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Monacolin K (MK) is a secondary metabolite of the Monascus species that can inhibit
cholesterol synthesis. Functional red mold rice (FRMR) is the fermentation product of
Monascus spp., which is rich in MK. FRMR is usually employed to regulate serum
cholesterol, especially for hypercholesterolemic patients who refuse statins or face
statin intolerance. The present perspective summarized the bioactive components of
FRMR and their functions. Subsequently, efficient strategies for FRMR production,
future challenges of FRMR application, and possible directions were proposed. This
perspective helps to understand the present situation and developmental prospects
of FRMR.
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INTRODUCTION

Red mold rice (RMR), also called red koji or red yeast rice is the fermentation product of Monascus
spp. (Farkouh and Baumgärtel, 2019). It is widely used as a colorant, supplement, and starters in the
food industry in Asian countries. RMR contains multiple beneficial metabolites, such as Monascus
pigments, monacolin K (MK), and γ-aminobutyric acid. RMR also contains some enzymes, for
instance, protease and amylase (De Backer, 2017; Chen et al., 2019; Jiang et al., 2019). However,
a mycotoxin-citrinin produced by Monascus spp. can induce health risks (He et al., 2020b).
Nowadays, RMR has three main product types on the market depending on its application, as
follows: coloring RMR, brewing RMR, and functional red mold rice (FRMR). Coloring RMR is the
RMR with a color value higher than 1,000 U/g according to the National Food Safety Standard of
China (GB 1886.19–2015). Brewing RMR is the RMR that possesses strong saccharifying power and
esterifying power, which is used as a fermentation starter in the food industry based on the Light
Industry Standard of the People’s Republic of China (QB/T 5188–2017). FRMR is the RMR with a
natural MK of more than 0.4% according to the Light Industry Standard of the People’s Republic of
China (QB/T 2847–2007). MK is chemically identical to lovastatin, which is a lipid-lowering drug
and shows evident effects on inhibiting 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase
that catalyzes the rate-limiting step of cholesterol biosynthesis (De Backer, 2017; Bruno et al., 2018).
Therefore, FRMR is a commonly consumed food supplement by hypercholesterolemia patients,
especially for statin-intolerant community (Mazzanti et al., 2017; Xiong et al., 2019).

However, some issues related to FRMR should be taken into consideration. Firstly, MK has a
large number of analogs with different lipid-lowering effects and complex conversion relationships
(Kimura et al., 1990; Li et al., 2017; Beltrán et al., 2019). For instance, 84 monacolins (MLs)
have been monitored in RMR sample (Li et al., 2017). FRMR available from market contains
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different contents of MK and different MLs in each FRMR sample
(Dujovne, 2017). Therefore, it is inappropriate to define the
functions of FRMR by merely depending on its MK content.
Secondly, MK possesses specific active forms and has multiple
functions. MK is an inactive lactone, which needs to be converted
into its active β-hydroxy acid form (MKA) for the lipid-
lowering activity (Yang and Hwang, 2006). Moreover, some other
functions of MLs have also been reported, including promoting
bone formation, being an antioxidant, and suppressing cancer
cell proliferation (Wong and Rabie, 2008; Kurokawa et al.,
2017; Nagabhishek and Madankumar, 2019; del Gaudio et al.,
2020). Thirdly, a great number of metabolites besides MLs
are available from FRMR. The functions of the beneficial
metabolites such as Monascus pigments and γ-aminobutyric
acid should be understood and evaluated, while using FRMR
as a food supplement or as an alternative drug to the chemical
statins. Meanwhile, the toxic metabolite produced by some
Monascus strains, citrinin, should not only be studied but should
also be carefully controlled (Farkouh and Baumgärtel, 2019).
Furthermore, the side effects of MLs such as myopathies and
liver injury need to be evaluated (Mazzanti et al., 2017). For the
efficient application of FRMR, MK contents of FRMR should
be standardized, and the functions and safety of FRMR need
to be evaluated.

