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Abstract
The first clinical trials of the safety and efficacy of interferon-alpha2 (IFN-alpha2) were performed about 30 years ago.
Since then, several single-arm studies have convincingly demonstrated that IFN-alpha2 is a highly potent anti-cancer agent
in several cancer types but unfortunately not being explored sufficiently due to a high toxicity profile when using non-
pegylated IFN-alpha2 or high dosages or due to competitive drugs, that for clinicians at first glance might look more
attractive. Within the hematological malignancies, IFN-alpha2 has only recently been revived in patients with the
Philadelphia-negative myeloproliferative neoplasms—essential thrombocytosis, polycythemia vera, and myelofibrosis
(MPNs)—and in patients with chronic myelogenous leukemia (CML) in combination with tyrosine kinase inhibitors. In
this review, we tell the IFN story in MPNs from the very beginning in the 1980s up to 2018 and describe the perspectives
for IFN-alpha2 treatment of MPNs in the future. The mechanisms of actions are discussed and the impact of chronic
inflammation as the driving force for clonal expansion and disease progression in MPNs is discussed in the context of
combination therapies with potent anti-inflammatory agents, such as the JAK1–2 inhibitors (licensed only ruxolitinib) and
statins as well. Interferon-alpha2 being the cornerstone treatment in MPNs and having the potential of inducing minimal
residual disease (MRD) with normalization of the bone marrow and low-JAK2V617F allele burden, we believe that
combination therapy with ruxolitinib may be even more efficacious and hopefully revert disease progression in many
more patients to enter the path towards MRD. In patients with advanced and transforming disease towards leukemic
transformation or having transformed to acute myeloid leukemia, Btriple therapy^ is proposed as a novel treatment
modality to be tested in clinical trials combining IFN-alpha2, DNA-hypomethylator, and ruxolitinib. The rationale for
this Btriple therapy^ is given, including the fact that even in AML, IFN-alpha2 as monotherapy may revert disease
progression. We envisage a new and bright future with many more patients with MPNs obtaining MRD on the above
therapies. From this stage—and even before—vaccination strategies may open a new horizon with cure being the goal for
some patients.
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Introduction

About 60 years ago, interferon (IFN) was discovered by Isaacs
and Lindenmann [1] who described this cytokine to be able to
interfere with virus replication. Later, the IFN receptor was
identified and shortly after the JAK/STAT-signal transduction
pathway as described in several recent reviews [2–6]. It early
became apparent that one of the mechanisms of action of IFN-
alpha2 involved stimulation of immune cells [7, 8]. Due to all
the other properties of IFN, including its antiproliferative,
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immunomodulatory, and antiangiogenic effects, great interest
in the potential use of IFN in the treatment of several malig-
nancies was soon raised. The production and purification of
human leukocyte IFNs [9] were followed by the first clinical
study in the late 1970s on the efficacy of IFN-alpha2 in mul-
tiple myeloma (MM) [10]. Soon after, IFN-alpha2 was cloned,
allowing large amounts of IFNs to be produced for experimen-
tal research and clinical trials, opening an exciting era of sev-
eral years, in which the safety and efficacy of IFN was tested
in a variety of hematological malignancies. Among these are
multiple myeloma, hairy-cell leukemia (HCL), chronic mye-
logenous leukemia (CML), the classical Philadelphia-negative
chronic myeloproliferative neoplasms and essential
thrombocythemia (ET), polycythemia vera (PV) and primary
myelofibrosis (PMF) (MPNs), the hypereosinophilic syn-
dromes, and systemic mastocytosis (SM). Outstanding break-
throughs in the treatment of HCL and CML with IFN-alpha2
were confirmed in several large clinical trials. Thus, a large
proportion of patients with HCL achieved long-lasting com-
plete remissions with normalization of peripheral blood values
and the bone marrow in concert with a marked improvement
in their immune defense towards infections. Likewise, IFN-
alpha2 proved to be the first agent with the potential of induc-
ing complete and sustained cytogenetic remissions with dis-
appearance of Philadelphia chromosome in CML and—in ad-
dition—in some patients even the induction of major molec-
ular remissions with a significant and sustained reduction of
the BCR-ABL transcript in a subset of patients. These results
were historical IFN milestones in the treatment of hematolog-
ical malignancies (HCL and CML), which otherwise had a
dismal prognosis with severe and often lethal atypical infec-
tions (HCL) or increasing genomic instability with terminal
fatal leukemic transformation within a few years from the time
of diagnosis in the large majority unless a bone marrow trans-
plantation was an option (CML). Accordingly, IFN-alpha2
remained the best medical treatment of CML during the next
decades until the targeted treatment with the tyrosine kinase
inhibitor (TKI) imatinib mesylate substituted IFN-alpha2
about 20 years ago and later other TKIs (e.g., dasatinib and
nilotonib) have entered as second-generation TKIs. As in
CML, the mechanisms of action of IFN in patients with the
Philadelphia-negative MPNs are likely multifactorial. In
CML, IFN-alpha2 has been shown to restore the adhesion of
CML primitive progenitor cells to marrow stroma, downreg-
ulate the expression of the BCR-ABL1, and activate several
transcriptional factors that regulate cell proliferation, matura-
tion, and apoptosis. In addition, very early in the IFN-era in
CML, immune studies unraveled IFN-alpha to have very po-
tent immune enhancing capacity, inducing recognition and
elimination of CML cells by the immune system [11, 12].
Importantly, in 2009, a novel mechanism on hematopoietic
stem cells (HSC) was described by Essers et al., implying
induction of cell cycling in quiescent HSC and early

