the pilot phase, and in ENCODE 3, 

methods such as global mapping of 3D interactions13 and RNA-binding 

regions14 were added. Throughout the project, computational and 

visualization approaches were developed for mapping reads and inte-

grating different data types (Supplementary Note 1).

A key feature of ENCODE is the application of data standards, includ-

ing the use of independent replicates (separate experiments on two 

or more biological samples5,21), except when precluded by the limited 

availability of materials (for example, postmortem human tissues). Of 

the 8,699 ENCODE 2 and ENCODE 3 experiments, 6,101 have independ-

ent replicates. Of equal importance was the use of well-characterized 

reagents, such as antibodies for mapping sites of transcription factor 

binding, chromatin modifications and protein–RNA interactions22. 

ENCODE developed protocols to test each antibody ‘lot’ to demon-

strate their experimental suitability, captured extensive metadata, and 

implemented controlled vocabularies and ontologies. Standards for 

reagents, experimental data, and metadata are on the ENCODE website: 

https://www.encodeproject.org/data-standards/.

Many metrics, including sequencing depth, mapping characteristics, 

replicate concordance, library complexity, and signal-to-noise ratio, 

were used to monitor the quality of each data set, and quality thresholds 

were applied21. A minority of experiments that fell short of the standards 

(for example, insufficiently validated antibodies) are still reported, but 

are marked with a badge to indicate that an issue was found. This is a 

compromise for having some data versus none when an experiment 

did not meet ENCODE-defined thresholds.

An important component is uniform data processing. Data from the 

major ENCODE assays (ChIP–seq, DNase I hypersensitive sites sequenc-

ing (DNase-seq), RNA-seq, and whole-genome bisulfite sequenc-

ing (WGBS)) are uniformly processed and the processing pipelines  

are available for users to apply to their own data, by downloading the 

code from the GitHub (http://github.com/ENCODE-DCC) or by access-

ing the pipelines at the DNAnexus cloud provider. The standards and 

pipelines will continue to evolve as new technologies arise and are 

implemented.

The ENCODE Consortium is a good example of how large-scale group 

efforts can have a large impact on the scientific community, and many 

other national and international projects—including the NIH Road-

map Epigenomics Program, The Cancer Genome Atlas (TCGA), the 

International Human Epigenome Consortium (IHEC), BLUEPRINT, the 

Canadian Epigenetics, Environment and Health Research Consortium 

(CEEHRC), the Genotype and Tissue Expression Project (GTEx), Psy-

chENCODE, Functional Annotation of Animal Genomes (FAANG), the 

Global Alliance for Genomics and Health (GA4GH), the 4D Nucleome 

Program (4DN), the Human Cell Atlas and the FANTOM consortium—

have now formed (Supplementary Note 1). ENCODE has engaged with 

most of these consortia to share standards for data quality control, 

submission, and uniform processing and has helped to facilitate the 

use of common ontologies with some of these consortia. Data from 

the now-completed NIH Roadmap Epigenomics Program have been 

reprocessed and are available in the ENCODE database and are part of 

the Encyclopedia annotation. ENCODE continues to work with other 

consortia, individually and as part of the IHEC and GA4GH (for example, 

http://epishare-project.org) to increase data interoperability and the 

value of its resources.
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Fig. 1 | ENCODE assays by year. Accumulations of assays over the three phases 