To obtain sufficient MK in FRMR, parameters for FRMR
production in solid- and liquid-state fermentation such as initial
moisture, pH, and nitrogen source have been optimized (Hp,
2012; Feng et al., 2014; Lin et al., 2017; Huang et al., 2018).
Moreover, the screening of Monascus strains with high-MK
production has also been carried out (Suh et al., 2007; Wang et al.,
2011). Novel substrates have been utilized for FRMR production
and enriching its product types, such as Dioscorea, Finger millet,
and Saccharina japonica (Lee et al., 2007; Venkateswaran and
Vijayalakshmi, 2010; Suraiya et al., 2018). All these strategies head
for high-quality FRMR. The natural and environmental-friendly
production of FRMR with sufficient MK is also prospected.

In the present perspective, we focus on the MLs in
FRMR and their differences with lovastatin; strategies for
efficient production of FRMR, the current situation of FRMR
application, and the corresponding future directions for a wide
application were proposed.

FUNCTIONAL SUBSTANCES IN FRMR

Monacolins are the main bioactive substances in FRMR. MK was
chemically identified as lovastatin and was first isolated from the
cultures of Monascus ruber No. 1005 as a hypocholesterolemic
agent in 1979 (Endo, 1979). MK is a polyketide compound
synthesized by polyketide synthase (PKS) in Monascus spp. MK
biosynthetic pathway and gene cluster in Monascus spp. are
similar to those of lovastatin from Aspergillus terreus (Zhang
et al., 2020). The MK gene cluster including nine genes named
mok A-mok I was isolated from the genome of Monascus pilosus,
and functions of the genes have been carried out (Chen et al.,
2008; Zhang et al., 2017b). Overexpression of key genes (mokC,
mokD, mokE, and mokI) in the Monascus purpureus azaphilone

polyketide pathway can be used to improve MK production
(Zhang et al., 2019).

Monacolins are chemical analogs of MK that share a similar
basic skeleton, with difference in the substituent groups. MLs are
mainly divided into lactone ring form and free acidic form (Li
et al., 2017). At least 84 MLs have been identified, though not all
of the MLs have been studied (Li et al., 2017). MLs, for instance,
monacolin L, monacolin J, dihydromonacolin L, monacolin X,
and compactin, etc., in both the lactone and acid forms have
attracted more attention, owing to their high contents in FRMR
and their well-known beneficial bioactivities (Endo and Hasumi,
1985; Endo, 1985a,b; Endo et al., 1986; Dhale et al., 2007a,b; Zhu
et al., 2012; Hachem et al., 2020). With the progress in research
on these compounds, more and more MLs have been isolated
and characterized. The structures and functions of MLs O-S,
α, β-dehydromonacolin S, 3α- hydroxy-3,5-dihydromonacolin L,
3b-hydroxy-3,5-dihydro monacolin L, α, β-hydromonacolin Q,
monacolin T, monacolin U, 6a-O-methyl-4,6-dihydromonacolin
L and 6a-O-ethyl-4,6- dihydromonacolin L have been explored
(Li et al., 2004; Liu et al., 2013; Zhang et al., 2016, 2018a).
It is interesting that an unusual aromatic monacolin analog,
monacophenyl, was isolated from RMR (Liu et al., 2011). In view
of this, one of the most important key points for taking full
advantage of FRMR is exploring its functions and side effects.

Besides MLs, other functional substances such as pigments,
ergosterol, γ-aminobutyric acid, and polysaccharides, also play
a certain role in the function of FRMR (Wang et al.,
2014; Liang et al., 2019). For instance, ergosterol showed
remarkable lipid-lowering efficiency. Moreover, three Monascus
azaphilone pigments of monascin, monasfluore B, and ankaflavin
were discovered as ligands of lipase (Fang et al., 2017;
Liang et al., 2019).