progenitors by IFN-alpha2 [13]. One year later, they also
showed that chronic administration of IFN-alpha2 depletes
HSC, implying that Bdormant^ cancer stem cells may be sus-
ceptible to manipulation via an IFN-alpha2 induced Bwake up
call^ with subsequent proliferation and Bunmasking^ of the
malignant cells for the immune system by targeted treatment
[14]. All these studies and the impact of IFN-alpha2 upon the
immune system in CML [11, 12] created not only the platform
for similar studies in patients with MPNs but also the platform
for studies in CML patients on combination therapy with ima-
tinib and IFN-alpha2 and later also studies on IFNs with other
TKIs in CML [15–18]. Indeed, these studies have shown that
such combination therapy is far more efficacious than singe-
agent therapy based upon the fact that the modes of action and
biological effects of TKIs and IFN-alpha2 are quite different.
These lessons from the IFN-era in CML are of utmost impor-
tance, since so many similarities exist between the CML-IFN-
landscape and the MPN-IFN-landscape in regard to highly
important questions such as BWhy to treat with IFN-alpha2?^
and BWhen to treat with IFN-alpha2?^. Accordingly, several
of the lessons in the CML-IFN era can be translated and used
in the treatment of MPN patients today and in the future. All
these questions will be addressed below.

Despite the very prominent Banti-cancer-effects^ as de-
scribed above, and despite initial studies displaying safety
and efficacy of IFN-alpha2 in a large number of patients with
the classical Philadelphia-negative MPNs—ET, PV, and MF
(MPNs) [reviewed in 19–28], IFN-alpha2 disappeared in the
dark and only in recent years the interest in using IFN-alpha2
in MPNs has been revived [19–50]. This renaissance of IFN-
alpha2 in MPNs is mainly attributed to the increasing number
of studies within the last 5–10 years, which have shown
sustained complete hematological and major molecular remis-
sions after long-term treatment with IFN-alpha2 [19, 20,
27–50], and have even been sustained up to 3 years after
discontinuation of IFN-alpha2 [30, 31, 33, 41]. These highly
encouraging and intriguing results envisage Bminimal residual
disease^ (MRD) with normalization of peripheral blood cell
values and normal bone marrow architecture to be new treat-
ment objectives in MPNs [23–25, 51]. Importantly, they may
also open a new horizon for patients withMPNs by promoting
the next step towards cure by vaccination strategies as de-
scribed elsewhere in this theme issue [52].

After a description of the history on IFN-alpha2 in MPNs,
mechanisms of actions of IFN, and the novel concept of
chronic inflammation as the driving force for clonal evolution
inMPNs, we will focus on some controversial issues inMPNs
and give our answers to key questions in MPNs—based upon
decades of clinical experience with IFN-alpha2 in the treat-
ment of MPNs and most recent novel observations. We will
put in perspective the rationales for early treatment with IFN-
alpha2-monotherapy in MPNs, for combination therapies, in-
cluding JAK1–2 inhibitor (e.g., ruxolitinib), DNA-
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hypomethylators and statins, and the perspectives for such
therapies to shape a new horizon with cure being an achiev-
able goal together with vaccination strategies [51, 52].

History of IFNs in MPNs

Already in 1985, Linkesch et al. from Austria described that
IFN-alpha2 was able to control myeloproliferation in myelo-
proliferative diseases with severe thrombocytosis [53, 54].
Since then, several studies during the last 30 years have sub-
sequently confirmed that IFN-alpha2 is also able to inhibit
myeloproliferation in the Philadelphia-negative MPNs with a
reduction or alleviation of the need of phlebotomies in PV,
disappearance of pruritus, normalization of elevated leucocyte
and platelet counts, and a reduction in spleen size [19–50,
55–59]. Although early studies in MPNs suggested that en-
hancement and modulation of immune cells might be in-
volved in the mechanisms of action of IFN-alpha2 [58] and
these aspects have been extensively studied in CML [11, 12],
only recently immune cells and their functionality have been
similarly studied during treatment with IFN-alpha2 [42, 49,
60–62]. Despite all these studies, IFN-alpha2 has not been the
first drug of choice in the treatment of patients withMPNs, for
many reasons but mainly because of a relatively high drop-out
rate (about 20–40%) due to side effects [reviewed [19–27].
With the identification of the JAK2V617F-mutation in 2005
[63–66], reports on the potential of IFN-alpha2 to induce ma-
jor molecular remissions in JAK2V617-positive patients [19,
26–50] and later on after the discovery of theCALR-mutations
in 2013 [67–69], a reduction in the CALR-mutational load as
well [39, 43], the interest in treatment of PV and related neo-
plasms with IFN-alpha2 has been revived as reviewed in sev-
eral papers during the last 5–10 years [19–26, 55, 56]. Indeed,
several studies have shown that long-term treatment with IFN-
alpha2 in a subset of patients is accompanied by deep molec-
ular remissions [30–34, 36–38, 41], which may be sustained
even after discontinuation of IFN-alpha2 for up to 3 years [30,
31, 41]. These observations show that immune therapy with
IFN-alpha2 is able to induce MRD (Boperational cure^?) in
subgroups of patients with MPNs.

Mechanisms of action of IFN-alpha2

One of the major pathways by which IFN-alpha2 exerts its
actions is the Janus-activated kinase/signal transducers and
activators of transcription (STAT) signal pathway. The type I
IFN-dependent signallying pathways are activated by both
human type I IFN-a receptor chains 1 and 2 , their intracellular
domains being associated with Janus-activated kinases, which
accordingly are activated upon IFN-alpha2 binding to its re-
ceptors. Janus-activated kinases phosphorylate and activate

STATs (pSTAT), which then translocate to the nucleus and
activate gene expression [2–4, 6, 70].

