
Perspectives on Ozlab
in the cloud
A literature review of tools supporting Wizard-of-Oz

experimentation, including an historical overview of 1971-2013

and notes on methodological issues and supporting generic tools

John Sören Pettersson and Malin Wik

Information Systems

Faculty of Arts and Social Sciences

Perspectives on Ozlab
in the cloud
A literature review of tools supporting Wizard-of-Oz

experimentation, including an historical overview of 1971-2013

and notes on methodological issues and supporting generic tools

John Sören Pettersson and Malin Wik

WORKING PAPER | August 2014 |

Distribution:
Karlstad University
Faculty of Arts and Social Sciences
Information Systems
SE-651 88 Karlstad, Sweden
+46 54 700 10 00

© The authors

Print: Universitetstryckeriet, Karlstad 2015

ISBN 978-91-7063-587-8

urn:nbn:se:kau:diva-33617

WORKING PAPER | August 2014 | (2:nd print with minor corrections March 2015)

John Sören Pettersson and Malin Wik

Perspectives on Ozlab in the cloud - A literature review of tools supporting Wizard-
of-Oz experimentation, including an historical overview of 1971-2013 and notes on
methodological issues and supporting generic tools

WWW.KAU.SE

Preface

The Wizard-of-Oz method has been around for decades, allowing
researchers and practitioners to conduct prototyping without
programming. The extensive literature review in the field that we have
conducted revealed, however, that the re-usable tools supporting the
method do not seem to last more than a few years. Generic systems
start to appear from around the turn of the millennium, but already
most have fallen out of use.

Our interest in doing this review was inspired by the ongoing re-
development of our own Wizard-of-Oz tool, the Ozlab, into a system
based on web technology. In this report we take stock of some key
features of Ozlab as well as review and contrast other general Wizard-
of-Oz tools. Our ambition has been to list every generic tool even if
this entails some problems of defining exactly how generic a system
has to be to qualify.

Nevertheless, we think this collection of systems and issues are of
interest to people within the field, and we have added an introductory
chapter which compares and contrasts prototyping in general with
Wizard-of-Oz prototyping. This introductory chapter also provides an
historical overview of Wizard of Oz in the development of digital
interactive systems spanning the years 1971-2013.

A note on notation: we abbreviate Wizard of Oz into WOz but we
have not standardised spelling in citations and titles. We hyphenate
compounds as, e.g., ‘Wizard-of-Oz prototyping’ but leave citations
and titles unaffected by this.

We thank Elisabeth Wennö for a language check and all the
colleagues who have helped us find some papers or interpret their
reports, while acknowledging that any language error, mis-
representation, or obscurity remain our responsibility. We would
welcome any comments on this report or suggestions for improving
the information available on our website www.kau.se/en/ozlab!

August, 2014

John Sören Pettersson Malin Wik

john_soren.pettersson@kau.se malin.wik@kau.se

Table of Contents

1 Introduction .. 1
1.1 Prototypes, prototyping, and the wizard’s role ... 2
1.2 Examples of WOz experimentation 1971-2013 ... 9

1.2.1 Riek’s proposal for reporting HRI WOz studies 22
2 The Ozlab system .. 24

2.1 Director-based Ozlab (2001-2012): System overview 24
2.1.1 Director-based Ozlab: Usage and application ... 25
2.1.2 Plans 2011 for redevelopment of the Ozlab system 26

2.2 Web-based Ozlab Step 1 – design and implementation 27
2.2.1 Shell Builder – designer’s/test leader’s workspace 29
2.2.2 Running a test session (or a demo session) as TL 33
2.2.3 Participating in a test session (or a demo session) as TP 33
2.2.4 TV – Test Viewer .. 34
2.2.5 Design of the Ozlab start page .. 35

2.3 Recording and logging sessions .. 35
3 Generic solutions besides the Ozlab system ... 37

3.1 List of generic WOz tools reviewed ... 37
3.2 Review of the generic WOz tools ... 40
3.3 Requirements on generic WOz tools ... 54

4 How interaction is supported by the WOz tool ... 59
4.1 What basic actions is the wizard supposed to execute? 60

4.1.1 Visual output .. 61
4.1.2 Audible output ... 63
4.1.3 Actuator output ... 64
4.1.4 Examples .. 64

4.2 The Continuum from demonstration to evaluation .. 65
4.3 Explorative WOz .. 67
4.4 Exploration by short interruptions... 68
4.5 Web features in WOz experimentation ... 69

5 Platform-independent WOz tools ... 71
5.1 WOz tools for tests on several platforms .. 72
5.2 Threats to generic WOz tools ... 72

5.3 Generic web-based WOz tools ... 74
5.4 Limitations of the present web-based Ozlab system 76

6 Limitations of the Wizard-of-Oz technique .. 78
6.1 Validity ... 78
6.2 Reliability ... 82
6.3 Efficiency and reuse of prototypes and results .. 85
6.4 Ethical considerations .. 86
6.5 Delays and time lag .. 87
6.6 Cognitive load – Wizard stress and fatigue ... 89
6.7 Example: Wizards’ interaction patterns when learning Ozlab 91

7 Concluding Remarks ... 93
References ... 97

1 Introduction

The Wizard-of-Oz (WOz) technique is a method used to simulate the inner
workings of a system. The simulation is carried out by replacing a system’s
functionality with a human experimenter (a “wizard”) who interprets the
user’s actions and mimics the functionality, with or without the user’s
knowledge. The simulation will thus appear as a real and functioning system
for the user. These simulations can be employed to probe, discuss,
demonstrate and evaluate ideas on how a device should respond to inputs
(or actions) from users.

J.F. Kelley (1983) coined the “OZ paradigm” when reporting the
development process of a natural-language computer application called CAL
(Calendar Access Language), where a human replaced the language
processing components in the first steps of the development. The “OZ
paradigm” term alludes to the man hiding behind a screen while utilising
some (simple) technology to impersonate the wizard in the novel The
Wonderful Wizard of Oz (Baum 1900).1 Gould, Conti, and Hovanyecz (1983)
reported on a similar experimental arrangement as that used by Kelley. In an
experiment meant to gauge users’ tolerance of an imperfect listening
typewriter, they mimicked automatic speech recognition with a human typist
who wrote what the participants in the study dictated, but the system
replaced words not in a predefined dictionary with XXXX’s. The edited
writing was displayed on the user’s computer monitor.

In research laboratories nowadays there are several systems supporting
WOz experiments. One such system was developed at Karlstad University
in the early 2000’s. The system, called Ozlab, enabled prototyping,
demonstrating, and testing graphical or multimedia interfaces, without any
previous programming. However, this system depended on a multimedia

1 In the book, the humbug wizard hides behind a screen, while in the 1939 film
starring Judy Garland, there is a curtain. WOz papers sometimes refer to “the man
behind the screen” or “the man behind the curtain”.

2

production tool that no longer is supported by its manufacturer, and since
2012 Ozlab has been redeveloped as a web-based system. Our continuing
redevelopment of Ozlab has prompted us to continuously follow the
development of WOz systems and in the autumn of 2013 a systematic
survey was made of the present state of wizardry around the world. Here we
provide some details of Wizard-of-Oz prototyping methodology in general,
of Ozlab methodology and functionality in particular as well as issues
brought forth by other developers of ‘generic’ WOz systems, that is, setups
where a human being plays an active role and which can be reused between
different probings into interaction design problems.

This introductory chapter discusses some general issues for prototyping and
a characterisation of WOz. It also provides an historical outline of
interaction design work aided by the Wizard-of-Oz technique. Then follows
a chapter on the operation of Ozlab, after which we present a literature
review of generic WOz tools and then devote some space to problems
around the use of such tools including problems for web-based WOz
experiments. Although we found that it is beneficial for many ‘everyday’
employment of Ozlab to have its functions accessible as a cloud service,
there are also drawbacks that need to be highlighted and documented. After
the account of limitations inherent in a specific technology used for the
implementation of a generic WOz tool, there is also a chapter discussing
limitations in the Wizard-of-Oz method itself. Finally, the last chapter
presents some concluding remarks beyond the original scope of this work
(generic WOz systems).

1.1 Prototypes, prototyping, and the wizard’s role
The popularity of the WOz technique in studying language technology and
natural language interfaces can be explained by the nature of such systems
and technology: “Automatic interpretation of text or speech is difficult and
the Wizard-of-Oz technique thus gives systems developers a chance to test
systems before it is even possible to make them.” (Pettersson and Siponen
2002, p. 293) However, in the course of time, the Wizard-of-Oz technique
has shown to be useful in other application areas as well.2 “Since the system
looks real to the test user, one could use Wizard-of-Oz mock-ups to test

2 Examples of research areas where the Wizard-of-Oz technique has been used:
Automatic Speech Recognition (ASR), i.e., Natural Language Processing (NLP),
Text-to-speech synthesis (TTS), Multimodal Interaction, Human-Robot Interaction
(HRI), Augmented Reality (AR), Artificial Intelligence (AI), Ubiquitous Computing
(ubicomp), Mixed Reality (MR), Intelligent Tutoring Systems (ITS).

3

design ideas when there are reasons to believe that simple tests by sketches
and slides […] will not provide the right responses.” (Molin and Pettersson
2003, p. 77)

When using the Wizard-of-Oz technique, the user is deceived into believing
that he/she is interacting with an automated system. Therefore the user’s
responses will be more like real computer use than responses in interaction
with, for example, a paper prototype. Ozlab was developed at the turn of
the millennium to do interaction experiments through the GUI, the
Graphical User Interface, and not only through natural language. The GUI
was by that time the standard for human-computer interfaces but it was
harder to make WOz setups when graphics were involved – it is not
sufficient to sit behind the curtain and see what people enter (or listen to
what they say in a microphone) and then give the right commands to a
system. Instead, user actions on a screen have to be followed and
replacements for computer actions produced. There has to be a computer-
support for the wizard that goes beyond the mere typing a command to a
computer; this supporting tool has to be as graphic as the output itself. And
at the same time the tool should not need to be programmed for each new
test or demonstration. Otherwise not much is gained in employing a wizard
to simulate the program of a system-to-be.

From the outset it was clear that making a graphical WOz system would not
enable us to make simulations of action games – the wizard should
otherwise have an infinite capacity to outperform the user. Thus, Ozlab was
more for drag-and-drop interaction, as well as text input and (of course)
speech input, clicking on objects and other ‘pedestrian’ interaction that a
user might engage in, which constitute the interaction of most applications.

Thus, ‘manuality’ was (and is) an enabling and constraining characteristic of
a WOz demonstration and experimentation; enabling as it releases a designer
from the need to program, constraining as the demonstration will rely on the
performance of the human wizard. The WOz technique is used when it is
more important to demonstrate the user interface of some functionality than
to demonstrate how to program the same functionality.

However, some automaticity may help a wizard to conduct the demo,
simply because if there are some automatic parts, the wizard does not have
to react all the time on what the other person is doing. Clicking on links
would not need a wizard to shift pages if simple means for prototyping are
used such as PowerPoint or HTML editors. Such interaction – navigation –
is the typical interaction paradigm for much web use, and is also what paper
prototyping is often used for: the test leader has to provide a sheet of paper

4

each time a test user ‘clicks’ on a link by tapping his finger on the most
recent sheet. Paper prototyping has certain drawbacks when test subjects do
not feel free to act as they usually do because of the system’s very obvious
dependence on the test leader.3 Prototyping by PowerPoint can on the other
hand entail other problems because without a human intervention in the
display of different pages, many pages have to be made in several variants
for notifications, drop-down lists, etc. In one reported study, the
experimenters started with five slides in the first version but finally ended up
with a PowerPoint file consisting of 103 slides. “The more slides one is
working with, the more a function is missed which would allow to act out
changes on a defined number of certain slides.” (Bönisch, Held & Krueger
2003, p. 1070).

In general, the production of a prototype to demonstrate or test a design
idea should not cost much in proportion to the total cost of the
development. The reason for this is simply that prototypes are made in
order to revise or even discard the ideas they are built to demonstrate.
Therefore interaction designers have proposed different kinds of simple
prototyping methods such as those mentioned above. Often, this practice
has been presented as an exploration of prototyping techniques along a
fidelity axis: high-fidelity to low-fidelity. Before discussing various WOz
studies and generic WOz tools it can be worthwhile to have a look at such
dimensions of prototypes and prototyping. The reason is that it is not
obvious how to categorize or classify a Wizard-of-Oz prototype.