FUNCTIONS OF FRMR

Functional red mold rice is widely consumed as a lipid-lowering
product due to it containing MLs. Among the most commonly
studied MLs, MK and its dihydro derivatives are the most
active compounds for lowering lipid levels (Avula et al., 2014).
However, MK exists in the inactive form naturally and undergoes
reduction to its β-hydroxy acid (MKA) active form (Beltrán
et al., 2019). MK in the lactone form gets absorbed from the
gastrointestinal tract and gets converted into MKA in liver
and non-hepatic tissues (Ertürk et al., 2003). In addition, the
transformation process of MK into MKA spontaneously occurs
at neutral pH, without the participation of gut microbiota.
However, the lipid-lowering effect is mediated by the gut
microbiota by catabolizing MKA to other compounds (Beltrán
et al., 2019). In vitro experiments also indicated that MK could
be completely converted into MKA only in alkaline solutions
(Yang and Hwang, 2006).

Monacolins are usually obtained by consuming FRMR as a
food supplement or from FRMR in combination with other
bioactive compounds (Yang and Mousa, 2012; Heinz et al.,
2016; D’Addato et al., 2017; Iskandar et al., 2020). An efficient
and better tolerance in hypercholesterolemic patients was seen
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when FRMR was combined with other bioactive compounds. For
instance, combining FRMR with guggulipid extract, chromium
picolinate, berberine, and coenzyme Q10 showed a better
tolerance and efficiency (Yang and Mousa, 2012; Di Pierro et al.,
2016; Cicero et al., 2017; D’Addato et al., 2017; Stefanutti et al.,
2017; Mazza et al., 2018; Formisano et al., 2019; Wang et al., 2019;
Iskandar et al., 2020).

Besides the lowering lipid effects, the physiological functions
of MLs like promoting bone formation, attenuating arterial
thrombosis, and anticancer have also been confirmed (Wong
and Rabie, 2008; Tseng et al., 2011; Tien et al., 2016; Xu et al.,
2017; Wang et al., 2019). New bone formation in bone defects
in vivo and bone cell formation in vitro can be stimulated
and increased using RMR extract (Wong and Rabie, 2008).
In addition, apoptosis on gastric cancer was induced by MLs
and other components by scavenging the mitochondrial reactive
oxygen species (Kurokawa et al., 2017). Monacolin X is known
to attenuate the cell proliferation, migration, and ROS stress-
mediated apoptosis in breast cancer cells, which provides a
scope for the functional research of MLs (Nagabhishek and
Madankumar, 2019). Another important function of FRMR
is its strong antioxidant effect, which needs to be taken into
consideration (Lee et al., 2009; Mohan-Kumari et al., 2011).

EFFICIENT PRODUCTION OF FRMR

Optimization for Production of
Monacolins
Optimization of the fermentation parameters for MK production
has attracted much interest since its discovery (Tsukahara
et al., 2009; Panda et al., 2010; Hp, 2012; Dikshit and
Tallapragada, 2016). Liquid state fermentation (LSF) has not
yielded constant results and higher production. Therefore, solid-
state fermentation (SSF) is gaining an increasing popularity
for multiple industrially important products such as pigments,
enzymes, and antibiotics, besides MLs. SSF has been widely
employed in the industrial production of FRMR, due to
its advantages like maximum substrate utilization, better
process control, lower chances of contamination, and easy
downstream processing (Praveen and Savitha, 2012). Therefore,
fermentation parameters of SSF for FRMR production, such
as moisture content, fermentation temperature, and inoculum
concentration have been studied extensively and discussed
herewith. Generally, adjusting the moisture content to 35%
(w/w) and maintaining an environmental humidity at 55∼65%
is beneficial for the MK production (Subhagar et al., 2009;
Feng et al., 2014). Fermentation temperature is another vital
parameter for MK production. The temperature-shift cultivation
is more advantageous for the MK production, when compared
with the constant temperature fermentation. Monascus spp.
are generally cultured at 30◦C for their growth and at lower
temperature such as 25◦C or even 23◦C for MK production
(Tsukahara et al., 2009; Lin et al., 2017). In addition, the
inoculum concentration also shows an influence on Monascus
fermentation and MK production (Subhagar et al., 2009).
Appropriate inoculum size starts the fermentation quickly and