The mechanisms of action of IFN-alpha2 have been as-
cribed to its antiproliferative, proapoptotic, antiangiogenic,
and immunomodulatory effects [2–4, 70–90]. In addition,
IFN-alpha2 has also been shown to downregulate telomerase
reverse transcriptase and telomerase activity in both human
malignant and non-malignant hematopoietic cells [91]. As
interferon-alpha2 being a telomerase-inhibitor itself [91], it
has been argued that the efficacy of another telomerase-
inhibitor-imetelstat which recently has been investigated in
ET and myelofibrosis patients [92–94] might actually be me-
diated through IFN-alpha2 [95] by binding of imetelstat to
cell-surface receptors such as toll-like receptor 9 (TLR9)
[95] with ensuing TLR9-induced production of type I inter-
ferons by plasmacytoid dendritic cells [96].

In most recent years, the impact of IFN-alpha2 upon the
immune system has been studied extensively in patients with
MPNs [42, 60–62, 97] and the studies by Riley et al. [60–62]
have paved the way for vaccination studies in Danish MPN
patients [98–102]. These studies of JAK2V617F-positive pa-
tients have shownmarked changes in circulating immune cells
with low levels of NK-cells, that are boosted during treatment
with IFN-alpha2 [61, 62] and profoundly changing the NK-
phenotype with a significant increase in the proportion of
CD56bright NK cells and a decreasing CD56dim population.
The findings in this studymight indicate that IFN-alpha2 treat-
ment skews the NK cell immunity towards a more
immunostimulatory profile [61].

The frequency of circulating regulatory T cells—
CD4 + CD25 + Foxp3+ T cells—(Tregs) was found to be
significantly increased during IFN-alpha2 treatment in all
patients [60, 62]. Myeloid dendritic cells (DCs) (mDCs)
and plasmacytoid DCs (pDCs) displayed decreased fre-
quencies during the course of treatment. On both mDCs
and pDCs, HLA-ABC expression was upregulated, but
decreased expression levels of HLA-DR were detected
on mDCs. By whole-blood transcriptional profiling stud-
ies, we have previously described significant downregula-
tion of HLA genes and speculated whether these findings
might contribute to immune evasion of MPN cells [103]
thereby reflecting immunoderegulation in MPNs [104]
with deregulation of several immune genes [105–108]
consequently giving rise to a defective tumor immune sur-
veillance and an increased risk of second cancers, which
has been demonstrated both before and after the MPN
diagnosis [105–108]. Importantly, during treatment with
IFN-alpha2, the downregulated HLA genes are upregulat-
ed, indicating that IFN-alpha2 is able to restore this defec-
tive component in the impaired immune surveillance
[109]. It remains to be established whether long-term
treatment may also decrease or eliminate the increased risk
of second cancers in MPNs [106–108].
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Interestingly, PD-L1 expression was reduced on mDC and
increased on pDCs during treatment with IFN-alpha2 [62].
Importantly, we and others have most recently found PD-L1
upregulated in MPNs, this being yet another mechanism by
which the malignant cells may evade the immune system in
MPNs [102, 110]. Highly intriguing, Prestipino et al. show
that the JAK2V617F induces the expression of PD-L1 through
activation of STAT3, thereby likely mediating the immune
escape in JAK2V617F-positive MPNs [110]. Since the
JAK2V617F mutation is also a generator of reactive oxygen
species (ROS) [111], it is relevant to consider whether the
increased PD-L1 expression by JAK2V617F is further en-
hanced by inflammation.

The reasons for the consistent increase in circulating Tregs
after institution of IFN-alpha2 [60, 62] might reflect IFN-
alpha2-mediated mobilization of Tregs to the periphery [97].
If so, the migration of Tregs from the bone marrow to the
periphery may decrease their immunosuppressive and
tumor-promoting influence on the marrowmicroenvironment.
An alternative interpretation might be that this expansion of
Tregs reflects a counter-response to an overall activated im-
mune system induced by IFN-alpha2 by unknown mecha-
nisms and, thus, indeed represents a beneficial response to
prevent auto-immunity as adverse effects to treatment [62].

In the above immune cell studies, no significant correla-
tions were found between the changes in immune cells and
hematological or molecular responses, which might be partly
explained by a short interval of 9-month IFN-alpha2 treatment
only. Similar studies after long-term treatment with IFN-
alpha2 (> 12 months) are needed to assess whether the pro-
found changes in circulating immune cells in the initial phase
of IFN-alpha2 treatment are consistent and instrumental for
the beneficial effects of long-term IFN-a2 treatment in some
patients [62].

In the context of immune deregulation and defective im-
mune surveillance as being potentially important mechanisms
for clonal expansion in MPNs, it is intriguing to consider that
the JAK2V617F mutation has been shown to generate the
accumulation of ROS [111], thereby contributing to the chron-
ic inflammatory state in MPNs (see below). In this regard, we
have also by transcriptional profiling studies described a
marked deregulation of oxidative and antioxidative stress
genes [112], supporting the concept of chronic inflammation
as the driving force for clonal evolution in MPNs. Most re-
cently, our mathematical modeling studies have also delivered
the proof of concept for MPNs as a human inflammation
model for cancer development [113].

As previously alluded to, IFN-alpha2 has profound biolog-
ic effects on the MPN stem cells [13, 14, 114–116]. Pietras et
al. elucidated the relationship between the proliferative and
suppressive effects of IFN-alpha2 during acute versus chronic
drug exposure [117]. These authors showed that the cell cycle
entry due to acute exposure to IFN was but transient and that

HSCs re-enter into quiescence during chronic IFN-alpha2 ex-
posure [114]. Mullaly also demonstrated in a murine model of
polycythemia vera that IFN-alpha2 depletes JAK2V617F my-
eloproliferative neoplasm-propagating stem cells [115]. Stein
et al. have excellently described the biological rationales and
use of IFN in MPNs [118].