of ENCODE. 3D chromatin structure includes ChIA-PET (62 experiments), Hi-C 

(31), and chromatin conformation capture carbon copy (5C, 13). Chromatin 

accessibility includes DNAase-seq (524), assay for transposase-accessible 

chromatin using sequencing (ATAC-seq, 129), transcription activator-like 

effector nuclease (TALEN)-modified DNAase-seq (40), formaldehyde-assisted  

isolation of regulator elements with sequencing (FAIRE-seq, 37) and 

micrococcal nuclease digestion with deep sequencing (MNase-seq, 2). DNA 

methylation includes DNAme arrays (259), WGBS (124), reduced-representation 

bisulfite sequencing (RRBS, 103), methylation-sensitive restriction enzyme 

sequencing (MRE-seq, 24) and methylated DNA immunoprecipitation coupled 

with next-generation sequencing (MeDIP-seq, 4). Histone modification includes 

ChIP–seq (1,605) on histone and modified histone targets. Knockdown 

transcription includes RNA-seq preceded by small interfering RNA (siRNA, 54), 

short hairpin RNA (shRNA, 531), clustered regularly interspaced short 

palindromic repeats (CRISPR, 50) or CRISPR interference (CRISPRi, 77). RNA 

binding includes enhanced cross-linking immunoprecipitation (eCLIP, 349), 

RNA bind-n-seq (158), RNA immunoprecipitation sequencing (RIP-seq, 158), 

RNA-binding protein immunoprecipitation-microarray profiling (RIP-chip, 32), 

individual nucleotide-resolution CLIP (iCLIP, 6) and Switchgear (2). 

Transcription includes RNA annotation and mapping of promoters for the 

analysis of gene expression (RAMPAGE, 155), cap analysis gene expression 

(CAGE, 78), RNA paired-end tag (RNA-PET, 31), microRNA-seq (114), microRNA 

counts (114), more classical RNA-seq (900) and RNA-microarray (170), including 

112 experiments at single-cell resolution. Transcription factor (TF) binding is 

ChIP–seq on non-histone targets (2,443). Other assays include genotyping array 

(123), nascent DNA replication strand sequencing (Repli-seq, 104), replication 

strand arrays (Repli-chip, 63), tandem mass spectrometry (MS/MS, 14), 

genotyping by high-throughput sequencing (genotyping HTS, 12) and DNA-PET 

(6) can be looked at in detail at https://www.encodeproject.org.
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ENCODE as a resource

The purpose of ENCODE is to provide valuable, accessible resources 

to the community. ENCODE data and derived features are available 

from a publicly accessible data portal (https://www.encodeproject.

org), and consent was obtained from donors to make data freely avail-

able to the public. Raw and processed data are available directly from 

the cloud as an Amazon Public Data Set (https://registry.opendata.

aws/encode-project/). The data are widely used by the scientific com-

munity—more than 2,000 publications from researchers outside 

of ENCODE have used ENCODE data to study diverse topics (Fig. 3). 

Because most disease-associated common variants are noncoding 

and show substantial enrichment in candidate cell-type-specific cis 

regulatory elements23,24, ENCODE-derived resources, both in isolation 

and in conjunction with data from other resources (for example, GTEx), 

can help to identify and interpret disease-associated noncoding vari-

ants (Fig. 3a). Users engage with the data in many ways, ranging from 

downloads of multiple data sets to detailed investigations of specific 

loci. Anyone navigating a major genome browser has access to thou-

sands of biochemical, functional, and computational annotations to 

display at any genomic scale or to overlay on any sequence variant. 

Maps of epigenomic features relevant to gene regulation have been 

integrated to form a registry of discrete elements that are candidates 

for enhancers, promoters, or other regulatory elements. A specialized 

browser, SCREEN (http://screen.encodeproject.org), is an interface that 

can be used to identify and study these cCREs and associated ENCODE 

data and other annotations. This dynamic registry will be regularly 

updated as additional information is acquired.

Mouse ENCODE and modENCODE

Model organism studies have produced essential insights into almost 

every aspect of biology, including genome organization and function. 
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Fig. 2 | Progress in annotating the human genome. Link to high-resolution 

PDF file: https://www.dropbox.com/s/rjdrcqygz15p034/perspective.

pdf?dl=0. a, Improvement of gene annotations in the past 15 years by 

GENCODE, an international gene annotation group that uses ENCODE data42.  

b, ENCODE annotations in 2012 with phase II data. Bars show the percentages of 

the mappable human genome (3.1 billion nucleotides; hg19) that were 

annotated as open chromatin by DNase-seq data, enriched in four types of 

active histone mark according to ChIP–seq data, and annotated as 

transcription factor binding sites (TFBSs) according to ChIP–seq data. Also 

shown are percentages of the genome assigned as transcription start sites 

(TSSs), enhancers and the insulator-binding protein (CTCF) by combining 

ChromHMM and Segway genome segmentations7. c, ENCODE annotations in 

2019 with ENCODE 2, Roadmap, and ENCODE 3 data. The registry of cCREs 

developed during phase III defines 0.3%, 1.1%, 5.8%, 0.2% and 0.4% of the human 

genome as cCREs with promoter-like signatures (PLS), proximal enhancer-like 

signatures (pELS), distal enhancer-like signatures (dELS), with high DNase, high 

H3K4me3 and low H3K27ac signals (DNase-H3K4me3), and bound by CTCF, 

respectively. d, A UCSC genome browser view of GENCODE genes (V7) 