maintains the fermentation process at a good rate for metabolite
production. There is a significant relation between the inoculum
size and the spore concentrations of the inoculum, for instance,
by adjusting them to 13% (v/w) and 106 CFU/ml, respectively
(Feng et al., 2014). For the speedy growth of Monascus spp.
and avoiding contamination by other microorganisms, lactic
acid and acetic acid are usually added to adjust the pH
of the fermentation substrates (Xu et al., 2005; Feng et al.,
2014). The methods for improving the MK production by
Monascus strains have been screened by chemical mutagenesis
or genetic engineering technology (Yang et al., 2005b; Suh
et al., 2007; Wang et al., 2011). A mutant KU609 with high
MK and no citrinin production has been obtained from the
wild-strain Monascus isolate number 711 by subjecting to γ-
irradiation (Suh et al., 2007). The binary vector pCAMBIA3300-
gpdA-hph-trpC with hygromycin B phosphotransferase (hph)
was constructed and transformed into Monascus albidus 9901
by Agrobacterium tumefaciens-mediated transformation. Two
transformants H1 and H2 were selected, and the MK yields
of H1 and H2 fermentation products were increased by 42.15
and 40.34%, respectively, compared with that of Monascus
albidus 9901 (Wang et al., 2011). Moreover, the mutagenic
treatment of ultrasonic wave was also employed to screen
Monascus strain producing more MK (Yang et al., 2005b).
However, the biological characteristic stability of mutants
should be well studied, before commencing the industrial
production of FRMR.

Besides the optimization of fermentation parameters,
some novel fermentation patterns have also been employed
to enhance the MK production (Panda et al., 2010; Zhang
et al., 2013; Seenivasan et al., 2020). Metabolic footprinting
concept has been used to improve the MK production.
A strong glycolytic flux pattern was observed in the shake
culture, tricarboxylic acids such as, citric acid, succinic
acid, and oxalic acid, apart from glycerol and ethanol are
most probably utilized for enhancing production of MK
(Seenivasan et al., 2020). A co-culture of M. purpureus
and M. ruber or M. purpureus and Monascus kaoliang
showed positive effects on MK production (Panda et al.,
2010; Suraiya et al., 2018). On the other hand, agar was
tried as a carrier and the MK production of 2,047.03 mg/L
was obtained, when the agar concentration, particle size,
and glycerol concentration were 4%, 4 × 4 × 4 mm
and 18%, respectively (Zhang et al., 2013). To meet
the individual needs of consumers, novel FRMR needs
to be developed.

Novel Nutritious Substrates for FRMR
Production
Novel substrates have been used for Monascus fermentation
to enrich the types and functions of FRMR, for instance,
soybean flour, finger millet, and Thai glutinous rice (Chairote
et al., 2010; Venkateswaran and Vijayalakshmi, 2010; Feng
et al., 2014; Table 1). Among the substrates mentioned,
substrates rich in starch or protein, for example, soybean flour
and Dioscorea are more suitable for Monascus fermentation
and MK production (Table 1). Moreover, combining novel

Frontiers in Microbiology | www.frontiersin.org 3 November 2020 | Volume 11 | Article 606959

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-606959 November 20, 2020 Time: 10:19 # 4

Yanli and Xiang Functional Red Mold Rice Perspectives

TABLE 1 | Substrates used for FRMR production.