MPNs as inflammatory diseases

The MPNs are acquired stem cell diseases that include essen-
tial thrombocythemia (ET), polycythemia vera (PV), and pri-
mary myelofibrosis (PMF) [119, 120]. A long pre-diagnostic
phase with abnormal hematological parameters usually pre-
cedes the final diagnosis [121, 122]. The MPNs have a low
incidence but a prevalence comparable to lung cancer, since
most MPN patients live for decades, although with a huge
morbidity/comorbidity burden due to a high risk of cardio-
and cerebrovascular complications, an increased risk of auto-
immune and chronic inflammatory diseases [120–137], and
an increased risk of second cancers (SCs) [105–107]. Even
patients in the early cancer stages (ET and PV) exhibit shorter
survival than the general population [119, 120]. Most recently,
these blood cancers have been described as Ba human inflam-
mation model for cancer development^ [124] reflecting
chronic inflammation to be a major driving force for clonal
evolution and disease progression [124–128] and accordingly
contributing substantially to the symptom burden and an im-
paired quality of life (QoL) [129]. Chronic inflammation is the
common link between highly prevalent diseases such as ath-
erosclerosis, the metabolic syndrome, type II diabetes, and
cancer [138–140]. Several of the signaling pathways activated
in these diseases (e.g., the JAK-STAT pathway) are constitu-
tively activated in MPNs due to driver mutations [63–69,
136]. Additional mutations are associated with an increased
risk of leukemic transformation [69, 141]. Chronic inflamma-
tion is also involved in the huge inflammation-mediated dis-
ease burden [120–127, 130–134] very similar to that seen in
patients with type II diabetes.

As previously noted, chronic inflammation has been sug-
gested to be the driving force for clonal evolution, the devel-
opment of premature atherosclerosis, and secondary cancers
in MPNs [124–126], which accordingly have been described
as Ba human inflammation model^ [124]. However, how
chronic inflammation elicits MPN is a matter of intense inves-
tigation. By generating ROS, the JAK2V617 mutation is con-
sidered to be an important inflammatory driver [111]. In
MPNs, the chronic inflammatory state per se with elevated
levels of several inflammatory cytokines [126], deregulation
of immune and inflammation genes [142–144], and/or oxida-
tive stress and anti-oxidative defense genes [112] may all con-
tribute to defective tumor immune surveillance, being most
severely affected in the advanced myelofibrosis stage, where
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the deregulation of the above genes is most pronounced [112,
142–144]. In the context of the JAK2V617F mutation as a
generator of ROS, it is most intriguing to note that the
JAK2V617F mutation per se may actually modulate the T cell
response by generating excessive ROS through an upregula-
tion of Akt/phosphatidylinositol-3′-kinase, which in turn de-
creases the amount of the ROS-converting enzyme catalase
[111]. Indeed, since ROS has been shown to be a potent in-
hibitor of T cell function [145, 146], it is tempting to speculate
if the excessive ROS might attenuate the specific immune
response against the JAK2V617F-clone. The implications of
excessive ROS production in MPNs have previously been
described and discussed [112, 147].

Most recently, another Binflammatory^ mutation has
been described in the background population—the
TET2-mutation [148]. The Jaiswal paper brings several
important pieces to the puzzle that might associate inflam-
mation, atherosclerosis, and second cancer in MPNs.
First, the TET2 mutation gives rise to impaired resolution
of inflammation by fostering the production of several
inflammatory cytokines (e.g., IL-1beta and IL-6) [148]
which are elevated in MPNs [126]. Second, TET2 has
been shown to exacerbate JAK2V617F-induced disease
by eliciting prolonged leukocytosis and extramedullary
hematopoiesis with splenomegaly and a shorter survival.
It was concluded that the TET2-mutations might be a dis-
ease accelerator and disease initiator and sustainer in com-
bination with JAK2V617F in MPNs [149]. Third, TET2
loss leads to increased hematopoietic stem cell self-
renewal and myeloid transformation [150], which might
be explained by enhanced and sustained inflammation in
the stem cell compartment [151] Fourth, TET2 deficiency
elicits monocytosis in mice and both the TET2 mutation
and monocytosis associate with inferior prognosis in
MPNs [152–154]. Indeed, this association may explain
the high cardiovascular morbidity and mortality in MPN
patients with monocytosis and perhaps also the increased
mortality associated with secondary cancers [105–108,
120–124, 131]. Accordingly, the TET2 mutation may be
yet another Binflammatory^ mutation, which together with
the JAK2V617F and CALR mutations may fuel the in-
flammatory drive, ultimately founding the soil for the de-
velopment of overt MPN diseases from clonal hematopoi-
esis of indeterminate potential (CHIP) in the background
population.

After the history on the journey of IFNs during the last
30 years, the mechanisms of action of IFN, and the novel
concept of chronic inflammation as the driving force for clonal
evolution in MPNs, we will in the following focus upon de-
scribing the rationales for IFN to be a successful story in the
future treatment of MPNs and the perspectives for its use in
MPNs. We do so by addressing some controversial issues in
MPNs and provide our answers to some key questions.

Some key questions on IFN-alpha2

Does the efficacy of IFN-alpha2 reflect interference
with a reactivated dormant virus—human
endogenous retrovirus (HERV)?

Since IFN-alpha2 has highly potent antiviral activity, it is
tempting to consider if the efficacy of IFN-alpha2 in MPNs
reflects that IFN-alpha2 interferes with replication of a virus
that is involved in the pathogenesis of MPNs. In this regard,
particular attention has been payed to the potential role of
human endogenous retrovirus (HERV), which has recently
been revived as a potential causative factor for the develop-
ment of MPNs [124]. Thus, the story on HERV being in-
volved in MPN pathogenesis is not new. Indeed, HERV-K
particles have been reported in megakaryocytes cultured from
patients with ET [155, 156]. In the context of chronic inflam-
mation as a potential trigger and driver of clonal evolution
[124–126], it is intriguing to consider if the marked deregula-
tion of inflammation and immune genes in MPNs
[142–144]—several of these being deregulated in virus-
induced malignancies as well—might be due to chronic in-
flammation elicited by a virus infection, e.g., reactivation of
an endogenous retrovirus [124]. Thus, a chronic HERV infec-
tion of myeloid cells might account for activation of immune
cells with deregulation of inflammation and immune genes.
The immune attack with apoptosis of virus-infected cells
might consequently elicit a sustained compensatory
myeloproliferation of non-infected cells. However, ultimately,
the immune system fails to clear the virus and from an early
stage (ET) the disease progresses during the next 10–20 years
in concert with a steady increase in bone marrow fibrosis,
reflecting sustained reparative processes in an attempt to heal
Bthe wound that won’t heal^ [124, 157].