Former Ozlab researchers Nilsson and Siponen (2006) presented a 3-
dimensional characterisation of prototypes to better account for what is
essential in WOz prototyping. Obviously, the WOz prototype differs from
paper prototyping as it behaves like a programmed prototype or even as real
system implementation. At the same time manual labour is needed.
Someone has to do the processing, the ‘thinking’, when the user has acted in
some way. Thus, the crux is the automaticity, or rather how it is perceived.
When producing the prototype, it matters a great deal if the prototype is
autonomous or not. For the user, this is of no concern as long as it appears
to be automatic. Therefore, Nilsson and Siponen define two independent
axes: implemented and perceived automaticity.

3 Uceta, Dixon & Resnick 1998; Sefelin, Tscheligi & Giller 2003; Hundhausen et al.
2008; see also Lim et al. 2008 for other problems. Prototyping with children, esp.
children with severe learning difficulties, is also a situation where paper prototyping
has its limits; Molin and Pettersson 2003, p.77.

5

As for the concept of ‘fidelity’, Nilsson and Siponen note that “it is easy to
judge a representation’s fidelity if the representation has a counterpart in the
physical world” (p. 9) but that this is precisely not the case when doing a
design work. Instead they prefer the term ‘precision’ as do Beaudoin-Lafon
and Mackay in their HCI Handbook article on prototyping tools and
techniques: “Precision describes the level of detail at which the prototype is to
be evaluated” (2003, p. 1007; update 2012). The latter authors use a four-
dimensional framework for analysing prototypes:

 Representation [paper, computer simulated, etc.].
 Precision [e.g., informal or highly polished]
 Interactivity [“the extent to which the user can actually interact with

the prototype”: video clips are “fixed prototypes”, while simple
slide shows are “fixed-path prototypes”; programmed prototypes
are “open prototypes” and for the present purpose it is worth
noting that also WOz setups are “open prototypes”]

 Evolution [throw away, iterative, evolutionary; the latter prototypes
eventually become part of the final system]

In contrast, Nilsson and Siponen after defining the two dimensions for
automaticity, i.e. implemented automaticity and perceived automaticity, are
satisfied with only one more dimension, i.e. precision. In WOz prototyping,
the distinction between offline or online (as in the dimension
Representation) is not the essential factor: it refers too much to the
materiality of the prototype rather than to its appearance when actually used.
This is not to neglect the discussion about the “Anatomy of Prototypes” by
Lim, Stolterman, and Tenenberg (2008). As these authors point out,
building prototypes in the HCI field has a peculiar characteristic compared
to other design fields:

“the material used in the field – digital material – is of a
different kind, a ‘material without qualities’ (Löwgren and
Stolterman 2004). As they can take almost any shape or form,
digital materials have very few intrinsic ‘material’ limitations.
Physical materials – such as wood, concrete, or steel – all have
limitations and distinct properties that limit us in the choice of
the desired form and function of a design. Working with the
design of a digital artefact means that the material qualities
determine form and function to a lesser degree, and that the
design space therefore is larger and less restricted.”

(Lim et al. 2008, p. 9)

6

This fact is aptly demonstrated by prototyping with the Wizard-of-Oz
method. A WOz prototype is not existent until it is used because the
essential parts of the projected interactivity are not coded in the prototype.
In Ozlab methodology we have always called the basic file/files for
“interaction shell” rather than “prototype” – shells are empty – and added
that an “interaction scheme” or “response scheme” is needed for the
wizard. Pettersson (2003) points out that the script guiding the wizard’s
responses may be quite incomplete in the first design cycle. The scheme
may then be elaborated. This explorative use of WOz is as important as the
employment of WOz in evaluation. “People are generally good at
interactivity, but not in programming it in advance.” (Pettersson 2003, p.
163) Thus, in the situated context of a GUI dialogue, the wizard will not only
notice when people have problems but also understand what might help
them. This is to really use the human wizard as a human, not as a machines
substitute.

Two major types of dimensions are identified by Lim and co-workers when
they try to capture the anatomy of prototypes, namely filters and
manifestations, because they see it as a fundamental principle that
“Prototyping is an activity with the purpose of creating a manifestation that […] filters
the qualities in which designers are interested […]” (ibid., Table I). For the
manifestation aspect, they count three dimensions: material (medium used to
form a prototype), resolution (level of detail of sophistication, incl. response
time), and scope (range of what is covered to be manifested) (ibid., Table III).
Regarding WOz, we can see that each dimension will contain several
different variables, and thus the filtered quality dimensions, which are five in
number, will at times be hard to judge even in one and the same interaction
session. While the anatomy concept may be interesting to dwell on when
analysing various setups, both before a round of interaction sessions as well
as after, it will not be used in the present work. For generic WOz tools,
production possibilities for wizards and what input a wizard can get from
the system are more important (in addition, there is a general WOz
methodological question of how much ‘extra’ information the wizard gets
which a final system would not be able to capture – this question will recur
here in various instances when development cycles are discussed).

To continue, the line of thought emphasized above is to use the human
wizard as a human, not as a machines substitute. This line of thought – and
actual experience – led Ozlab methodology early to recognize others than
designers as wizards, and, vice versa, sometimes a programmer as nominal
test subject in order to demonstrate for a non-professional designer wizard
that users might act in various unforeseen ways, and there has to be

7

specifications of system responses also for such (mis)use. This became
evident in the very first development of Ozlab where special educators acted
as designers and wizards for various interactive training materials
(Pettersson 2002). The possible combinations of wizard types and user types
have been further extended when it was recognized that hiding the wizard
was often not needed; good GUI dialogues were obtained when content
experts acted as test participants in order to validate content-correctness of
interaction shells (Pettersson 2003, pp. 180f). Thus, the reliability and
validity of WOz testing hinges as much on the purpose of each test as on
any purported qualities of the prototype ‘itself’. (Also Lim et al. take a
critical stance towards the discussion on the validity of prototyping.
Buxton’s 2007 book on sketching demonstrates how prototyping can be a
generative process.)

Finally, to comment on the fourth dimension in Beaudoin-Lafon’s and
Mackay’s framework, i.e. evolution, it might seem that a WOz prototype
always ends up at zero along this dimension, even if evolution in general is a
relevant dimension of prototyping. However, it is important to put the
WOz prototyping into the perspective of a longer design cycle (as will be
discussed in particular in 3.3). Thus, it is again not the ‘stored’ version of a
WOz prototype that should define its characterisation (other than for
technical purposes, of course), but its employment. Furthermore, several
WOz setups have been made to include functioning parts in order to
gradually replace WOz simulations and thus arriving at working systems
(possibly merely working prototypes, but anyhow, an evolution perspective
can be relevant in WOz prototyping). Even if there is no fixed evolutionary
goal, there is sometimes a need to mix functional and manual parts: Serrano
and Nigay (2010, p. 218) point to the problem of evaluating multimodal4
systems where different components have different levels of perfection.
Such misalignments will probably make test participants prefer the
modalities that work smoothly, thus making it impossible to evaluate full
multimodal interaction. Therefore, wizardry is needed to simulate some of
the components while other components are concurrently working
automatically.

This brings us to another use of a WOz setup, namely one where the wizard
is closely following the interaction of a test subject and a working system,

4 See also their paper on multi-modality prototyping tools entitled “A three-
dimensional characterization space of software components for rapidly developing
multimodal interfaces.” (Serrano, Juras & Nigay 2008)

8

and has the ability to intervene. At one extreme, this may be the sole
purpose of letting a test leader into the working system:

“The trainer control unit is implemented as a touch-based
interface serving as a teaching tool that allows instructors to
animate game characters in response to trainees’ actions.

All the animations and actions that the game can perform
could be initiated through this trainer control interface.
Moreover, game actions that are initiated by trainees through
spoken commands can be overridden by instructors (e.g. when
the speech recognition system did not accurately process the
command) or reversed by instructors to create “on-the-fly”
training situations that test the responsiveness and judgment of
the trainees, as, for example, introducing non-compliant
behavior for the virtual game characters.”

(Fournier et al. 2012, p. 6)

In this example the purpose of the wizardry is not to redesign the system
but to act as a teacher (or game master) and this falls somewhat outside the
“OZ paradigm” as it were. But it illustrates the width of application along an
evolution dimension. In fact, some years ago the Ozlab group in Karlstad
discussed with a rehabilitation centre that suggested using Ozlab for
scaffolding when people with acquired brain injury was training to come
back to computer literacy including mastery of widgets such as dropdown
lists.

After this introduction to WOz as one prototyping method among others,
and to the various aspects of WOz tools and wizardry, the following section
gives an historical exposé over how Wizard-of-Oz tests have been
conducted.

Many studies have used the “OZ paradigm” since Kelley coined the term in
the beginning of the 80s. The aim of this literature review is mainly to give
examples from the various application areas rather than listing all papers etc.
reporting Wizard-of-Oz studies. Moreover, in the domain of Natural
Language Processing (NLP), many systems are commercial and therefore
many studies and methodological refinements are not reported in scholarly
or other publicly available publications, which makes it hard to provide a
detailed account.

In addition to the exposé in section 1.2 of WOz studies in different
application areas, Chapter 3 aims at providing a complete list of WOz setups
that are made for re-use as general experimental tools rather than for a
specific test or series of tests. They are here called “generic WOz tools”.

9

Naturally, any definitive boundary between generic and non-generic systems
is not possible to establish, especially regarding the many and divergent
application areas as explicated in section 1.2. What one team finds ‘generic’
might well be regarded as specialized or limited by other teams. But because
quite many systems have been developed with reusability in mind the
intention of the present work has been to gather as many such examples as
possible in order to see general trends and problems (to be discussed in
Chapter 3 and onwards).

1.2 Examples of WOz experimentation 1971-2013
In this section, WOz studies with non-generic tools are presented. The
order of presentation is chronological rather than by application area.

Wizard-of-Oz-like experiments were not common before the ’80s. There is
of course the fantastic story of von Kempelen’s Mechanical Turk from the
18th century (see, e.g., Standage 2002), but the present historical account is
confined to digital interaction automata. A rare pre-80s example in the IT
field is the evaluation of a self-service airline ticket vending machine, where
part of the internal functionality – communication with the airline booking
system – was performed by a human operator instead of the Automatic
Ticket Vendor machine itself (Erdmann & Neal 1971). Another example is
found in Malhotra’s research on how to make management systems more
accessible by letting managers use English rather than formal query
languages. Malhotra let test participants “solve a realistic problem using a
simulated ‘perfect’ English language management-support system” (1975, p.
56) – perfect in the sense that it was not reliant on any immature English
language processing capability of a computer. Participants typed in their
request on a hard copy console but the requests were interpreted by the
experimenter, who also composed answers with the help of a database and
his own knowledge. Malhotra reports:

“In fact, surprising as it may seem, few subjects realized that
the experimenter was creating the responses until they were
told so after the experiment. Until this secret was revealed,
many subjects were extremely impressed by the range of
capabilities displayed by the system. Thus, the Perfect System
could be said to be a success as the subjects behaved as if it
were an ideal English language question-answering system.”

(Malhotra 1975, p. 57)

Thus, this was a success as a method of generating typical systems request
made by managers if they could use English without having to learn a
formal language. “Their English was informal, much closer to the spoken

10

language than prose” (p. 61). On the other hand, would it not be more
interesting to see how human-machine dialogue would differ from human-
human interaction since no Perfect English Language System is likely to be
built? A caveat is given by Tennant: “Data can be gathered from simulations
that cannot be gathered from interaction with actual systems simply because
people can so readily adjust their habits.” (1981a, p. 37; not to be confused
with his 1981b book on NLP systems). Tennant develops his own
evaluation methodology where the human intermediary is used to generate a
standard or background against which to judge a specific system:

“Completeness—simulate the system with a human inter-
mediary and real world problems to study user expectations
toward a linguistically capable system; compare results with the
capabilities of the system under test.”

(Tennant 1981a, p. 54)

However, by this time researchers had been accustomed to functioning
systems for typed and spoken natural language processing, albeit limited in
capacity, and interests were geared towards making usable systems rather
than wholly natural systems (for the continued debate on this, cf. e.g.
Edlund et al. 2008). Thus, in the ’80s the deceitful Wizard-of-Oz method
started to flourish as a method to test systems not yet implemented.

As mentioned at the beginning of this chapter, Gould, Conti, and
Hovanyecz (1983) used WOz when developing a listening typewriter. The
experiment was meant to gauge users’ tolerance of an imperfect listening
typewriter. During the experiments the subjects talked into a microphone in
front of a computer screen. In an adjacent room, a typist acted wizard and
took down what the test subject said if the words were in a predefined
dictionary. The wizard’s text output was displayed on the monitor in front
of the test subject.