coloured by transcript annotation (blue for coding, green for noncoding, and 

red for problematic) and combined genome segmentation (TSSs in red, 

enhancers in orange, weak enhancers in yellow, transcription in green, 

repressed in grey) at the CTCF locus on the hg19 human genome. e, The UCSC 

genome browser view of GENCODE genes (V28, coloured as in d) and cCREs at 

the CTCF locus on the hg38 human genome8. Promoter-like, enhancer-like, and 

CTCF-only cCREs annotated in B cells are in red, yellow, and blue, respectively. 

The last four tracks show the DNase, H3K4me3, H3K27ac, and CTCF signals in B 

cells.
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During ENCODE 2, mapping of mouse epigenomic and transcriptomic 

features was conducted in adult mouse tissues and cell lines through 

the Mouse ENCODE Project25, which identified 21,978 protein-coding 

regions, 32,168 noncoding genes, 1,192,301 open chromatin regions, 

722,334 regions with modified histones H3K4me1, H3K4me2, H3K4me3, 

or H3K27ac, and 686,294 regions bound by transcription factors.

During ENCODE 2, a model organism ENCODE project (modEN-

CODE26,27) was conducted to characterize the transcriptome, epige-

nome, and transcription factor binding sites in Drosophila melanogaster 

and Caenorhabditis elegans tissues, developmental stages and cell lines 

(Extended Data Fig. 1). These organisms provided the opportunity to 

develop detailed records of epigenomic features and transcriptome 

maps throughout development, which is difficult to accomplish in 

humans. Deep mapping of the spatial and temporal transcriptomes 

of these species has substantially enhanced the annotation of both 

genomes. Similarly, detailed mapping of the regulatory circuits that 

govern gene regulation in Drosophila and C. elegans has provided 

insights into general principles of genome organization and func-

tion. Mapping of transcription factor binding sites in Drosophila and 

C. elegans has continued after modENCODE ended in a project called 

model organism Encyclopedia of Regulatory Networks (modERN) 

and to date has characterized more than 262 transcription factors in 

Drosophila and 217 transcription factors in C. elegans28. Collectively, 

the modENCODE Project has provided new insights about how the 

genomes of multicellular organisms direct development and maintain 

homeostasis.

In ENCODE phase III, experiments were carried out to characterize 

dynamic histone marks and accessibility, DNA methylomes, and tran-

scriptomes in samples taken during eight mouse fetal developmental 

stages with up to twelve tissues per stage28–30 (Fig. 4). The resulting more 

than 1,500 datasets comprise, to our knowledge, the most compre-

hensive study of epigenomes and transcriptomes during the prenatal 

development of a mammal. Integrative analysis of these datasets has 

expanded our knowledge of the transcriptional regulatory networks 

that regulate mammalian development and underscored the role of 

gene regulatory mechanisms in human disease. At least 214,264 of the 

candidate enhancers identified in fetal mouse tissues are conserved 

in the human genome8. The human orthologues of these potential 

regulatory elements are significantly enriched for genetic variants 

that are associated with common illnesses in a tissue-restricted man-

ner, providing information for investigations of the molecular basis 

of human disease29,30.

The mouse data from ENCODE 3 also include the results of more than 

400 experiments using transgenic reporter mice designed to assess 

the function of cCREs in three embryonic tissues at two developmen-

tal stages. The results of this systematic study have helped to predict 

the in vivo activities of cCREs. For example, stronger enrichment for 

epigenetic signatures of enhancer activity correlated with higher rates 

of validation in the corresponding tissue29,31.

Finally, comparisons of epigenome and transcriptome maps across 

species have led to insights into the evolution of transcribed regions 

and regulatory information25,32. Combinatorial histone modification 

patterns at cis-regulatory elements and other genomic features are 

broadly conserved in metazoans. These chromatin states and tran-

script levels are highly correlated across tissues and developmental 

stages in all species examined. However, a notable fraction of specific 

cis-regulatory elements undergoes sequence and functional turnover 

during evolution, indicating that some regulatory components show 

substantial plasticity in their evolution while operating in a conserved 

regulatory network33.