Substrates Addition Fermentation
mode

Fermentation
time (day)

Strain MK (mg/g)/
detection method

References

Finger millet Substrate SSF 7 M. purpureus 0.370/HPLC Venkateswaran and
Vijayalakshmi, 2010

Adlay Substrate SSF 7 M. purpureus 1.120/HPLC Yang et al., 2005a

Dioscorea Substrate SSF 10 M. purpureus NTU 301 2.584/HPLC Lee et al., 2006

Soybean powder 40% SSF 14 M. pilosus MS-1 18.733/HPLC Feng et al., 2014

Saccharina japonica Approximately 48.5% SSF 14.49 M. purpureus KCCM 60168 13.980/HPLC Suraiya et al., 2018

Mixed grains Substrate SSF 15 M. pilosus K-1140 2.310/HPLC Pyo and Seo, 2010

Wheat bran Approximately 25% SSF 16 M. sanguineus 20.040/UV Dikshit and
Tallapragada, 2016

Millet Substrate SSF 20 Monascus ruber 7.120/HPLC Zhang et al., 2018b

Soybean Substrate SSF 21 M. sp. K 0.892/HPLC Hong et al., 2012

Thai rice varity Oryza
sativa L. cv. RD6

Substrate SSF 21 M. purpureus CMU001 33.790/HPLC Chairote et al., 2010

SSF, solid-state fermentation.

substrates with rice or with different grains together showed
a higher MK production, than using them as sole substrate
(Feng et al., 2014; Suraiya et al., 2018). However, it generally
needs 2∼3 weeks of fermentation to obtain FRMR with MK
content of more than 10.00 mg/g. Long-term fermentation
of FRMR will increase its risk of contamination (Chairote
et al., 2010; Dikshit and Tallapragada, 2016; Suraiya et al.,
2018). Therefore, strategies for improving the MK production
and further shortening the fermentation period need an
urgent attention, especially in consideration to environmentally
friendly and natural means. Improving MK production during
a fixed conventional fermentation cycle, for example, 14 or
21 days, which equate to shorten the fermentation periods
to obtain the required MK contents of FRMR. So, irritants
have been used to improve MK production for the rapid
fermentation of FRMR (Zhang et al., 2019; Zhen et al., 2019;
Peng et al., 2020).

Improving Monacolin Production Using
Irritants
For efficient production of FRMR, some nutritional and non-
nutritional irritants, such as glycerol, glutamic acid, NaCl, and
Chinese medicines have been used in medium or substrates, in
order to improve the MK production (Lu et al., 2013; Zhang et al.,
2019; Zhen et al., 2019; Peng et al., 2020) (Table 2). Generally,
higher yield of MK with low cost is expected for commercial
purposes. Most of the irritants mentioned above confirm to
this expectation. When 10 mM glutamic acid was used in the
medium, MK production increased 4.8-fold; the expressions of
mokC and mokG and permeability of cell membrane were also
increased (Zhang et al., 2017a, 2019). Trace of linoleic acid
also achieved the likely results, which was attributed to the
fact that linoleic acid increased the cyclic AMP concentration
and activated protein kinase that enhanced the MK production
(Huang et al., 2018).

MK can be enhanced by glycerol both in LSF and SSF with
varying concentrations of glycerol (Lu et al., 2013; Feng et al.,
2015). MK yields of fermentation broth and mycelia could be

enhanced significantly, when glycerol concentration was adjusted
to 6 g/L (p < 0.05). Concentration of MLs increased and
mainly existed in the mycelia after adding glycerol, compared
with that of control (Feng et al., 2015). The maximum MK
yield of 2.401 mg/g in mycelia was obtained, when the glycerol
concentration was 40 g/L (Feng et al., 2015). Furthermore, the
maximal MK yield of 12.900 mg/g was obtained, when 26%
glycerol was used in SSF, with bagasse as a carrier (Lu et al.,
2013). As an environmentally friendly substance, which could
be obtained from byproducts of biodiesel, the comprehensive
utilization of glycerol needs to be explored in a future study
(Carabajal et al., 2020).

However, most of the irritants are used in LSF instead of SSF
at the present research stage. It is inferred that the low addition
of the irritants can easily modulate the MK production in LSF,
due to rapid mixing and quick fermentation. Irritants used in SSF
needs a further study in future research.