Does interferon-alpha alter the frequency
and functionality of immune cells in MPNs restoring
a defective tumor immune surveillance?

As alluded to previously, IFN-alpha2 induces marked alter-
ations in both the frequency and functionality of immune cells
in MPNs [60–62]. Whole-blood gene expression profiling
studies have unraveled massive deregulation of inflammation
and immune genes with downregulation of several HLA-
genes of importance for tumor immune surveillance
[142–144]. Thus, immune deregulation in MPNs is well
established [104]. Importantly, treatment with IFN-alpha2 is
associated with upregulation of HLA genes [109] thereby im-
proving the defective tumor immune surveillance. It has been
speculated that the defective tumor immune surveillance
might not only contribute to MPN disease progression
through the biological continuum from the early cancer stages
(ET and PV) to the advanced metastatic myelofibrosis stage
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but actually might also account for the increased risk of sec-
ond cancers both before and after the MPN diagnosis [108].
The observation that discontinuation of IFN-alpha2 after long-
term treatment (e.g., 5 years) may be followed by several years
with normal cell counts and low-JAK2V617F burden (MRD)
[30, 31, 33, 41] also support the concept that IFN-alpha2—by
modulation and enhancement of the immune system and ac-
cordingly the defense against cancer development—is actual-
ly able to restore a defective tumor immune surveillance in
MPNs with a sustained and powerful control of the malignant
clone prohibiting clonal evolution. Studies are ongoing to elu-
cidate if IFN-alpha treatment of MPNs may also reduce the
increased risk of second cancers in MPNs as recently sug-
gested [108] and most recently preliminarily described [158,
159].

How does the mutational and cytogenetic landscape
impact the efficacy of interferon-alpha2 in MPNs?

The mutational landscape in MPNs is complex and highly
heterogeneous. Thus, in addition to the driver mutations—
JAK2V617F, CALR, and MPL—several mutations outside
the JAK-STAT pathway have been comprehensively de-
scribed during the years [69, 141, 160]. Importantly, disease
progression and clonal evolution in the biological continuum
from the early cancer stages (ET/PV) along the path towards
the advanced myelofibrosis stage have been closely linked to
the development of additional subclonal mutations (ASXL1,
SRSF2, CBL, IDH1/IDH2, TP53, and SRSF2), being indepen-
dently associated with leukemic transformation and poor sur-
vival [69, 152, 160]. Thus, despite a low mutation rate, it has
been shown that the presence of two or more somatic muta-
tions significantly reduces overall survival and increases the
risk for leukemic transformation in patients with MPNs [152].

Recent studies have suggested that mutations in the epige-
netic modifiers—TET2, DNMT3A, ASXL1, EZH2, and IDH1/
2—may lead to alterations in hematopoietic stem cell (HSC)
function [150, 161–164]. Since IFN-alpha2 directly targets the
malignant HCS [13, 14, 26], thereby potentially depleting and
eliminating the disease-initiating HSC compartment [115],
such alterations might negatively affect the response to IFN-
alpha2. Indeed, in a small series of JAK2V617F patients,
Kiladjian et al. showed that a subset had persistent TET2-pos-
itive clones during IFN-alpha2a treatment despite eradication
of the JAK2 mutations, indicating that IFN-alpha2 is able to
reduce or eliminate the JAK2V617F mutant clone but not the
TET2mutant clone [165]. These preliminary data might imply
that patients with concurrent JAK2V617F and TET2 muta-
tions have a less favorable response to treatment with IFN-
alpha2 taking into account that the TET2 mutation—as the
JAK2V617F mutation—is an Binflammatory mutation,^
which gives rise to increased production of IL-6 and thereby
an Binflammatory soil^ in the bone marrow with potential

impairment of IFN signaling and accordingly impaired clini-
cal and molecular response to IFN-alpha2.

Highly interestingly, by serial sequencing of TET2, ASXL1,
EZH2, DNMT3A, and IDH1/2 in ET and PV patients treated
with pegylated IFN-alpha2a, Quintas-Cardama et al. showed
that the frequency of mutations in genes outside of JAK2 was
higher in patients failing to achieve a complete molecular
remission (CMR) (56%) versus those achieving CMR
(30%), although this difference did not reach statistical signif-
icance. Furthermore, patients not achieving CMR were more
prone to acquire new mutations during therapy [36]. Of note,
TET2 mutations at therapy onset had a higher JAK2V617F
mutant allele burden and a less significant reduction in
JAK2V617F allele burden compared with JAK2 mutant/
TET2 wild-type patients [36]. Surprisingly, in this study,
TET2 mutant alleles were shown to be eradicated by IFN-
alpha2a in a subset of patents. However, all together, TET2
mutant clones most commonly persisted during IFN-alpha2a
treatment despite eradication of JAK2V617F mutant clones
[36]. The authors speculated if the discovery that mutations
in TET2 [150, 162, 163, 166], DNMT3A [161], and IDH1/2
[167] elicit an increased self-renewal might actually negative-
ly influence the ability of IFN-alpha2 to reduce or eliminate
mutant MPN disease initiating cells, which harbor these mu-
tations and accordingly conferring acquired resistance to IFN-
alpha2 [36]. The authors concluded that IFN-alpha2 induces
CMR in a subset of PVor ET patients, and that the molecular
signature may impact clinical andmolecular responses to IFN-
alpha2a [36]. Larger studies are needed to assess whether
mutations in TET2 and/or other genes that regulate the HSC
compartment (such as DNMT3a and IDH1/2) result in persis-
tence of malignant clones during IFN-alpha2 therapy and if
their persistence indeed impact upon the prognosis of ET and
PV patients being treated long-term with IFN-alpha2.