Current limitations: phase IV and beyond

It is now apparent that elements that govern transcription, chromatin 

organization, splicing, and other key aspects of genome control and 

function are densely encoded in the human genome; however, despite 

the discovery of many new elements, the annotation of elements that 

are highly selective for particular cell types or states is lagging behind. 

For example, very few examples of condition-specific activation or 

repression of transcriptional control elements are currently annotated 

in ENCODE. Similarly, information from human fetal tissue, reproduc-

tive organs and primary cell types is limited. In addition, although 

many open chromatin regions have been mapped, the transcription 

factors that bind to these sequences are largely unknown, and little 

attention has been devoted to the analysis of repetitive sequences. 

Finally, although transcript heterogeneity and isoforms have been 

described in many cell types, full-length transcripts that represent the 

isoform structure of spliced exons and edits have been described for 

only a small number of cell types.
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Fig. 3 | Publications using ENCODE data. The National Human Genome 

Research Institute (NHGRI) has identified a list of publications that used 

ENCODE data. This list is publicly shared to provide examples illustrating how 

the resource has been used (https://www.encodeproject.org/publications/).  

a, Publications over time. Community publications appear to use ENCODE data 

and do not report ENCODE grant support in PubMed; consortium publications 

report ENCODE grant support in PubMed. In brief, community publications are 

identified using two steps; first, candidates are identified through automated 

searches for citation of ENCODE accession numbers, ENCODE flagship papers, 

or resources such as HaploReg and RegulomeDB; second, candidates are 

manually evaluated to determine whether ENCODE data were actually used. 

Consortium papers are identified through automated searches of PubMed for 

publications that were supported at least in part by ENCODE awards, and are 

not further evaluated or annotated. b, Human disease example publications. 

The subset of community publications that were annotated as ‘human disease’ 

(other categories are basic biology, software tool, fly/worm data) were further 

manually categorized by disease aetiology.

https://www.encodeproject.org/publications/
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Thus, as part of ENCODE 4, considerable effort is being devoted 

to expanding the cell types and tissues analysed (see URLs in Sup-

plementary Note 1) as well as mapping the binding regions for many 

more transcription factors and RNA-binding proteins. These efforts 

are largely focused in a few reference cell lines, with the hope that 

improved knowledge will help with imputation or predictions in other 

cell states34. Single-cell transcriptome capture agents35 and open 

chromatin assays36 are also being applied to increase our understand-

ing of the cellular heterogeneity of different tissues and samples. 

These efforts will supplement the many related activities that are also 

being pursued by HCA, HuBMAP and others37,38. Extensive mapping 

efforts of all types will continue in both the human and mouse, and 

parallel efforts to map transcription factor binding sites are being 

pursued in the Drosophlia and C. elegans by the modERN Project28. 

Full-length transcript isoforms are being elucidated in different 

cell types using long-read sequencing technologies39. ENCODE will 

continue to work with other consortia, and the data from different 

groups and individual laboratories will need to be consolidated into 

a common repository.

Importantly, although very large numbers of noncoding elements 

have been defined, the functional annotation of ENCODE-identified 

elements is still in its infancy. High-throughput reporter-based assays40, 

CRISPR-based genome and epigenome editing methods41, and other 

high-throughput approaches are being used in the current phase of 

ENCODE to assess the functions of many thousands of elements and to 

relate those functional results to their biochemical signatures. These 

targeted functional assays, combined with the large-scale annotation 

of biochemical features, should further enhance the value of ENCODE 

data.

Through these and other efforts, it is expected that many more 

elements in the human genome will be identified across a variety of 

cell types and conditions, their activities will be revealed (often at 

the single-cell level), and their biological functions will be inferred 

more accurately. The development of a systems-wide understanding 
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of function and integration with genetic information associated with 

human traits will greatly enhance our understanding of human biol-

ogy and disease.
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Extended Data Fig. 1 | ENCODE timeline. Pilot phase: September 2003–September 2007; ENCODE 2: September 2007–September 2012; ENCODE 3: September 

2012–January 2017; ENCODE 4: February 2017–present; modENCODE: April 2007–April 2012; mouse ENCODE: 2009–2012.
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