Kelley (1983) coined the “OZ paradigm” when employing Gould’s and co-
workers’ methodology for the development of natural-language computer
applications. The “OZ paradigm” was used to simulate the language
processing components of CAL, the Calendar Access Language, in two
ways, as described by Kelley (1984, p. 28; cf. 1983, p. 193):

“First run of OZ (simulation). Here, no language processing
components were in place. The experimenter simulated the
system in toto.”

“Second run of OZ (intervention). This was the iterative design
phase of program development. Fifteen participants used the
program, and the experimenter intervened as necessary to keep

11

the dialog flowing. As this step progressed, and as the
dictionaries and functions were augmented, the experimenter
was phased out of the communications loop.” [In this run,
participants used keyboards.]

The second run yielded fewer and fewer new words for each new
participant, and it was succeeded by a validation step where a further six
participants tested the resulting program to see how it performed.

Notably, Kelley used the word “iterative design” for one single phase where
improvements to program code were made for each participant trying to
complete various task with the calendar application. The word “iterative
design” is often used for each major round rather than for each test session
by many other authors. Kelley’s use of the word reveals how the Wizard-of-
Oz technique can be applied, that is, to develop an interaction design rather
than validating, evaluating, or in general testing it. On the other hand, in a
simulation setup it is cheap to compare different designs because they are
not even partly implemented yet.

After the works of Gould, Kelley, and other researchers at IBM Watson
Research Center, several other Wizard-of-Oz setups were employed by
researchers and developers within the area of NLP, natural-language
processing. By the 90s it was employed in several commercial developments;
suffices it here to note one paper which at some length discussed the
method of using hidden wizards including the criticism which by this time
had been voiced against this way of conducting experiments.

The simulation environment ARNE-3 is seen here as non-generic even
though it was used in different studies by Dahlbäck, Jönsson, and
Ahrenberg (1993). The authors state that customizing the environment is
time-consuming, and needs to be done prior to a new study. When working
with ARNE-3, the wizard interprets the participant’s commands and
chooses what to display from a database connected to a graphical interface.
The system contained a menu-driven sentence generator, preventing the
wizards from making spelling mistakes and grammatical errors.

Interestingly, and typical of the time when they conducted their
experiments, Dahlbäck and co-workers addressed two questions outside the
immediate concern of their experiments, namely “Does the method work?”
and “For and against chosen method”. These were big questions by that
time. Are test participants really fooled by the setup so that data can be
regarded as valid (i.e. being data from a human-computer interaction and
not between two humans)? The authors answer this question in the
affirmative. The ethical issues of fooling people are countered with the

12

explanation that people are informed afterwards and that in the reported
experiments, no test subject became angry when hearing the truth.

Some more factors were considered in the weighing of arguments for and
against the Wizard of Oz. Some critics had advocated the study of real
systems instead of simulated ones – a proposal obviously not from the
design disciplines. Even so, Dahlbäck and his co-authors, referring to other
NLP researchers, conclude “that people can often adapt to the limitations of
an existing system, and such an experiment does not therefore tell you what
they ideally would need.” (p. 265). Here they could also have referred to
Leiser (1989), who demonstrated how participants adapted their queries to
paraphrases made by the system before presenting search results (as NLP
was immature when Leiser conducted the experiment, the study relied on
the Wizard-of-Oz technique).

Dahlbäck, Jönsson and Ahrenberg, finally addressed the criticism often
directed against laboratory-based studies, namely that the setups entail rather
artificial situations and role playing by the participants (that is, not only the
more obvious role-playing by the wizard): “However, if the focus is on
aspects not under voluntary conscious control”, as the case is with linguistic
elements, data are likely to be valid, the authors conclude. Some of these
issues will be discussed in more detail in Chapter 5.5

Maulsby, Greenberg and Mander (1993) used the Wizard-of-Oz technique
in order to explore how users would teach an “intelligent agent” Turvy to
do often repeated tasks in the UI. Relying on previous studies such as
Gould and co-workers, Leiser referred to above, Hauptmann (1989) on
manipulations by gestures and speech, and the ARNE study, as well as on
their own user study on a programming-by-demonstration system, they had
come to the conclusion that:

“Agents must be designed around our understanding of what
people require and expect of them. However, the traditional
approach of system building is an expensive and unlikely way
to gain this understanding. The underlying discourse models
and algorithms for agents are usually so complex and
entrenched with assumptions that changes—even minor

5 With all the variability potentially introduced by a human being, could a WOz
experiment deliver reliable data as compared to other experiments in psychology?
This is not raised by the ARNE group – to the contrary, they claim that their use of
several wizards ensure that participants’ sentence constructions are “not the
reflection of the idiosyncrasies of one single person’s behaviour” (p.265).

13

ones—may require radical redesign. Moreover, because agents
act as intermediaries between people and their applications, the
designer must craft and debug the agent/application interface
as well. A viable alternative to system building is Wizard of
Oz.”

(Maulsby, Greenberg & Mander 1993, p. 277)

By using WOz, the experimenters could see what object selections,
demonstrations, and verbal input users would use, and also how users
structured Turvy’s learning. As for the method itself, the experimenters
drew five conclusions (ibid., Abstract and p. 283):

a) “Design of the simulation benefits greatly from prior implementation
experience.” The essence of this argument is that it is important to be close
to what systems could realistically perform. Otherwise, the WOz data
generated will be invalid.

b) “The agent’s behavior and dialog capabilities must be based on formal
models.” The reason for this is the same as a) and also because it “ensures
consistent behavior and experimental repeatability.” This is thus in sharp
contrast to the “iterative” method employed by Kelley for quickly working
towards a usable as well as machine-recognisable set of words for CAL. One
might say that the latter experiment was more complicated as it involved
example-giving by the users and not only spoken commands (“Turvy is the
most complex Wizard of Oz simulation done to date.”) and this fact would
make it necessary to limit the degrees of freedom along all the involved
dimensions.

c) “Studies of verbal discourse lead directly to an implementable system.”
Maulsby and his co-authors refer to other systems implanted by the group.
One could also compare with other systems developments where some freer
linguistic interactions have preceded more restricted interaction (again
Kelley can serve as an example, but one can also compare with the Iterative
Communication Capacity Tapering, ICCT, by Mavrikis and Gutierrez-
Santos mentioned below).

d) “The designer benefits greatly by becoming the Wizard.” An interesting
remark, of course, and its implied scope can be extended. When non-
professional designers are involved, experienced programmers and/or
designers can act as test participants (beside the target group) to
demonstrate specific ‘aberrant’ user behaviours that one has to design
computer responses to, as noted above in section 1.1.

e) “Qualitative results are the most valuable. By acting as Wizard, facilitator,
and interviewer, the experimenters become immersed in the experiment and

14

many important results become obvious. The most interesting experimental
questions cannot be answered by statistics, at least in small, cheap studies.
Still, measurements are useful: they validate the opinions of experimenters
and users, and allows a detailed (if myopic) exploration of particular
activities.” (p. 283)

It could be added that the test participants in this study were aware of the
‘man behind the curtain’. “To reinforce the fantasy, the Wizard spoke in
clipped sentences, with rather mechanical intonation. While we did not
deceive users, they quickly bought into the illusion. They spoke more curtly
to Turvy than to the facilitator, and referred to Turvy and the Wizard as two
separate entities.” (p. 281) In addition, the Turvy wizard not only heard the
user’s voice but could also see his or her gestures and respond consistently.

The book Humans, Computers, and Wizards. Analysing human (simulated) computer
interaction from 1997 by Wooffitt, Fraser, Gilbert, and McGlashan argues
that an HCI approach based on cognitive psychology does not encompass
what is going on in an interaction: “Dialogue emerges through the interplay
of the participants. Each participant only has the ability to influence the
directions of the dialogue on a turn-by-turn basis. Neither can plan a course
for the whole dialogue a priori and impose it on the other.” (p. 13) The
authors refer to sociology, conversation analysis, and Suchman (1987), but
already when it was published this book must have been a bit antiquated,
not only because of its focus on conversation as telephone dialogues, but
also because design science was discussed in HCI and the scope was seldom
narrow linguistics and cognitive psychology. (Some reviews of this book will
be discussed in 6.1 below.) A year later, the volume Designing Interactive Speech
Systems. From First Ideas to User Testing, by Bernsen, Dybkjaer, and Dybkjaer
(1998) appeared, in which the focus is once again on speech-based systems.
“Wizard of Oz Simulation” is given a 34-page chapter even though the
authors embrace the method with caution: “WOZ is a relatively costly
development method because: (1) the wizard needs a significant amount of
training and support; (2) involving experimental subjects, WOZ experiments
require careful planning and preparation and take time to run; (3)
experimental results have to be transcribed and analysed, which take time
and requires skill to benefit further system development.” (p. 127) The first
point is especially pertinent in NLP simulations: “it is difficult or impossible
for the wizard to precisely simulate the limited speech recognition of the
future system” (p. 130).

Other interaction researchers have taken more advantage of the fact that the
Wizard-of-Oz method could be used for experimenting with other natural
expressions than language as input to a system. Hauptmann (1989), referred

15

to by Maulsby as noted above, used a person for the recognition of gestures
and speech when test participants tried to manipulate 3D-graphic images.
Haputmann did not use the term “wizard” for this person and there is
nothing in his paper that indicates that participants were deceived. At any
rate, these were gestures directed at the computer but one can also imagine
systems recognising other actions taken by humans. NEIMO, which is listed
among the generic systems in Chapter 3, was built to collect data from
several observers/wizards to capture not only keystroke level events but
also “high level tasks such as sending a fax” (Coutaz, Salber, Carraux &
Portolan 1996, p. 402). Thus, the idea of an ambient computing
environment could be explored. The system was designed to analyse
multimodal inputs such as combined use of several modalities as well as
redundancy “i.e., simultaneous use of multiple modalities with identical
semantic content as in uttering ‘Call Jo Smith’ while clicking on Jo’s direct
phone number” (ibid.; for further developments by the groups in Grenoble,
see MultiCom and OpenWizard in Chapter 3 including the footnote about
EmOz).

After NEIMO, several WOz studies have been made in the area of
Ubiquitous Computing. For instance, Mäkelä, Salonen, Turunen, Hakulinen,
and Raisamo (2001), using a tool similar to the one used by Dahlbäck and
co-workers referred above, conducted a WOz experiment on a
computerized Doorman system in its intended environment at a university
in Finland. The system’s speech recognition was simulated during the
experiment. This study also exemplifies the growing interest in including
gesture output from the system: the wizard controlled speech synthesis and
direction pointing of a robot inside the building. After the turn of the
millennium, there have been an ever-growing number of HRI studies, i.e.
studies in Human-Robot Interaction. While the Ozlab-based study on an
orthopaedic robot was quite advanced (section 2.1.1; Larsson & Molin
2006), the most challenging question is how people interact with movable
robots (see e.g. works on service robots by Green et al. 2004, 2006, and
Hüttenrauch et al. 2006). Such studies have expanded the Wizard-of-Oz
methodology as will be further highlighted in section 1.2.1 on Riek’s (2012)
review of 54 WOz-based HRI studies.

Hudson, Fogarty, Atkeson, Avrahami, Forlizzi, Kiesler, Lee, and Yang
(2003, p. 257) explored “[…] whether and how, robust sensor-based
predictions of interruptibility might be constructed, which sensors might be
most useful to such predictions, and how simple such sensors might be”.
Hudson et al. claim that the Wizard-of-Oz technique was used to simulate
“a range of possible sensors through human coding of audio and video

16

recordings.” (p. 257) One could argue that such sensors were simulated by a
human. But even so, this study does not seem to incorporate what is
normally described as the Wizard-of-Oz technique, as no human wizard is
acting/giving output to the user in real-time: the audio prompts sent to the
participants in the study, asking them to rate their current “interruptibility”
were sent at “random but controlled intervals” (p. 259), indicating no
human/wizard involvement in the audio prompts.

Probably the most extreme ‘manual’ intervention by wizards is reported by
White and Lutters (2003). They used the Wizard-of-Oz technique to assess
concepts, identify design requirements, and understand organizational forces
in a field study of “cross-organizational expertise recommendation and
organizational memory systems (ER-OMS)” (p. 129). They argue that it is
hard to make a proof-of-concept requirements gathering with other
prototyping techniques because content and (other) users are missing. The
users’ questions to the simulated inter-organizational system were physically
carried between the three partaking sites, where the two other sites printed
solutions from their databases if available. Solutions were then physically
carried back to the person posing the question. Email or fax was not used,
as that would have “limited our ability to observe processes of sensemaking
over the returned solutions” (p. 132, right column).