In regard to patients with early myelofibrosis, Silver and
co-workers have most recently described the impact of the
mutational landscape on the response to IFN-alpha2 in a phase
2 study of 30 patients with early myelofibrosis [117, 168],
including their initial cohort of 17 patients [169–171]. The
authors correlated response to IFN-alpha2 treatment with the
mutation profile at the time of diagnosis, including both driver
mutations (JAK2V617F, CALR, and MPL) and high risk mu-
tations (HRMs), including ASXL1, EZH2, SRSF2, and IDH1/2
[168]. Importantly, patients with these HRM did not respond
to IFN-alpha2 therapy, irrespective of spleen size. Of note, the
longest surviving patient who was in complete remission for
more than 25 years had a molecular profile that included pos-
itive CALR and TET2 mutation status. This observation is of
utmost importance since it dictates that the TET2 mutation
may not consistently imply a poor response to IFN-alpha2
treatment [117, 168]. The findings by Silver et al. suggest that
treatment with IFN-alpha2 in patients with early myelofibrosis
may offer a survival benefit, putting in perspective the
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rationales for early therapeutic intervention with IFN-alpha2
in this patient group [22, 23, 51, 120] instead of Bwatchful
waiting,^ which is recommended in patients with low-risk
MF at most MPN centers. The authors argue for early inter-
vention with IFN-alpha2 before the development of the ad-
vanced myelofibrosis stage with large splenomegaly and bone
marrow failure. At this stage of increasing genomic instability
and subclone formation, IFN-alpha2 has only a minor impact,
in part due to the presence of HRMs. The observations by
Silver et al. substantiate BThe Early IFN Intervention
Concept^ in MPNs [22–25, 51, 120], implying treatment
with IFN-alpha2 to be initiated as early after the diagnosis
as possible, when the tumor burden is at a minimum, be-
cause, at this stage, IFN-alpha2 is likely to have the opti-
mal chance of inducing MRD as defined by normalization
of the bone marrow and low JAK2V617F allele burden
sustained even several years after discontinuation of IFN-
alpha2 [22–25, 51, 120].

Several studies of smaller series of patients have document-
ed cytogenetic remissions during treatment with IFN-alpha2
[reviewed in 24]. In recent years, larger studies, including the
above study by Quintas-Cardama et al., have convincingly
confirmed that long-term treatment with IFN-alpha2 may be
followed by complete cytogenetic remissions [36, 37]. Thus,
this highly important observation has also been confirmed by
Gisslinger et al. using the new formulation of pegylated inter-
feron alpha (peg-proline-IFNa-2b, AOP2014/P1101) [37]. In
addition to high response rates being obtained on both hema-
tologic and molecular levels, (the JAK2V617F mutational
load) peg-proline-IFNa-2b treatment also led to cytogenetic
remissions in a subset of their PV patients, even in those with
complex cytogenetic findings at treatment onset [37]. In a
previous study, Gisslinger et al. have reported that chromo-
somal aberrations emerged at the time of IFN-alpha2 resis-
tance in a patient with primary myelofibrosis [172]. The im-
pact of the mutational and cytogenetic landscape upon the
immediate and long-term responses to IFN-alpha2 in MPNs
remains to be definitely described in larger studies.

How does the chronic inflammatory state in MPNs
impact the efficacy of interferon-alpha2?

Chronic inflammation may impact the efficacy of IFN-
alpha2 in MPNs. Thus, it has been shown that inflamma-
tory signaling impedes the effect of IFN-alpha2 [173]. As
previously alluded to, all effects of IFN-alpha2 on cells
are elicited through interaction with the type I IFN recep-
tor on the cell surface. This receptor consists of IFNAR1
and IFNAR2c chains. Among the potential mechanisms of
refractoriness to IFN-alpha2 is downregulation of
IFNAR1. Indeed, low levels of IFNAR1 correlate with
poor response to IFN-alpha2 in patients with malignant
melanoma [174]. Highly intriguing, Huang Fu et al. have

shown that inflammatory cytokines interleukin 1-alpha
(IL1-alpha) and tumor necrosis factor alpha (TNF-alpha))
stimulate IFNAR1 degradation and attenuate IFN-alpha
signaling [173]. In patients with chronic hepatitis C, un-
responsiveness to IFN-alpha is common, partly being ex-
plained by oxidative stress, impairing IFN-alpha signaling
[175]. Since MPNs are associated with elevated levels of
several inflammatory cytokines, including IL1-alpha and
TNF-alpha, being produced by the malignant clone itself
but also by the stroma cells in the bone marrow, and the
highest levels have been reported in patients in the ad-
vanced myelofibrosis stage [126], these data also support
the concept of early intervention with IFN-alpha2 when
the inflammatory state is less pronounced. The fact that
the effects of IFN-alpha are negatively impacted by in-
flammation may have several implications. First, one
may speculate if smoking—exposing a huge systemic in-
flammatory load—may actually interfere with IFN signal-
ing in MPN patients [176], implying either a weaker re-
sponse to IFN-alpha2 or larger doses to be used to obtain
adequate IFN responses in terms of inducing CHR.
Second, agents with an anti-inflammatory potential in
terms of lowering inflammatory cytokines, including
IL1-alpha and TNF-alpha, might improve the IFN-
alpha2 response. Indeed, the effects of IFN-alpha2 have
most recently been shown to be enhanced by combination
therapy with the JAK1–2 inhibitor, ruxolitinib, which is
potently anti-inflammatory and immunosuppressive as
well [177, 178]. Studies are ongoing to elucidate if
statins, which have been suggested as potential useful
agents in MPNs due to their anti-proliferative, anti-angio-
genic, proapoptotic, and not least anti-inflammatory capa-
bilities [179, 180], may also enhance the efficacy of IFN-
alpha2 in MPNs. Taking into account that patients with
MPNs have a 40% increased risk of second cancers [105],
and statins have been shown to reduce cancer-associated
mortality by 15% [181], their role in the treatment of
MPNs certainly deserves to be investigated in the future
[179, 180].