STRATEGIES FOR BETTER
APPLICATION OF FRMR

It is well known that MK from FRMR acts as an inhibitor
of cholesterol synthesis. Lovastatin and several other statins
are marketed as drugs whereas FRMR is offered as a food
supplement. Statins can cause side effects such as muscle damage
and kidney failure, hence the side effects of FRMR need a critical
consideration (Xue et al., 2017). In addition, the quantities of
MK in FRMR remain widely variable (Yang and Mousa, 2012).
Therefore, it is imperative to evaluate whether FRMR or MLs can
be safe and efficient food supplement.

Content Variability and Quality
Standardization of FRMR
Functional red mold rice promotes the maintenance of normal
blood low-density lipoprotein (LDL) cholesterol concentrations
due to the presence of MLs (De Backer, 2017). FRMR containing
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TABLE 2 | Irritants used for improving MK production.

Irritants Addition Fermentation
mode

Fermentation
time (day)

Strain MK/detection
method

References

Glycerol 40 g/L LSF 7 M. pilosus MS-1 2.401 mg/g/HPLC (MK
yield of mycelia)

Feng et al., 2015

NaCl 0.02 M LSF 10 M. purpureus
SKY219

Approximately
90 µg/mL/HPLC (MK
yield of fermentation
broth)

Zhen et al., 2019

Dioscorea 1% LSF 12 M. purpureus NTU
568

27.9 mg/g/HPLC (MK
yield of mycelia)

Lee et al., 2007

Glutamic acid 10 mM LSF 12 Monascus M1 215 µg/mL/HPLC (MK
yield of fermentation
broth)

Zhang et al., 2017a

Citri Reticulatae
Pericarpium, Poria
cocos, and Radix
Angelicae dahuricae

3.75% Citri Reticulatae
Pericarpium, 2.55%
Poria cocos, and
2.01% Radix

SSF 12 M. ruber M2-1 3.6 mg/g/HPLC Peng et al., 2020

Sodium nitrate 1% SSF 14 M. purpureus
CCRC 31615

0.378 mg/g/HPLC Su et al., 2003

Glutamic acid 10 mM LSF 15 Monascus C8 Approximately
450 µg/mL/HPLC (MK
yield of fermentation
broth)

Zhang et al., 2019

Linoleic acid 512 µM LSF 15 M. ruber cicc 5006 Approximately
150 µg/mL/HPLC (MK
yield of fermentation
broth)

Huang et al., 2018

Glycerol 26% SSF 20 M. purpureus 9901 12.900 mg/g/HPLC Lu et al., 2013

Soybean hull Approximately 50% LSF 30 M. pilosus KCCM
60084

0.02 mg/g/HPLC (MK
yield of fermentation
product)

Simu et al., 2018

LSF, liquid-state fermentation, SSF, solid-state fermentation.

5∼7 mg MK is considered to be an efficient cholesterol-
lowering agent equivalent to 20∼40 mg of pure lovastatin
(Burke, 2015). Standardized FRMR formulation with 10 mg
MLs consumed daily has shown to reduce LDL cholesterol by
approximately 20% (McCarty et al., 2015). In 2011, the European
Food Safety Authority (EFSA) concluded the existance of a
causal relationship between the consumption of lovastatin from
FRMR and “maintaining normal LDL cholesterol levels.” To
obtain the claimed effect, a dose of ≥10 mg lovastatin everyday
was prescribed (Efsa Panel on Dietetic Products Nutrition,
and Allergies. (NDA), 2011). However, the results of percent
of MK in 28 brands of RMR showed a large variability.
No presence of MK was detected in two brands of RMR,
and MK range in the other 26 RMR brands ranged more
than 60-fold. The quantity of MK consumed per day would
range more than 120-fold, compared with the recommended
intake claimed by the manufacturers (Cohen et al., 2017).
Some other studies indicate similar results (Heber et al.,
2001; Gordon et al., 2010; Song et al., 2012). In addition,
the quantity of MK in RMR supplements notified to the
health authorities by the manufacturers varies by 30-fold,
which is attributed to the variation in the strain and the
fermentation process (De Backer, 2017). The large variation
of MK content in RMR supplements could induce large
difference in the lipid regulating effects within individuals,