Another area that was gaining ground in the 1990s was avatars or artificial
faces embodying information in conjunction with text or speech output.
The EU project Humaine exemplified this with its focus on “Embodied
Conversational Agents (ECAs)”. Wizard of Oz was used to drive
conversations with test participants while there was a set of selectable
embodiments for the wizard to make use of. See especially the project
workshop document by Cavalluzzi, Clarizio, De Carolis, and de Rosis 2005
(for interaction data and conclusions, see Berry, Butler & de Rosis 2005; de
Rosis, Cavalluzzi, Mazzotta & Novielli 2005; Cavalluzzi, de Rosis, Mazzotta
& Novielli 2005).

Höysniemi, Hämäläinen, and Turkki (2004) used WOz to simulate a body
movement controlled computer game for children by letting a wizard
interpret the children’s body movements when playing the game and
controlling the avatar via a computer.

Akers (2006, p. 454) used the Wizard-of-Oz technique in a “participatory
design process in which users invent and test their own gestural selection
interfaces” helping in the development of an interface for 3D selection of
“neural pathways estimated from MRI imaging of human brains”. The users

17

(neuroscientists and one radiologist) explained the intentions with their
gestures and the wizard implemented (simulated) them.

Another attempt to provide for end-user design development but within the
area of sensor-based application is iCAP. “End-users with little technical
expertise should be able to exercise control over context-aware systems and
rapidly prototype applications. They have more intimate knowledge about
their activities and environments than a hired programmer and they need
the ability to create and modify applications as those activities and
environments change.” (Dey, Sohn, Streng & Kodama 2006, p. 255) The
system iCAP tried to capture this by providing simple and graphically
displayed rule settings (Sohn and Dey 2003. iCAP used SATIN by Hong
and Landay 2000; see also other works by Landay). WOz was used to
confirm test users ability to set rules: “Finally, users were able to successfully
test their rules using the Wizard-of-Oz prototyping interface. For each rule,
they verified that the correct action was executed when they manually set
the appropriate contextual conditions.” (Dey et al. 2006, p. 266)

Consolvo, Harrisson, Smith, Chen, Everitt, Froehlich, and Landay (2007)
report on a study where the collection of in-situ data, especially for ubicomp
products, was evaluated. Three techniques were used, among them Wizard
of Oz. The WOz prototype was used to simulate sensors picking up on the
elder’s activities and doings, “deployed in home settings for supporting
eldercare” (p. 104). The prototype was that of “CareNet Display”. Phoning
the elder and/or the caregiver several times per day simulated the intended
sensors. The output of the simulated sensors was then manually updated to
be visible on the “CareNet Display” via “web connection”, without needing
to involve family members of the elders.

Also NLP researchers were interested of “in situ” data in spite of Dahlbäcks
et al.’s optimistic view that in NLP research “the focus is on aspects not
under voluntary contrary conscious control” (loc. cit.). At the Finish-
Swedish telephone operator Telia Sonera research had been ongoing for
more than a decade when it finally aborted all speech research in 2009. By
integrating research into customer companies call center services, natural
data could be collected, even if the speech output was controlled by wizards.
Eklund (2010) makes the case for the benefits when doing research on so-
called disfluencies, especially “filled pauses”, i.e. when people say “er”, “ah”,
etc., which of course can interfere with automatic speech recognition. In
fact, the Telia researcher found filled pauses to be twice as common in their
data as in lab-based studies. Eklund hold this against laboratory studies: “As
have been shown, disfluency is within speaker control (e.g. [Siegel et al.
1969]) and it could be the case that awareness of the recording devices

18

actually have an effect on disfluency production. For example, it has been
shown that speaker disfluency is decreased simply by directing a TV camera
on the speaker [Broen & Siegel 1972].” (ibid., p. 25f) But he acknowledges
that studies based on uninformed subjects are unlikely to pass ethical
committees.

Another natural language phenomenon, not often prominent in dialogue
systems development, is the fact that two speakers often predict when the
interlocutor will go silent and therefore start speaking almost at the instance
when the interlocutor ends an utterance. “Contrary to this, most spoken
dialogue systems use a silence threshold to determine when the user has
stopped speaking. The user utterance is then processed by one module at a
time, after which a complete system utterance is produced and realised by a
speech synthesizer” according to Skantze and Hjalmarsson (2010). Instead
they used an “incremental” speech analyser to produce utterance quicker. As
the automatic speech recognition module was not yet complete, they had to
use the Wizard-of-Oz method to test the impact of repair sequences and
pause fillers for the overall user experience. This setup made quite
demanding requirements on the wizard to quickly write down what test
users said. At the same time the setup included just the methods humans
would use (fillers and repairs). A comparable setup without incremental
analysis was also used and test users found the incremental method to be
significantly more polite and efficient, and it was easier to understand when
to speak. Interestingly, the different system behaviours did not result in any
statistically significant differences in user behaviour (user utterance length
and user response time were analysed).

Some years before, Robins, Dautenhahn, te Boekhorst, and Nehaniv (2008)
reported on a wizard facilitated experiment on child-robot interaction:
Would delays in robot response affect children’s turn taking and pace of
performing gesture input? When children were beating a rhythm on a
tambourine, which the robot repeated, “the effect of delay was especially
strong when the robot did not show a facial/gestural expression” (p. 21).
“Delay by the robot also increased the average drumming duration in the
children, but in this case the effect was significant only when the robot did
exhibit facial/gestural expression” (p. 22). On the other hand, when the
children were to elicit some gestures/postures for the robot to imitate,
delayed response had the opposite effect on some children: “To the
experimenter, it appeared almost as if they ‘couldn’t wait for their turn’” (p.
22). Despite variations, a “statistical analysis of the whole sample” showed a
prolongation in the children’s performance of the gestures/postures that the
robot should imitate (p. 23).

19

Studies such as those by Skantze and Hjalmarsson, and Robins and his co-
workers make it harder to generalize the results by Leiser (1989), who
demonstrated how participants adapted their queries to paraphrases made
by the system as mentioned above. Moreover, for an experimental technique
that relies on an extra loop before responses can be provided to test
subjects, as the Wizard-of-Oz method does, the effects of delays must be
taken in account. This will be discussed more thoroughly in Chapter 6.

Lee, Mott, and Lester (2010) simulated “natural language dialogue
functionalities” by using the WOz technique, when experimenting with
interactive narrative decision-making in a learning environment (which were
narrative-centered) for middle school students. The wizard provided the
user with narrative planning functionalities, guided the user through the
game via hints and decided what the user should/could do next (through
spoken natural language dialogue, but also through game specific
hints/guide/plot changes). Less narrative focused but with an interesting
pedagogical approach where the system asks the science student was
elaborated in part by WOz experimentations by Ward et al. (2011).

Webb, Benyon, Bradley, Hansen, and Mival (2010) used the Wizard-of-Oz
technique to collect dialogue data fit for companions: “Companions are
advanced spoken dialogue systems, that attempt to go beyond the limited
functionality of current task-oriented systems, to be cooperative,
collaborative dialogue partners, that form long term relationships with the
user.” (Webb et al. 2010, p. 875) In their experiments text-based user
utterances were used to classify the user’s mood. The wizard had “a strict
series of guidelines to control the interaction to identify and/or react to
certain user driven situations”. (ibid. p. 875) The classification was done by
the wizard who calculated the cumulative score of the user’s utterance, and
then answered according to what system strategy was decided for that
specific session. In their experiments, Webb and co-workers used two
interaction strategies that they called “empathy” and “positivity”. (For more
on the Companion project 2007-2010, see http://www.companions-
project.org.) Another attempt to base analysis on more than linguistic
expressions is presented by Rösner, Frommer, Friesen, Haase, Lange, and
Otto (2012) when building up the corpus LAST MINUTE: skin reductance,
heartbeat, and respiration as well as stereo camera data are available to
researcher (see instructions in Rösner et al. 2012, p. 2566). Also extending
beyond the NLP domain, Li (2012), after a cursory literature review, tries to
make the case that more stringent WOz experimentation is needed for the
proper analysis of proposed interaction design for so-called intelligent
systems, i.e. pro-active systems. Through a series of WOz experiments Li

20

demonstrates the impact on the consistency of system operations of four
factors: interaction schema, wizard user interface, wizard’s interpretation of
participant’s actions, and change of wizards.

A totally different approach to multi-modality in WOz studies, but also with
a very strong methodological focus, is taken by Mavrikis and Gutierrez-
Santos (2010). They present a study on the development of pedagogical
software where the concept of Iterative Communication Capacity Tapering
(ICCT) was used. The word tapering means that communication between
learner and teacher is gradually narrowed down in a series of iteration when
developing a tutoring system (by WOz, of course, otherwise there would
not be any interaction involving the teacher). ICCT is a combination of
tapering along two dimensions, namely what the authors call “interaction
bandwidth” and “feedback improvisation”:

The interaction bandwidth captures “the available modalities of communication
between the student and the facilitator” (p. 643) the authors explain and
provide an example: “In face-to-face communication, there are many
different ways to communicate with the student. The facilitator can speak
orally, but can also point to entities on the screen, take control of the
actions (e.g. moving the mouse for the student) to prove an argument, and
draw inferences based on facial expressions and gaze direction (e.g. focus of
attention, emotions like boredom or excitement, etc). This rich com-
munication is far from what can be achieved by most computer-based
system.” (p. 644)

Feedback improvisation captures “the freedom provided to the facilitator to
improvise during a session with the student. This becomes important in the
case of exploratory environments, in which the student holds a greater
freedom to act than in other systems, while the computer-based system
holds the usual limitations in the kind of feedback it can provide. [¶] This
issue is especially important in the case of textual communication; the most
common approach to provide support. Despite the great advances in the
NLP field, natural language generation is still far from being a mature
technology that can be used easily for the provision of intelligent support.
Therefore, most systems rely on a template of pre-generated messages for
their interventions. The design of these templates is crucial for the correct
deployment of effective intelligent support and plays a central role in our
methodology” (p. 644)

In conclusion, Mavrikis and Gutierrez-Santos suggest that the amount of
side-channel information between the test participant (a learner) and the
wizard (teacher), and the wizard’s freedom to improvise how guidance is

21

given to the test subject should be gradually narrowed as the iterations of
the development process replace one another. “After each cycle, the
communication capacity of the situation is reduced. This spiral process
brings obvious similarities to the spiral model of software design (Boehm,
1986). However, it is important to note that our spiral moves inwards, not
outwards. In the traditional spiral software design, a bigger radius after each
iteration represents more or better functionalities. In contrast, the shrinking
radius of our spiral represents a reduction of the communication capacity.”
(2010, p. 643)

In this survey of WOz experimentation it is worth noting some recent
reports which makes the increased efforts on movable support clear.
Spindler, Weber, Prescher, Miao, Weber and Ioannidis (2012) conducted a
WOz evaluation of an indoor exploration and way-finding smartphone
application for blind and low-vision people. The pilot test took place in
Frankfurt Airport, where six blind test subjects were asked to walk from an
adjacent railway station to a terminal in the airport. WOz was used to
manually trigger spatial descriptions and directions through Text To Speech
(TTS), transmitted to the test subjects’ Bluetooth headset.

Poschmann, Donner, Bahrmann, Rudolph, Fonfara, Hellbach and Böhme
(2012) simulated the speech recognition in a tour-guide robot in its intended
environment by using the Wizard-of-Oz technique. The wizard interacted
with the visitors of the museum through the tour-guide robot by choosing
answers from a set of predefined phrases. “In order to allow the operator to
[…] react to the visitors, the images from the omnidirectional camera as well
as an audio stream were transferred to the operator’s laptop.” (p. 703)

On-going experiments in Grenoble use small robot movements and non-
lexical sounds as “socio-affective glue” to make elderly people accept to
control a “smart home” by speech directed to a little service robot (Aubergé
et al. 2014).

Thus, HRI continues to develop with more mobile robots being tested in-
situ outside university or industry laboratories, and the WOz technique
often plays a role in such tests; section 1.2.1 rounds off the HRI discussion
for the present work by referring an HRI WOz literature review. In general,
with the dramatic increase of interactive handsets and ubicomp
arrangements, the mobility of the interaction is notable. As will be seen in
Chapter 3 where generic WOz tools (more or less prototypical, but used in
real research or development projects) are reviewed, the number of WOz
tools for mobile applications are increasing and was in 2013 the obvious
goal for many such tools. There are also several projects where the WOz

22

part is really just a substitute – as in Mavrikis and Gutierrez-Santos model
above – which is weeded out to be replaced with working software as the
development projects go on. This is interesting as it revives the original
“OZ paradigm”, which was not used to simply generate scientific facts
about man-machine dialogue under varying conditions, but to produce a
specific system, in Kelly’s case a calendar system for office use. However,
Chapter 3 notes some problems for the longevity of WOz setups when
these are intended to be more generally applicable than the single one
motivating the setup.