Do we have predictors of IFN response in MPNs?

As earlier addressed, the mutational landscape may influence
the response to IFN-alpha2. Highly interestingly, Andreassson
et al. have recently shown that variation in IL28B genotype
influences hematologic response in IFN-alpha2-treated MPN
patients [50] similar to the response to IFN-alpha2 treatment
of chronic hepatitis C, which has been shown to be strongly
influenced by several related single nucleotide polymor-
phisms (SNP) in a region adjacent to the IL28B gene [182].
These observations are of utmost importance, and if con-
firmed in larger studies, they may help in identifying those
patients who might benefit from IFN-alpha2 treatment.
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Rationales for treatment with IFN-alpha2
in MPNs

Why to treat with IFN-alpha2?

As previously addressed, IFN-alpha2 is increasingly being
recognized as the treatment of choice in the early disease
stages (ET, PV) and in early myelofibrosis [19–50, 56] based
upon safety and efficacy data on > 1000 patients being en-
rolled in single-arm studies during the last 30 years.

These studies have convincingly shown that complete he-
matological remissions (CHR) are achieved in the large ma-
jority with normalization of elevated cell counts within the
first 6 months [19–50, 56] being accompanied by molecular
remissions with a reduction in the JAK2V617F allele burden,
in many patients already within the first few months and a
subset of ET and PV patients achieving major molecular re-
missions after about 5-year IFN-alpha2 treatment. In a subset
of patients, long-term treatment with IFN-alpha2 (approxi-
mately 5 years) is associated with normalization of the bone
marrow, reflecting that IFN-alpha2 is a disease-modifying
agent [22–25, 30, 31, 33, 41]. Since thrombocytosis is asso-
ciated with an inferior prognosis in several cancers and MPNs
are associated with an increased risk of second cancers [105,
106] that also have an inferior prognosis as compared to the
background population [106], it seems highly relevant to nor-
malize elevated platelet counts in patients [108]. Importantly,
elevated platelet counts may attribute to the inferior survival
of second cancers in MPNs, since platelets enhance cancer
invasiveness in solid tumors and accordingly their metastatic
potential [183]. In addition, platelets surround tumor cells
during their journey to metastatic sites, thereby protecting
them from being attacked and killed by NK-cells. In this per-
spective, it seems most rational to normalize elevated platelet
counts by IFN-alpha2, which concomitantly strongly enhance
and boost the number and functionality of several immune
cells, including NK-cells. These important aspects have re-
cently been described as BThe Platelet-Cancer –Loop in
MPNs^ [183]. Another heavy-weight rationale includes the
fact that both leukocytes and platelets are deeply involved in
the atherosclerotic process and leukocytosis is a risk factor for
thrombosis—both in the background population and in pa-
tients with MPNs [125]. Accordingly, sustained leukocytosis
and thrombocytosis are likely key players in the development
of premature atherosclerosis in MPNs, being also substantiat-
ed by the association between the occurrence of the
JAK2V617F-mutation and ischemic heart disease in a large
epidemiological study [184]. In this study, the JAK2V617-
mutation was also linked to the emergence of second cancers
[184], raising the possibility that the JAK2V617F mutation
actually is a Btumor promoter^ not only eliciting genomic
instability in blood cells but also increasing the risk of other
cancers—perhaps by generating ROS and chronic

inflammation in several organs other than the bone marrow
compartment [108].

When to start treatment with IFN-alpha2?

All untreated cancers progress from an early stage to the ad-
vanced metastatic stage due to increasing genomic instability,
subclone formation, and ultimately metastasis. As cancers, the
MPNs are no exception to this general rule on cancer biology.
Accordingly, institution of IFN at the earliest time point pos-
sible in MPNs may offer the best chance of a successful out-
come [22–25]. The BEarly IFN Intervention Concept^ is based
upon Danish studies, which have demonstrated that long-term
treatment with IFN may induce a state of MRD as defined by
deep molecular remissions (< 1% mutated JAK2V617F al-
leles) in concert with a normalization of the bone marrow—
even being sustained in a subset of patients after discontinua-
tion of IFN for several years [30, 31, 33, 41]. Since chronic
inflammation may be a highly important driving force for
clonal evolution in MPNs, combination therapy with the
JAK1–2 inhibitor ruxolitinib and IFN (COMBI) has recently
been suggested to be a rational treatment modality [51] being
based upon the first clinical observation in a Danish PV-
patient treated with COMBI [177] and the highly encouraging
results in the Danish COMBI trial [178].