which in turn could problems to the efficiency and safety
of the RMR supplements. Hence, standardization must be
rigorously ensured, as in many cases, the content labeling
of RMR supplement is erroneous. The MK content in RMR
supplements varies due to the production of RMR with
different strains and fermentation process (Patel, 2016; Dujovne,
2017). However, it is worth mentioning that MK in 0.1∼0.2%
range in RMR is efficient and free of side effects (Halbert
et al., 2010). Based on this, effective analytical tools such
as chromatography and mass spectrometry can be used to
identifiy the discrepancies. In addition, a statement on the
product label is required which assures that a toxin-free, non-
augmented, standardized amount of MLs would be advantageous
to consumers, which will allow more predictable efficacy and
better safety (Nguyen et al., 2017).

FRMR available from markets is with various MK contents,
for instance, 0.4, 0.8, 1.0, 1.2, 1.5, 2.0, 2.5, and 3%. FRMR with
different MK contents varies in price, and the price of FRMR
is usually positively correlated with its MK content (Song et al.,
2019). For instance, the price of FRMR with MK content of
2% available from the market is about US$50 per 1 kg. In
addition, FRMR with different product types also varies in price1.
Therefore, in order to meet drug quality standards, commercial

1https://www.walgreens.com/store/c/red-yeast-rice/ID=361661-tier3
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lovastatin is illegally added to common RMR to imitate FRMR
(Song et al., 2019). In view of this, the Hongqu Health Food
Standard in 2007 (Taiwan Guardian Food No.0960406448) and
the EFSA are currently reassessing the safety of a 10-mg dose of
MK as a food supplement (Poli et al., 2018; Song et al., 2019). For
the accuracy of MK content, many standards for MLs detection
have been established. However, there is no clear requirement for
inspection of MK in FRMR according to most of the standards.
Some criteria clarify that the required content of MK lactone
in FRMR is generally not less than 0.4%, while just a few of
them mention the content requirements of MK lactone and acid
forms (Poli et al., 2018; Song et al., 2019). The Standard for
Chinese Medicine Yinpian Processing of Sichuan Province (2015)
requires that MK lactone should serve as the quality control of
FRMR and the lowest MK content should be 0.4%, which is in
accordance with the standard of the “Functional red yeast rice
QB/T 2847–2007.” The Standard for Chinese Medicine Yinpian
Processing of Zhejiang Provine (2015) indicated that the total
of MK lactone and acid in FRMR should be more than 0.3%,
and the peak area of acid MK must not be less than 5% of the
lactone MK peak area.

In order to distinguish commercial lovastatin from MK,
some efficient detection methods such as UHPLC-QQQ-MS,
UHPLC-Q-TOF-MAS, and stable isotope ration analysis (13C-
NMR) have been employed to authenticate the FRMR (Zhu
et al., 2013; Perini et al., 2017). Moreover, it is demonstrated
that the analysis of δ13C with isotope ratio mass spectrometry
could authenticate the FRMR (Song et al., 2019). All the
aforementioned strategies relate to standardize the MK content in
RMR and authenticate the FRMR, thereby laying the foundation
for standardization of FRMR.

Safety Evaluation of FRMR
Functional red mold rice has always been used as an alternative
lipid-lowering therapy for patients who are unable to tolerate
the statin therapy, due to statin-associated myalgias (Gordon
and Becker, 2011). However, the variability of MK content,
potential of toxic byproducts, and no clinical data on the
FRMR dietary supplement indicate that the patients should
be cautious before FRMR is standardized (Venhuis et al.,
2016). As of date, some side effects of FRMR have been
reported, such as myopathy, erectile dysfunction, and liver
injury, etc. (Polsani et al., 2008; Childress et al., 2013;
Mazzanti et al., 2017; Liu and Chen, 2018). On the other
hand, among dyslipidemic patients with low to moderate
cardiovascular risk, FRMR induces less muscle fatigue symptoms
and exerts comparable lipid-lowering effects, when compared
with simvastatin in single-center randomized pilot trials (Xue
et al., 2017). Therefore, safety evaluation of FRMR is an urgent
and important subject.