1.2.1 Riek’s proposal for reporting HRI WOz studies

After reviewing 54 papers on human-robot interaction where WOz
techniques were applied, Riek proposes as set of “reporting guidelines for
HRI studies that use WOz” (Table 2 in Riek 2012, p. 130). These guidelines
are provided as a set of questions for each “Experimental Component”:

Robot

How many robots were used?
What kind(s) of robot(s)? (e.g., humanoid, zoomorphic, mechanical,

android?)
What level(s) of autonomy? (i.e., which components of the robot(s) were

autonomous and which were controlled by the wizard?)
What were the robot’s capabilities?
What hypotheses did the researcher have for the robot?

User

How many users participated in total, and per experimental trial?
What were the user demographics, sampling procedure, etc.?
What instructions were provided to the user?
What behavioural hypothesis does the researcher have about the user?
Was the simulation convincing to the user?
What expectations did the user have about the robot, before and after

the experiment?
Wizard

How many wizards were used?
What were the wizard demographics? (e.g., the researcher, lab mates,

naïve?)
Did the wizard know the behavioral hypothesis of the experiment?
What were the wizard production variables and how were they

controlled for?

23

What were the wizard recognition variables and how were they
controlled for?

How did the experimenter control for wizard error (deliberate and
accidental)?

How much and what sort of training did wizards receive prior to starting
the experiment?

General

Where did the experiment take place?
What were the environmental constants and how were they controlled?
What scenarios did the researchers employ?
Was this experiment part of an iterative design process?
Does the paper discuss the limitations of WOz?

Obviously, not all are applicable to all WOz studies outside the robotic field.
Noteworthy for development work directed to the WOz system itself is
Riek’s question about how many wizards participated – when developing a
re-usable WOz tool the persons acting as wizards are the test subjects
(compare Li’s, 2012, analyses of how using several wizards can impact
consistency of system output).

For our own discussion we find the following questions interesting even if
we do not explicitly address these HRI aspects in the present work:

 In WOz HRI studies, what are the key characteristics? Test
Participant input (e.g. speech or remote control by mobile phone),
input to wizard (location, video, direct supervision), wizard output
(navigation, facial expr., speech)

o What are the wizard production variables and how were
they controlled for?

o How is multi-wizard control concerted in HRI?
o What are the wizard recognition variables and how were

they controlled for?
 Are there HRI tools like Ozlab: what could ‘generic’ features of a

WOz tool mean for HRI developers?
 Are there any limitations to the Wizard-of-Oz methodology in

HRI?

24

2 The Ozlab system

Ozlab is a WOz supporting system developed at Karlstad University since
2001. Ozlab may be used as a tool for designing, testing, evaluating,
experimenting and discussing graphical interfaces and interaction design,
before effort is put into development in any programming language.
Conceptually, the wizard functions in the present web-based reincarnation
of the Ozlab system originates from the 2001 Ozlab system, which was
based on Macromedia Director.

2.1 Director-based Ozlab (2001-2012): System overview
In Ozlab there are no automatically functioning prototypes. The prototypes,
in Ozlab terms called the interaction shells, are manually controlled by a
wizard. Pettersson argues that Ozlab “[…] supports explorative experiments
in interactivity design by letting experimenters manipulate directly the
output on the user’s screen. The focus is specifically on simple graphical
human-computer interaction.” (2002, p. 144) By using the Director based
Ozlab system the outcome is not program code. Instead, the user of Ozlab
can design and test a concept with the intended end-users, before any
programming is conducted. Doing so, Molin and Pettersson (2003) argue
that Ozlab “can aid the process of formulating the requirements
specification for multimedia systems” (p. 78). Multimedia systems in this
case refer to systems that “are characterized by the important role the
system’s extrovert parts have. […] Such systems are, to a large extent,
defined through their user interfaces.” (p. 70) The authors furthermore
argue that “most information systems nowadays have their ‘multimedia’
parts” (p. 70).

The system was based on Macromedia Director 8.5 (or MX). To prepare
and run a Wizard-of-Oz test several entities werre used: Ozlab Testrunner,
Ozlab Setup, Ozlab FileUpdater and a template file (.dir) with pre-
programmed Ozlab-specific functions. (Siponen, Pettersson & Alsbjer 2002)

25

To build and design a prototype the template file was opened in
Macromedia Director. To design the interface of the prototype, the designer
added graphics, text, videos and pre-recorded sound to the library (called
“Cast” in Director) in the template file. As the Ozlab prototypes were
designed in Macromedia Director, the built-in tools for e.g. drawing and
writing could also be used to create objects. To make the prototype come
alive, that is, to function on another level than just communicating the
interface via plain pictures, the pre-programmed Ozlab-specific functions,
called behaviours, were used to add certain functionality to the dummy
objects. Such behaviour was, e.g. “objectMoveableByTP”, allowing the test
participant (TP) to drag and drop objects; or “textFieldEditableByTP”
allowing TP to write text in input fields. By using the timeline in
Macromedia Director (called “Score”), the designer could create different
pages or as called in Ozlab, scenes, in the prototype.

To run an interaction design test in Ozlab Testrunner, the prototype file(s)
needed to be copied from the wizard’s computer to the test subject’s
computer. Further, the communication between the computers, handled by
Macromedia Multiuser Server 3.0, needed to be established. These settings
were configured in Ozlab Setup. Ozlab FileUpdater, using the settings from
Ozlab Setup, was used to copy the file(s) from the wizard’s to the test
subject’s computer, and after a redesign of an interaction shell only the
changed files were updated to quicken time-to-test if changes were made
while a test subject were waiting. When fully configured, Ozlab Testrunner
was started on each computer, allowing an interaction design test or
demonstration to start. (Siponen, Pettersson & Alsbjer 2002)

During the test or demonstration the wizard’s and the participant’s interface
was mirrored. In order to control and simulate the “system’s” responses the
wizard had wizard-specific controls, such as navigating to different scenes,
opening new interaction shells, hiding/showing objects, pausing the test,
etc. The test participant’s mouse cursor was duplicated as an enlarged cursor
in the wizard’s interface, letting the wizard easily follow what objects the
participant interacted with (and therefore allowing the wizard to produce
appropriate responses). Input from the participant was collected in a log,
which could be consulted during or after the test session.

2.1.1 Director-based Ozlab: Usage and application

The Director based Ozlab system was used during courses given at Karlstad
University, and in several research projects. For example: Molin (2004) used
Ozlab to design and evaluate a touch screen interface for a hip surgery
robot, collaborating with the prospective user groups and designers;

26

Pettersson (2002) reports on the pilot study of Ozlab made in autumn 2001
with inexperienced multimedia designers as wizards; Nilsson (2005)
conducted user tests on a prototype of pedagogical software for children; in
collaboration with Swedish Civil Contingencies Agency several iterations of
user tests were conducted on different aspects of a software, reported by
Nilsson (2006) and Kilbrink (2008); Pettersson and Nilsson (2011, p. 500)
assessed “code quality when it was either programmed based on mock-
upped and user-tested designs, initially made from perceived needs by real
users, or programmed only according to perceived needs by real users”; and
Lindström and Nilsson (2009) used Ozlab as a usability testing tool in the
PrimeLife project, and Pettersson and others in the initial year of the
PRIME project (cf. for example PRIME project, Privacy and Identity
Management for Europe, a 6FP EU project; usability work reported in
deliverable series D6.1.a-d, www.prime-project.eu). For further examples of
previous Ozlab usage, see Pettersson (2003), which also includes a list of
student theses, and the webpages about Ozlab.6

2.1.2 Plans 2011 for redevelopment of the Ozlab system

After Macromedia was acquired by Adobe in 2005,7 the Ozlab system
suffered from being based upon an increasingly outdated program. Several
stakeholders suggested directions for a redevelopment, some conflicting. A
student thesis collected and developed some of these thoughts and
suggested several bases for a redeveloped Ozlab: Ozlab could be based on
Adobe’s Photoshop (for quick integration with graphic design work), an
HTML5 editor, or XML. The authors noted that building Ozlab based on
Photoshop or an HTML5 editor would make the system dependent on
software and certain file types, as well as being less accessible to
inexperienced users; the authors argued that Ozlab should be based on
XML (Lamberg & Brundin 2011, p. 42).

For the ongoing re-development another main mark-up language was
chosen: HTML5 combined with JavaScript. (An XML solution would in
fact not be a strict XML solution. Javascript and other programming
languages would, actually, be needed; Lamberg 2011.) This HTML5 solution
is not dependent on a particular HTML5 editor, as we now integrate the

6 The Ozlab webpages can be found at http://kau.se/en/ozlab (or the old version,
accessed through www.is.kau.se/~jsp/ozlab); Ozlab itself was not translated to
English until 2007 by Jenny Nilsson in collaboration with Christina Hochleitner,
then at CURE which participated in the PrimeLife project.
7 Wikipedia, s.v. ‘Macromedia’. http://en.wikipedia.org/wiki/Macromedia [2014-01-
04]

27

editorial functions in the wizard controls by letting the system be a web
service (i.e., like a cloud service). Of course, we are then dependent on a
web server. However, running with multiple users as WOz experimentation
necessarily implies (at least two users, one TL and one TP), a server solution
seems unavoidable. A web solution will be a bit sluggish but brings several
benefits such as ease of setting up experiments in various places. Pros and
cons will be discussed further on.

2.2 Web-based Ozlab Step 1 – design and implementation
The first version of the web-based Ozlab system, “Step 1”, uses the
following techniques and frameworks: ASP.NET MVC 4.0, Microsoft’s web
server IIS 8 with WebSockets8, the JavaScript library JQuery9, and Sencha
Ext JS 4.2, which provides widgets such as drop-down lists and text fields
(but only for traditional mouse input; however, the spring 2014 version Ext
JS 5 includes support for touch input; see www.sencha.com). Ozlab can be
accessed via any web browser but runs best in Google Chrome.

Ozlab consists of two main entities: Shell Builder and Test Runner. When
accessing Ozlab in a web browser, the user ends up at a landing page where
one can choose between four roles: As a prototype designer the user can:

 “Build or edit shell” (which will start the Shell Builder);
 Start a test as a Test Leader (wizard) by choosing a shell and

scene in that shell (this will open the wizard’s view of the
Test Runner);

 Join a test session as a Test Participant (this will start the
participants’ view of the Test Runner);

 View a test session by starting the Test Viewer which is a
simplified form of the Test Runner mode which gives a view
of the mockup but does not allow for any input/interaction
with the shell (and its wizard).

8 “The WebSocket Protocol is an independent TCP-based protocol. Its only
relationship to HTTP is that its handshake is interpreted by HTTP servers as an
Upgrade request.” RFC 6455, Internet Engineering Task Force, December 2011.
http://tools.ietf.org/html/rfc6455#section-1.7
9 “jQuery is a fast, small, and feature-rich JavaScript library. It makes things like
HTML document traversal and manipulation, event handling, animation, and Ajax
much simpler with an easy-to-use API that works across a multitude of browsers.”
jquery.com [2014-07-14]

28

Ozlab terminology assigns the identifiers TL, TP, and TV to the roles
connected to the three user interfaces for a running session. Figure 1 depicts
the interrelationship between these roles. Multiple wizards can be assigned
subscripts: TL1, TL2, etc. and can also work outside the system (e.g., with
live voice feedback via microphone and loudspeaker).

Figure 1. Every browser connects to the Ozlab server. The view of the interaction shell depends
on the role. TL has several controls outside the TP scene while TVs only sees TP’s view.

When building and editing an interaction shell in the Shell Builder, no
“wizardry” is going on: TP cannot see the interaction shell or any changes
made in the shell.