Side effects of IFN-alpha2

IFN-alpha2 treatment is associated with side effects that
account for drop-out rates of about 20–30% in most stud-
ies, even when using low-dose pegylated IFN-alpha2
[19–48]. Many patients only experience the initial flu-like
symptoms and afterwards they tolerate Peg-IFN-alpha2 ex-
ceedingly well. However, in some patients, chronic fatigue
and/or musculoskeletal pain may persist, ultimately neces-
sitating withdrawal of the treatment. A minority of patients
develop depression which necessitates pausing or discon-
tinuation of IFN-alpha2. In patients with previous or pres-
ent psychiatric disease, IFN-alpha2 should be administered
cautiously. Some patients may develop symptoms and
signs of autoimmune disease. Thyroid dysfunction—thy-
roiditis with ensuing hypothyroidism—may develop in a
subset of patients and accordingly it is recommended to
test thyroid function before and during treatment. Other
rare autoimmune diseases include polyarthritis, dermato-
myositis, immune hemolytic anemia, immune thrombocy-
topenia, and glomerulonephritis.

In previous studies in patients with CML and in pa-
tients with malignant melanoma, the development of au-
toimmune phenomena/diseases during IFN-alpha2 treat-
ment has been linked to an enhanced anti-leukemia or
antitumor effect reflecting a very efficient immune attack
on the malignant cells.

12 Semin Immunopathol (2019) 41:5–19



Whether similar associations exist in patients with MPNs
has never been investigated. A comprehensive description of
side effects to IFN-alpha2 in patients with MPNs has been
given in several reviews during recent years [22–26].

Conclusion and perspectives

The MPNs are inflammatory cancers, in which the malignant
clone per se generates inflammatory products that in a self-
perpetuating vicious circle sustain the inflammatory drive and
accordingly disease progression in the biological continuum
from the early cancer stages (ET/PV) to the advanced Bburnt-
out^ myelofibrosis stage and imminent leukemic transforma-
tion [120–128]. During this evolution, additional mutations,
other than the driver mutations, emerge. The MPNs are asso-
ciated with several Binflammatory^ co-morbidities, including
an increased risk of second cancers [105–108], which are like-
ly due to a defective tumor immune surveillance system being
partly attributed to the chronic inflammatory state [108].

The cornerstone treatment of MPNs in the future is fore-
seen to be IFN-alpha2, which as monotherapy in several stud-
ies during the last three decades has demonstrated safety and
efficacy and as the only agent within MPNs is able to induce
MRD and accordingly being disease modifying [30, 31, 33,
41]. Thus, recently, the apparent disease-modifying potential
of IFN-alpha2 in PV and ET as evidenced by the progressive
reduction of the JAK2V617 tumor burden during prolonged
therapy has elicited renewed efforts to evaluate its clinical
efficacy as front-line therapy for early stage disease in terms
of reducing thrombo-hemorrhagic events, normalization of
biochemical, hematologic, and molecular variables, and, ulti-
mately, altering the natural history of these diseases.

The perspectives for the future treatment of MPNs with
the goal of inducing MRD and hopefully cure in a subset of
MPN patients are combination therapies, in which IFN-al-
pha2—primarily and directly targeting the malignant clone
[26]—is being combined with agents targeting the concur-
rent inflammatory state (JAK1–2 inhibitors and statins), that
are driving clonal expansion and disease progression
[124–126]. The rationales for these combinations have been
thoroughly described and discussed in most recent reviews
[51, 124–128], and preliminary results from the first Danish
studies are indeed very promising [177, 178]. In patients in
the accelerated phase towards leukemic transformation and
in patients having transformed to acute myeloid leukemia,
the prognosis is dismal [185]. However, even in these
stages, IFN-alpha2 may be an option [186] with the potential
as monotherapy to revert imminent or overt leukemic trans-
formation [186]. Importantly, recent studies have shown that
monotherapy with the DNA-hypomethylator azacytidine
[187] may be efficacious in these patients, and combination
therapy with a DNA-hypomethylator and ruxolitinib may be

even more efficacious [188]. Based upon the above studies
of monotherapy with IFN-alpha2 and combination therapy
with DNA-hypomethylating agents and ruxolitinib in pa-
tients towards or with leukemic transformation, it is intrigu-
ing to consider if Btriple therapy^ (IFN-alpha2 + DNA-
hypomethylator + ruxolitinib) may be even more efficacious.
The rationales for this Btriple therapy^ are several. First,
such a combination directly targets the malignant clone
(IFN-alpha2 + DNA-methylator) and dampens the fire—
the inflammation—that fuels the malignant clone. Second,
as noted above, hypomethylators have shown efficacy as
monotherapy in MPN patients in the accelerated phase
[187] and combination therapy (aza and ruxolitinib) seems
even more efficacious [188]. Third, Aza stimulates the ex-
pression of retroviral proteins, and this expression of retro-
viral proteins activates immune signaling through the viral
defense pathway causing a type I interferon response and
apoptosis [189]. Fourth, the type I interferon response is
accompanied by upregulation of hypermethylated endoge-
nous retrovirus (ERV) genes and ERVoverexpression which
activates the response [190]. Fifth, by stimulating the ex-
pression of retrovirus (virus mimicry) [190], aza may render
MPN cells more immunogenic and thus more susceptible to
attack by immune cells. Sixth, by enhancing immune cell
function, IFN may—in combination with aza—further accel-
erate MPN cell killing.

Most recently, the JAK2V617F and the CALR mutations,
found in > 90% of patients, were shown to be highly immu-
nogenic neo-antigens [98–101]. Additionally, patients with
MPN display frequent and strong T cell responses against
the immunoregulatory proteins programmed death ligand-1
(PD-L1) and arginase-1 [102, 191]. Accordingly, peptide vac-
cination with either JAK2-mutant orCALR-mutant epitopes in
combination with vaccination against PD-L1 and/or arginase-
1 may be a new and potentially curable treatment modality for
MPN [98–101] as also reviewed by Holmström and
Hassselbalch elsewhere in this theme issue [52].

By early detection of MPNs at the earliest time point in
target populations in combination with early intervention with
IFN and in subsets of patients COMBI, it is envisaged that
MRD may be induced in a substantial proportion of patients
along the path towards ultimate cure being obtained by novel
vaccination strategies. The IFN story in MPNs will never end.
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