It has been confirmed that the safety profile of FRMR is
similar to that of statins (Mazzanti et al., 2017). Therefore,
the composition and formulation of FRMR dietary supplement
is particularly important due to the presence of MLs; besides,
MK may also act as HMG-CoA-reductase inhibitors (Li et al.,
2004). For instance, compactin is likely to be only half as
effective, with respect to HMG-CoA reductase inhibition as

MK (Heber et al., 2001; Li et al., 2004). Therefore, the
bioavailability of the individual MLs is difficult to determine,
in the presence of MK. It may be useful to specify a total MLs
content in the form of monacolin equivalents. This hypothesis
suggests that FRMR can be considered an unregistered medicine
(Farkouh and Baumgärtel, 2019).

In addition, citrinin is a confirmed nephrotoxic and
teratogenic agent present in FRMR, which is another obstacle
for using FRMR as food supplement or medicine. Therefore,
Monascus strains with high MK production and low even
undetectable citrinin have been screened (Li et al., 2020).
Additives such as soybean isoflavones and NaCl were also
used to reduce citrinin production (Huang et al., 2019; Zhen
et al., 2019; He et al., 2020a). Meanwhile, detection of citrinin
in FRMR is also a matter of great concern and HPLC is
usually used to detect citrinin in FRMR (Li et al., 2020). For
the efficient detection of citrinin in FRMR, immunoaffinity
column is employed for citrinin extraction according to the
Chinese National Standards for Determination of Citrinin in
Food (GB 5009.222–2016). Moreover, additive pharmacological
effects may be expected for other MLs present (Venhuis
et al., 2016). It should be suggested that the consumers taking
FRMR should do a blood test for cholesterol before taking
the FRMR dietary supplement. It should also be noted that
taking FRMR and statins at the same time can easily lead
to overdosing and side effects. Without active postmarket
surveillance for adverse drug reactions, the valuable signals
of product safety are lost. If the current regulatory status for
pharmacologically effective FRMR dietary supplements do not
permit adequate warnings and active monitoring of adverse drug
reactions, then their regulatory status may not be appropriate
(Venhuis et al., 2016).

Based on this, some strategies like the continuous monitoring
of “natural” dietary supplement safety through spontaneous
reports, long-term trials, appropriate information to clinicians
and consumers, and timely submission of suspect reports
to regulatory agencies, should be carried out (Mazzanti
et al., 2017). Moreover, three important points need to
be taken into consideration: (1) Recognizing that FRMR
contains a statin-like compound; (2) carefully recommending
FRMR to statin-intolerant patients with a history of myositis
or myopathy; (3) Documenting all alternative medicines,
such as FRMR, taken by patients, in order to weigh the
benefit-to-risk of co-administration of other drugs (Polsani
et al., 2008). Overall, the real-world vigilance should
be strengthened at different levels, including consumers,
clinicians and policy-makers to promote the proper use and
harmonize the regulatory status of FRMR (Raschi et al., 2018;
Farkouh and Baumgärtel, 2019).

CONCLUSION

Functional red mold rice has been used as a folk medicine by
people suffering from hyperlipidemia. However, besides MK,
other MLs, pigments, and citrinin in FRMR show multiple
activities, sometimes even resulting in toxicity to the consumers.
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For improving the MK content and optimizing the product type
of FRMR, fermentation parameters should be optimized and
the used of novel substrates or irritants should be employed for
FRMR production. Standardization of MK contents in FRMR
and evaluation of FRMR safety should be studied in detail. Based
on this, a better application of FRMR as a safe and effective
lipid-lowering agent can be actualized.
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