The TL, TP, and TV views can be run on the same computer but in
different web browser windows, allowing the designer to preview the
interaction shell easily. The current implementation allows one wizard, one
test participant, and several Test Viewers to be connected to the same
session (1 TL, 1 TP, multiple TV for each session). An experiment can
possibly include more than one session: TP can have several browser
windows open before him or one can let the TP browser alternate between
different sessions because these are identified by web addresses. In fact, the
web solution makes it possible to run Jack-in-the-box Wizard-of-Oz
sessions by including one website (i.e. one interaction shell) within another
utilizing so-called embedded iframes. Jack can then be another wizard than

29

the one controlling the main session. Thus, the web-based Ozlab implicitly
allows multiple TLs to act in the same session. Remains still to evaluate to
which extent transmission speed problems are multiplied when Ozlab sites
(i.e. interaction shells) with heavy content such as large images are tangled.
In addition, some restrictions of what a TL sees will occur and a side
channel tapping TP’s monitor can be useful (but making mobile
experimentation harder).

2.2.1 Shell Builder – designer’s/test leader’s workspace

An interaction shell can be designed and edited in the Shell Builder (see
Figure 2). To the left a General Panel is placed where Scenes are listed and
general Shell Settings available. In the middle of the interface the chosen
scene is displayed. The size of the scene can be altered under Shell Settings.
In Figure 2 the scene area (which is what the user will be able to see during
test) is 500 by 400 pixels (displayed as a white sheet). The designer can add
generic objects (seen in Object Panel to the right) to the interaction shell by
dragging and dropping them from the panel to the scene area. In Step 1,
released summer 2013, 7 generic objects were available:

 Button

 Image

 Input field

 Label

 Dropdown menu

 Radio button

 Checkbox

The Image object can hold several common file formats such as .jpg, .png
and .gif. The Label object can hold text or be used to embed iframes
(iframes can be used to open up a Google map for instance; however, TL
cannot see what TP is doing when interacting with such an element unless
there is a video tap from the TP screen to some monitor near the TL, but
see the beginning of 2.2 about Jack-in-the-box wizardry). Text in Label
objects can be formatted with different fonts, sizes and colours.

All objects come with settings, such as changing the text for a checkbox (as
seen in the lower middle of figure 2).

All objects can be made invisible whenever TL so decides. In addition,
Ozlab provides the designer with a set of optional Behaviors that can be
added to objects. In Step 2 (March 2014) of the web-based Ozlab system,
there are ten optional Behaviors: GoToScene provides an automatic link to

30

another scene in the same shell; MakeObjectSnap will centre a movable object
over a snap point; ObjectMovableForTL and ObjectMovableForTP allow Test
Leader and/or Test Participant to drag the object which has the behaviour;
ObjectInvisibleMoveForTL and ObjectInvisibleMoveForTP work like the other
“Movable” options but the object is automatically invisible when being
dragged (so far only the TL version has been used, e.g., to introduce alert
boxes quickly); OpenLink will, if the object is clicked during a running
session, open a link to an external website in the browser window; SaveValue
stores input values in hidden fields which are called from other scenes from
label objects – in this way the shell constructor can arrange for summaries
of certain TP selections and TP text input during a session (selections in
Dropdown menus, Radio buttons and Checkboxes will be stored by the text
value of each selected row, or by a pre-specified alternative value); SendAudio
allows pre-recorded audio to play; and Vibrate will make an Android device
vibrate when TL calls this function (for iPhones this will just result in a
dialogue box popping up informing on the attempt to call the vibration
function).

The Behavior OpenLink may require some further comments to
demonstrate the possibilities and thinking that a cloud service solution
entails. With the label objects one can insert a link by HTML code () as mentioned above. Alternative, in the label
settings one can choose “Hyperlink” which makes the selected text into a
link. This is of course easier for people who are not familiar with HTML
coding. However, the advantage of embedding HTML code in a label object
is that TL can select part of a text to become the link rather than the whole
label object. What is more, TL can decide whether the link shall open in the
present tab/window or in a new one. (However, due to browser security
restrictions, TL cannot open an external web page for TP. TP has to click
the link her/himself.)

Complex or commonly used objects can be added to either the panel Shell
objects (available throughout the whole interaction shell) or to Scene objects
(available at the current scene only) for re-use. The Scene or Shell objects
can also be used as holders for formatting and style, as in Microsoft Word
where styles can be reused and added to a text throughout the whole
document. Objects dragged and dropped at the scene area directly from the
generic Objects pane cannot be reused, which is why the designer must start
by adding an object to the Shell or Scene objects pane if re-use is expected
(we plan to change this in the future).

Because the interaction shell and different panels are shown simultaneously
in the Shell Builder, it runs best on a large screen.

31

Figure 2. The Shell Builder interface (Step 1). Note the button “start Session” which is a way to
start Test Runner for wizards (TL).

32

Figure 3. The Test Runner interface as seen by the wizard, in version 1 of the web-based Ozlab
system.

33

2.2.2 Running a test session (or a demo session) as TL

The Test Runner is the test state of the Ozlab system. When clicking the
button “Start Session” or by choosing the Wizard role (TL) at the landing
page, the Test Runner is started in the browser window. The wizard’s
interface has the same overall look in Shell Builder and Test Runner, which
is why a green colour is used to differentiate between states (see figure 3).
The wizard can follow the TP’s actions in real-time as they appear in the
scene area (in the middle), where also the TP’s mouse cursor is duplicated in
an enlarged version, followed by a fading trail. User actions that can be
followed are for example clicks, text inputs, dragging and right/left click. As
the whole TP user interface is displayed (mirrored), Test Runner runs best
on a large computer screen in TL mode.

There are some differences between the Shell Builder and the Test Runner,
as some functions are removed and some are added. For example, the
wizard cannot add objects to the shell in runtime in the current
implementation, which means that all content and all objects must be
created prior to tests. Conversely, objects that have been added as Shell or
Scene objects can be dragged and dropped to the scene. The wizard cannot
change the settings of objects during runtime either, but all objects can be
hidden from the user (by clicking the eye icon in the tool popup displayed in
the middle of the scene area in figure 3). The wizard can choose from a set
of functions at the top of the interface. By clicking File, an interaction shell
can be opened during run-time; Reset scene and Reset shell will reset all objects
to their original state in either the active scene or the entire shell; Stop Session
will terminate the test session and take the wizard back to the Shell Builder.
The remaining four buttons allow the wizard to: show a black waiting screen
for the test participant (Pause); show the test participant’s cursor as a wait
cursor (Lock); make it look like the test participant’s cursor is entirely frozen
(Freeze); and lock all movable objects for the test participant (Lock movable
objects). Pause and Freeze allow the wizard to make changes in the scene or
navigate to a different scene, without displaying the changes to the test
participant. The test participant cannot continue to interact with the
interaction shell during these states.

2.2.3 Participating in a test session (or a demo session) as TP

When running the Test Runner as a test participant, the interaction shell is
displayed without the wizard’s controls (see figure 4). An interaction shell as
shown in the figure where the scene area is smaller than the browser
window, will display a grey area outside the scene area. Objects added by the
wizard in the grey area will not appear in the test participant’s interface. The

34

browser can be run in full-screen mode if the test leader wants to hide the
chrome for the user, i.e. hide every trace of the window being a web
browser’s window. Hiding the typical browser window properties are
essential, especially if conducting tests on a prototype of a system which is
not intended to be viewed in a browser window. Hiding the browser
controls is important also when running a test of a mocked up web
application. Otherwise the test participant will be bewildered. Furthermore,
TP can go to other web sites or close the browser window, which obviously
will make the wizard lose control of the experiment.

Figure 4. The Test Runner interface as seen by the test participant (when the browser controls
are not hidden and when the browser window is much larger than the GUI tested).

2.2.4 TV – Test Viewer

Test Viewer works like a video monitor as it shows running sessions
without letting the spectators engage in the on-going interaction. It displays
the interaction shell and participant’s enlarged cursor without any wizard
controls.

35

2.2.5 Design of the Ozlab start page

During an internship in February-March 2014, two students proposed a re-
design of the web-based Ozlab start page, which presently allows the user to
select shell building or test running as TL, TP, or TV. Their idea was that
the URL would determine which view of Ozlab the user was presented
with. If accessing the Ozlab system with the default URL, a start page
adapted to test participant would be shown – thus not revealing that there
are different roles. If “/wizard” was added to the end of the default URL, a
start page adapted to test managers would be shown (or a ‘full’ start page
can be shown allowing the user to select any of the four roles as we assume
this user to be a designer or wizard). Two separate start pages addressed in
this manner would decrease the potential risk of giving away the test
method (Wizard of Oz) to the test participant and perhaps more
importantly, simplify the graphical interface for test participants as well as
test leaders.

2.3 Recording and logging sessions
Collecting data during a session could be made in several ways:

 Recording TP (screen recording, voice recording, video of TP)
 Logging (events in the Ozlab system are stored for analysis)
 Note-taking by TL (written and spoken notes)
 Post-session questionnaire for TP (also interview which can be

recorded in screen capture with sound is being made)
 Post-session annotations (from memory and from recordings made)

The present logging function in Ozlab merely records a number of events.
As of spring 2014 there are no functions to make analyses of different
features, nor is there a possibility for a TL to make notes connected to the
stream of logged events (this would typically be made by a different TL than
the one acting as Ozlab wizard).

There are sometimes log data which are needed during the actual running
session. For instance, if an interaction shell has several buttons that can be
clicked in random order by TP (a prototypical case is the numbered keys on
a telephone), the wizard may not be able to follow TP’s clicking and act on
these (for instance, putting them in an output text field such as “Sending
message to [telephone number].”). So having a pane with log information
can be useful even during a session, not only afterwards for analysis. The
rudiments of such a function exist in Ozlab. As noted before, there is also a

36

copy function Save Value so that selections and text inputs can be reused in
a text object within the same or another scene.

Despite the possibility to make more use of the logging, during spring 2014
the idea to turn it off or selectively turn it off in order to improve speed was
also discussed. The present logging functions are suspected to slow down
the system – presumably the operating system is busy copying data to the
hard disc.

37

3 Generic solutions besides the Ozlab system

As already mentioned, what one team finds ‘generic’ might well be regarded
as specialized or limited by other teams, but because quite many systems
have been developed with reusability in mind the intention of the present
chapter is to gather as many such examples as possible in order to see
general trends and problems. In order to provide an overview for the reader,
the first section merely lists all the systems with very brief annotation and
some core bibliographic reference. Then section 3.2 provides some
additional lines or sometimes more extended discussions for each system to
comment on trends or special features. Finally, section 3.3 discusses a list of
requirements for generic Wizard-of-Oz tools that one of the teams had
composed and the following chapters will further expound on such topics.

3.1 List of generic WOz tools reviewed
ActiveStory a web-based Wizard-of-Oz testing tool which appear to be
discontinued (http://activestoryenhanced.codeplex.com/).

ConWIZ is a part of the Contextual Interaction Framework (CIF, see
Zachhuber et al. 2012 for description and evaluation of the Contextual
Wizard of Oz framework), for ubicomp environments (Grill, Polacek &
Tscheligi 2012). Through an Android device tool, Mobile Wizard, the
wizard can “send commands to external applications” (Zachhuber et al.,
ibid., p. 231).

DART: The Designer’s Augmented Reality Toolkit is described by
MacIntyre, Gandy, Dow, and Bolter (2004) as targeted on testing in early
design phases. DART is integrated in Macromedia Director.

DiaWOz-II is a configurable software environment for WOZ studies
where a combination of mathematical input and natural language is used.
DiaWOz-II, based on TEXMACS, is not an improved version of the

38

predecessor DiaWoZ system. (Benzmüller, Horacek, Kruijff-Korbayová,
Lesourd, Schiller & Wolska 2007)

d.tools, see SUEDE below and in 3.2. “d.tools extends SUEDE’s
framework into a new application domain – physical user interfaces.”
(Hartmann, Klemmer, Bernstein, Abdulla, Burr, Robinson-Mosher & Gee
2006)

Jaspis is a distributed software architecture that can be used for WOz
studies on speech user interface and ubicomp (Mäkelä, Salonen, Turunen,
Hakulinen & Raisamo 2001).

LIVE presented by Li and Bonner (2013) seems to simply duplicate
(“mirror”) wizard’s screen onto something that the test subject(s) can see
(and act upon).

MDWOZ is a spoken interaction dialog systems. (Munteanu & Boldea
2000)

Mobile Oracle is described as a “novel tool for eliciting user requirements
early in the design process of mobile applications” (Magnusson,
Anastassova, Tolmar, Pielot, Rassmus-Gröhn & Roselier 2009).

Momento is dedicated to ubicomp applications and experience sampling
method (long-term experiments, multiple TPs), according to Cater and his
co-workers (e.g. Carter, Mankoff & Heer 2007). SMS and MMS are used for
communication but also WLAN.

MultiCom consists of an observation laboratory where WOz studies can be
conducted. The laboratory also includes other software and hardware.
(Caelen & Millien 2002)

MuMoWOz is a tool for conducting tests on multimodal mobile systems.
(Ardito, Buono, Costabile, Lanzilotti & Piccinno 2009)

NEIMO is a platform for multimodal interaction. NEIMO supports a
several wizards setup. (Coutaz, Salber, Carraux & Portolan 1996; Coutaz,
Nigay & Salber 1995)

OpenWizard is a “component-based approach for the rapid prototyping
and testing of input multimodal interaction” (Serrano & Nigay 2010, p. 224).
OpenWizard replaces non-fully developed components in a prototype with
generic wizard components.

Ozlab was constructed as a GUI WOz system as there were no general
graphics-supporting WOz systems at the time (Pettersson 2002). From 2013

39

this system is being replaced by a web-based version with similar features
(www.kau.se/en/ozlab).

SketchWizard supports early prototyping of user interfaces incorporating
pen-based interaction. (Davis, Saponas, Shilman & Landay 2007)

SUEDE (Klemmer, Sinha, Chen, Landay, Aboobaker & Wang 2000) is a
tool for prototyping speech interfaces. All (simulated) system output needs
to be added to the prototype on beforehand.

Topiary is a tool for prototyping location-aware applications. (Li, Hong &
Landay 2004)

UISKEI++, reported by Segura and Barbosa (2013), is the intended
evolution of the tool UISKEI (User Interface Sketching and Evaluation
Instrument). UISKEI++ is envisioned to support WOz experiments and
prototyping on multi-devices by providing multiple abstraction levels. The
multiple abstraction levels are argued to allow the designer to compare the
prototypes, regardless of device. (Segura & Barbosa 2013)

WebWOZ is web-based and focuses on flexible incorporation of Language
Technology Components (LTC). (Schlögl, Doherty, Karamanis & Luz 2010)
Experiments resulted first in sketches (Schlögl et al. 2010) and later in
prototypes (Schlögl et al. 2011). Schlögl, Chollet, Milhorat, Deslis, Feldmar,
Boudy, Garschall and Tscheligi (2013) report on their progress of offering
voice controlled Home Care and Communication Services, vAssist, which in
the future will be developed using WebWOZ.

Wizard of Oz tool for Android allows digitally created or scanned paper
prototypes to be tested. The prototype must be developed beforehand
because the tool automatically creates a folder with prototype specific
objects that must be transferred to the Android phone. Communication TP
– TL enabled by modified open-source VNC client for Android. (Linnell,
Bareiss & Pantic 2012)

WOEB by Bellucci, Bottoni, and Levialdi (2009) is developed for the rapid
setting up Wizard-of-Oz experiments. Progressive refinement finally
replaces the wizard and results in a multimodal mobile application.

WozARd is a tool for WOz experiments on mobile phones, tablets and
glasses. WozARd is location aware and accepts images, video, and sound to
be uploaded into the prototypes. It logs test results and visual feedback on
removable media. (Alce, Hermodsson & Wallergård 2013)

WOZ PRO is a tool for constructing low-fi prototypes and utilising these in
WOz experiments. (Hundhausen, Trent, Balkar & Nuur 2008)

40

3.2 Review of the generic WOz tools
As noted in the introduction, there are several tools that incorporate the
Wizard-of-Oz technique. Some are developed for testing on specific
devices, some for simulating certain modalities or aspects of a prototype,
while a few are more generic. Below, the more generic tools found in the
literature review are presented.

Reasonably, one could ask why there are so many attempts at developing
generic tools supporting WOz experiments, and why new tools are still
being developed. If one generic tool has been developed, should there be
any need for additional tools? After all, WOz tools are constructed to
support prototyping without programming so why all this programming of
tools?

First of all, there are new interaction devices coming up, and to control and
sometimes to collect inputs, the generic system has to be expanded. Of
course, different application areas will find different wizard controls the
most essential. The systems described here are probably all non-generic if
the term ‘generic’ indicates that no traces at all of some specific application
domains are present. On the other hand, some controls can be reused for
quite different studies. Therefore, tools that can be configured and re-used
for several studies are included here.

Secondly, other kinds of system changes occur at regular intervals. For
Ozlab, the discontinuing of the system the tool relied on to make the
prototypes, along with the always on-going changes in operating systems,
finally made it hard to simply run it. Naturally, avoiding tool-specific
programming environments is to be recommended, but the changes in
operating systems will regularly call for up-dates. Failing to maintain one’s
system will always threaten a generic system. It seems that few system have
survived for a decade as Ozlab did, and it was limping in the end. Even if
the new version of Ozlab is based on the ‘latest’ web technology, this
technology, as well as supporting technology such as servers, will gradually
be less suitable in the ever-changing digital ecosystem. This applies, of
course, to any of the newer tools reported here.

For the account below, it should be noted that the software of the other
systems has not been downloaded and tested; the information provided here
is based on published posters and papers, and in some cases on project
websites.

ActiveStory is a web-based Wizard-of-Oz testing tool which appears to be
discontinued. “ActiveStory is a tool for designing and performing usability
testing on an application in a manner that is in line with Agile principles.

41

Designers can sketch UIs, add interactions and export the design to the
Internet via a built in web Wizard of Oz system.” (http://activesto
ryenhanced.codeplex.com/; the documentation page is empty but some
other pages provide information; there seems to be no update since 2009).

ConWIZ is a part of the Contextual Interaction Framework developed at
Universität Salzburg. “For integrating the WOz method into the framework
we developed a set of ‘contextual Wizard of Oz tools’ as part of the
presented framework”, Zachhuber, Grill, Polacek, and Tscheligi (2012, p.
237) explain. ConWIZ, as described by Grill, Polacek, and Tscheligi (2012),
provides an opportunity for designers to create and evaluate prototypes in
mobile and ubicomp environments, that is, application domains where it is
difficult for a wizard to observe the participants.

According to the developers, by focusing on mobile and ubicomp
applications, “[…] the requirements for a mobile Wizard of Oz tool have
been elaborated and taken into account when designing the ConWIZ
system. The goal was to design and develop a system that is applicable to a
large range of WOz studies without investing much effort into the
development of the study. The ConWIZ system has already been used or is
planned for use in contexts such as navigation, factory, smart home, or car
where it already showed its usefulness.” (p. 1)

The last example actually illustrates the difficulties pointed out earlier to
define what a generic WOz tool would cover. How much of the
functionality in a car should the wizard control? Well, it depends of course
on what the future systems to be prototyped are imagined to do. For the
Salzburg group, speech processing is within the limits: “The system can be
easily applied to a variety of simulated or real contexts like e.g. the car
context where it is possible to simulate e.g. handling phone calls by voice
where the speech recognition is replaced by the wizard.” (p. 2) On the other
hand, ‘wizarding’ a driverless (or self-driving10) car would entail quite
another WOz system than handling phone calls.

An interesting feature of ConWIZ is that even if its developers stress out-
of-lab contexts, they have also included ways to trigger actuators: “The
simulation of the navigation system context is described in this paper where the
wizard simulates a navigation system by sending voice commands to the
participant and controls contextual parameters such as wind simulated by a
fan and vibrations for expressing danger. In a study using a simulated

10 See, e.g., http://googleblog.blogspot.se/2014/04/the-latest-chapter-for-self-
driving-car.html or http://time.com/79315/google-car-city-streets/

42

factory context the ConWIZ system has been used to simulate and control
the behavior of machines and ambient alerting modes.” (pp.1f, referring to
the above cited paper by Zachhuber et al. 2012).

Another interesting feature is an annotation function added to the Mobile
Wizard. The mobility of the wizard would be greater if not other test
managers such as observers have to run after him/her when he is following
a test user. Including an annotation function for the wizard may thus be
considered. However, as anyone who has experience with Wizard-of-Oz
experiments knows, writing usability reports simultaneously with conducting
the prototype’s behaviour is not easy (rather, even the wizard’s work may be
distributed over two wizards, as described for Ozlab; Pettersson 2003). Grill
and co-workers report that “In the Mobile Wizard, the note-taking
functionality was implemented in a way that it supported 12 different
categories of errors which could be logged via simply pressing a button. In a
stressful situation, such diversification of possible errors is too high as the
wizards do not have time to explicitly search for the error category.
However, the interviews showed that the functionality itself makes sense
and is desired by the wizards.” (p. 7)

As for the development of a WOz tool it is noteworthy that in the study
reported in Grill et al. (2012), 4 actors were employed as “TP” to phrase it
in Ozlab terminology, while the “TLs” were 8 in number testing wizardry by
ConWIZ. That is, the number of wizards was double that of what one
normally would call ‘test users’, reflecting the study’s focus on the wizards.
Each TL ran two sessions, thus the TP actors had to perform four times
each. One remarkable fact is that the developers of this mobile WOz tool
dared to use the think-aloud protocol: “The wizards were asked to use the
think-aloud protocol […] as in standard usability testing. To avoid an
influence of the think-aloud protocol on the actors, they were instructed to
react only on commands they obtained through the prototyped navigation
system”. (p. 6)

Interestingly for the present work, the authors also present a comparison of
1811 WOz tools and requirements that good WOz tools should meet; see

11 The number does not correspond to the number of generic WOz tools in this
section. We have not included CSLU Toolkit for NLP (Sutton et al. 1998), Polonius
for HRI (Lu & Smart 2011), iCAP (see chapter 1), and Humaine (again, see chapter
1), or “Wizard of Oz 2” (Grill does not give references to all systems), while Grill
and co-workers have not included Ozlab, neither Jaspis, LIVE, MDWOZ,
Momento, MultiCom, Linell’s Android tool, and of course not UISKEI++ and
WozARd as these had not been presented in 2012.

43

further discussions in section 3.3 where these requirements are cited in full,
and Chapter 4 where further discussions are made on requirements for
generic WOz tools. For the longevity question raised in the beginning of
this section, it can be noted that there is a plan to release the system as open
source (see Grill and Tscheligi 2013 about the ConWIZ protocol and the
project web site http://cif.hciunit.org/CIF/joomla/).

DART, The Designer’s Augmented Reality Toolkit, was built on
Macromedia Director. “Our work focuses on supporting early design
activities, especially a rapid transition from storyboards to working
experience, so that the experiential part of a design can be tested early and
often. DART allows designers to specify complex relationships between the
physical and virtual worlds, and supports 3D animatic actors (informal,
sketch-based content) in addition to more polished content.” (MacIntyre,
Gandy, Dow & Bolter 2004, Abstract). “DART contains the necessary
building blocks for distributed WoZ interfaces, but we have just begun to
explore the potential for WoZ interfaces to AR experiences.” (ibid., p. 206)

Dow, Lee, Oezbek, MacIntyre, Bolter, and Gandy (two publications 2005)
used DART to evaluate a Mixed Reality application: the “Voices of
Oakland”. The application gives the user an audio experience in an historic
site using location tracking. The WOz tools in DART were used to build the
prototype and the wizard’s interface controlling the prototype. Through
three iterations the wizard’s interface and the tasks for the wizard altered,
from a high (simulating location tracking and media presentation, while
monitoring environment) to lower (letting the user trigger the chosen audio
segment) cognitive load for the wizard.

DiaWOz-II is a configurable software environment for WOZ studies
where a combination of mathematical input and natural language is used.
DiaWOz-II is not an improved version of the predecessor DiaWoZ system
as the researchers wanted to base the new system on the WYSIWYG editor
TEXMACS. DiaWOz-II consists of two interfaces, one for the student and
one for the tutor (the wizard), which are connected via a server.
(Benzmüller, Horacek, Kruijff-Korbayová, Lesourd, Schiller & Wolska
2007)

Jaspis is a distributed software architecture that can be used for WOz
studies on speech user interface and ubicomp, as reported by Mäkelä,
Salonen, Turunen, Hakulinen, and Raisamo (2001). In Jaspis a wizard can
replace every module and therefore allowing different aspects of the system
to be tested and evaluated.

44

LIVE presented by Li and Bonner (2013) is hard to classify. LIVE is said to
be a “platform to support different ambient media applications” (p. 4). It
seems to simply duplicate (“mirror”) Wizard’s screen onto something which
the test subject(s) can see (and act upon). The authors present their setup as
more generic than other WOz setups: “structural improvements to the
conventional wizard-of-oz method” (p. 3). It is claimed that in traditional
WOz, “the designer had specifically designed control panels to interact with
the system and users” (p. 312). However, employing a shared area of action is
used in other systems (e.g., Ozlab, Pettersson 2003) as this indeed helps the
wizard to “interact with and manipulate the user operations”, but specific
controls for the wizard even further facilitate interaction if these controls
have been found useful in widely different experiments (ibid.). For the full
range of Li’s WOz experiments, see Li’s dissertation (2012).

MDWOZ is a module-based development environment, running on
desktop-to-desktop configurations, for the design and test of spoken
interaction dialog systems. The system incorporates WOz by letting the
wizard simulate the systems understanding of user dialogue input, and by
giving the wizard a possibility to generate the output. (Munteanu & Boldea
2000)

Mobile Oracle is described in a 2-page poster presentation as a “novel tool
for eliciting user requirements early in the design process of mobile
applications” (Magnusson, Anastassova, Tolmar, Pielot, Rassmus-Gröhn &
Roselier 2009). The original study generated a lot of data that has been used
in several other works and influenced further method development, but the
Mobile Oracle itself has not been re-used (p.c. Charlotte Magnusson 2014-
09-04).

Momento was dedicated to facilitate situated experimentation to avoid
shortcomings of basing ubicomp development on pure lab experiments
(Carter, Mankoff, Klemmer & Matthews 2008; Carter & Mankoff 2005a&b,
“Prototypes in the wild”, “The role of media in diary studies”). Carter,
Mankoff, and Heer (2007) mention three specific problems for situated
evaluation, namely (1) remote testing, (2) adoption and retention (participants

12 They give only one example, viz. Ruyter et al. (2005), who present a WOz
experiment for a robot whose “head” was controlled by the wizard (facial
expressions and head movements). Obviously, for such applications the simple
duplication of a screen image is not possible or at least, the appropriateness of its
fidelity could be questioned relative the experiment goals. For other application
areas, the structural improvements claimed by Li and Bonner seem already to have
been made by others as this subsection demonstrates.

45

might not remember afterward so certain recordings/photos were made),
and (3) the infrequency with which some events of interest may occur. In
Momento, SMS and MMS are used for TP-TL communication but also
WLAN when possible. TL can prompt TP to give more details. TL typically
works at a desktop computer interface to the Momento server, but mobile
access is also implemented – this extension was probably easy to make as
the system allows for multiple test participants and these typically
communicate with the Momento server from mobile devices. So-called
Experience Sampling (Larson and Csikszentmihalyi 1983, or cf. Consolvo et al.
2007 referred in section 1.2) was in focus for the development, but WOz is
also supported: “To support experimentation at the early stages of design, as
well as to support experimenters with limited coding experience, it is
important not to require complete applications. One way to facilitate this is
to support a Wizard of Oz protocol in which experimenters can do some of
the work normally done by an application.” (Carter et al. 2007, p. 3)
Interestingly, as the work was based on the Experience Sampling Method,
annotations functions for the TL was found useful (in contrast to the
experienced referred above for ConWIZ) – in fact, Carter and his co-
workers even found TLs suggesting that TPs “should be able to annotate
media captures via the web” (2007, p. 8).

For mobile experimentation, the developers found TPs unwilling to use
special mobile devices, so integration in participants’ handsets was made
possible even if all functionality might not be available (this also demands
compensation for the cost TPs has for the SMS and MMS they send).
Naturally, this geared Momento towards what was the typical hardware
around the years 2005-2007, i.e. not towards smartphones. (The
“Documentation” page of the website www.m0ment0.com starts by saying
“Please note that this software is not currently being supported”.)

For local (site-constrained) experiments, the developers seem to have found
LAN as useful as the Ozlab developers, but also the pitfall of server
configuration: “However, the server configuration had involved some
complicated manual processes that the experimenters initially found too
difficult to complete. To address this, we streamlined server configuration to
the point that the experimenters needed only to run four commands to
configure the core system and their study.” (2007, p. 9) “The experimenters
also ran a Momento server on the laptop and configured the laptop for
peer-to-peer wireless networking. In this way, the mobile devices could
connect directly to the server running on the laptop […]” (2007, p. 8)

MultiCom can be described as a platform or facilities for the design and
evaluation of interactive systems. MultiCom consists of an observation

46

laboratory where WOz studies can be conducted. The laboratory also
includes other software and hardware. MultiCom was used in a field setting
together with WOz to test a Residential Gateway and Home Service system.
The “Wizard of Oz technique served to simulate some unimplemented
actions such as automatic motion detection, alarm notification, appointment
reminder, or the execution of spoken commands”, according to a report by
Caelen and Millien (2002, pp. 157f).

This article opens by an extensive quotation from Bernsen’s, Dybjkaer’s,
and Dybkjaer’s Designing interactive speech systems – From first ideas to user testing
(1998). In the quotation it is explained how difficult it is to produce a new
software engineering tool. A central problem is generalisation: the tool must
work in many systems and for several domains of application to be of
interest to developers. But there is also a second problem of objectivity. The
benefits of a new tools should originate from the tool (or method) itself, not
from its inventor.” Caelen and Millien use this and the observation that
“now[adays] usability activities are realised continuously during the lifecycle
of the system” to argue for a platform “defined as a service centre devoted to
experimentation.” (p. 150) Thus, the WOZ system MultiCom is not only a
piece of software but also consists of dedicated rooms for experimentations
and hardware environment.13

MuMoWOz is a tool for conducting tests on multimodal mobile systems.
The authors argue by using the appropriate multimedia content,
MuMoWOz can be used for testing any scenarios. Though, the content
must be created before the test (except text to speech output, which can be
generated during runtime). The wizard simulates the system’s output via a
computer, connecting to the user’s handheld device via WiFi. (Ardito,
Buono, Costabile, Lanzilotti & Piccinno 2009)

NEIMO is described as a generic and flexible usability platform for testing,
observing, conducting WOz experiments and analysing multimodal
interaction. NEIMO supports a multiple-wizards setup. There is a heavy
emphasis on data collection, both automatic and by annotating wizards.

13 In experimentation in 2014, a MultiCom configuration called EmOz bases smart
home, service robot, emotional interaction all in the same experimentation on how
to make elderly people accept to control a smart home by speech directed to a little
service robot (preliminary report by Aubergé et al. in May 2014). EmOz contains
many features such as pre-recorded and voice-disguised answers, live voice disguise,
emotional sounds output, robot movements, and, “in order to facilitate the use by
non-programmer researchers”, generation of user interface for the wizard (ibid.).
http://domuslab.fr/projects/ ; http://iihm.imag.fr/en/publication/caffiau/

47

(Coutaz, Salber, Carraux & Portolan 1996; Coutaz, Nigay, & Salber 1995;
see also section 1.2 for citations.) However, it does not seem to have been
the case that the research group in Grenoble ran extensive tests generating
data which could be statistically analyzed – the WOz method does not easily
lend itself to this because of the risk of ‘wizard fatigue’ (if not more
restricted, pre-programmed/pre-recorded outputs are what the wizards are
to produce).

It could be noted that in a more recent paper, Serrano and Nigay (2010; see
OpenWizard below) do not count NEIMO as a general tool, because it is
specific to certain modalities (speech input and direct manipulations). That
is not the approach taken here when collecting examples for this chapter as
there always seem to be some inputs or outputs that systems are not ready
to provide for, at least not without extensions. Rather, the ‘generic’ aspect of
a tool should be that is allows for quick re-use between (some) application
areas and that the tool also allows for extensions even if these potentially are
more time-consuming (WOz should allow for specific setups to grab
opportunities available in the circumstances, but therefore the WOz tool
itself could not always be a part of every detail of the inputting and the
outputting).

OpenWizard is a “component- based approach for the rapid prototyping
and testing of input multimodal interaction.” (Serrano & Nigay 2010, p. 224)
OpenWizard incorporates the Wizard-of-Oz technique by replacing one (or
several) component(s) in a non-fully developed multimedia prototype with
generic wizard component(s). The work was not continued beyond the 2010
study (Serrano, p.c. 2014-04-30)14.

As for NEIMO, this 3rd generation wizardry from Grenoble (MultiCom we
count as 2nd) emphasises “a multi-wizard approach where each wizard has
an identified role and is responsible for a specific well-defined part within
the dataflow of input multimodal interaction, from devices to tasks.” (p.
216) The reason is the multimodality, which also motivates the researchers
to develop an experimental approach that mixes functioning and WOz
modules – the authors provide several reasons for why a mixed WOz tool is
to be preferred when it comes to multimodal (input) interaction (p. 218):

14 Laurence Nigay, Head of the Engineering Human-Computer Interaction Group
at Joseph Fourier University in Grenoble, explains in an email letter that the EHCI
team is not working on a WOz platform but instead conduct case-by-case
experiments. Nigay prefers to make a clear distinction between WOz platform and
WOz experiment. (p.c. 2014-05-28)

48

1. For technical reasons it can be hard to integrate some input devices
even if they work well separately.

2. “Testing a multimodal prototype [where] the integrated modalities
are not at the same level of robustness will lead to biases in the
results. As pointed out in [Oviatt 1999, p. 79], ‘when a recognition
error does occur, users alternate input modes’.”

3. “Existing devices usually impl[y] a very specific physical
installation.”

4. Test participants may differ in how they integrate two specific
modalities (e.g., Oviatt ibid.), and therefore it can be better to use a
human operator (wizard) to interpret their intentions rather than
trying to fix such calculations prior to testing the multimedia system
concept.

The OpenWizard demonstration reported in the 2010 paper – a multimodal
map navigator – was built on the OpenInterface framework and software
platform (www.oi-project.org). While that demonstration shows the
workability of the OpenWizard approach, a technical problem is indicated:
test wizards “pointed out that the current latency of the system makes it
difficult to simulate certain types of interaction, such as direct
manipulation.” (p. 224)

Ozlab was conceived as a “GUI articulator” as its inventor found this
concept to capture what was missing in multimedia development in the
1990s and also missing is WOz setups reported: swiftness in the production
of real-time GUI responses from a mockup to a test participant (compare
the communication theory developed in Pettersson 1996; cf. 1997). Building
a ‘permanent’ WOz setup, i.e. a WOz tool, should also make it more natural
to include other groups than pure UI designers as wizards (Pettersson 2002;
2003). Field tests used to be made by a well-equipped laptop that connected
to any other computer in the field. Several student thesis projects were
facilitated in this way. However, a large screen helped the wizard much
better to monitor and control not only objects in the test participant’s
screen but also accessing general wizard controls. (Pettersson 2003) Also
more elaborate field setups have been made (e.g., Larsson & Molin 2006).
Originally based on Macromedia’s Director for prototype making, it is from
2012 being re-developed as a web system, both for making a prototype and
running a demonstration or a test. Touch-specific input events are still
undeveloped. Local-area WiFi configurations are planned to be developed
(see Chapter 2 and in section 5.4, the point on “Connectivity outside the
Internet”).

49

SketchWizard supports early prototyping of user interfaces incorporating
pen-based interaction. (Davis, Saponas, Shilman & Landay 2007)

SUEDE (Klemmer, Sinha, Chen, Landay, Aboobaker & Wang 2000) is a
tool for rapid prototype creation of speech interfaces; they give an example
of a telephone system for “reading and sending email” by voice. All
(simulated) system output needs to be added to the prototype on
beforehand. The prototype is generated as an HTLM file once the designer
presses the “Test” button and the wizard then uses a web-like interface to
control the pre-recorded responses. Klemmer, Sinha, Chen, Landay,
Aboobaker and Wang (2000) argue that non-experts as well as professional
designers can use SUEDE.

Notably, “d.tools extends SUEDE’s framework into a new application
domain – physical user interfaces.” (Hartmann, Klemmer, Bernstein,
Abdulla, Burr, Robinson-Mosher & Gee 2006, p. 307) While not design
explicitly for WOz, the d.tool developers say that “A designer can later
connect the corresponding physical control or, if preferred, even manipulate
the behavior via Wizard of Oz at test time.” (ibid., p. 301)

Topiary is a tool for prototyping location-aware applications, programmed
in Java on top of a toolkit for pen-based applications called SATIN. Topiary
supports testing prototypes on “a wide variety of PDAs and phones” (Li,
Hong & Landay 2004, p. 223). When running tests in Topiary the wizard’s
interface and the user’s interface can be run on either separate devices or on
the same device. Location data are collected by searching for nearby WiFi
points. The wizard can simulate location information.

UISKEI++, reported by Segura and Barbosa (2013), is the intended
evolution of the tool UISKEI (User Interface Sketching and Evaluation
Instrument). UISKEI++ is envisioned to support WOz experiments and
prototyping on multi-devices by providing multiple abstraction levels. The
multiple abstraction levels are argued to allow the designer to compare the
prototypes, regardless of device. (Segura & Barbosa 2013)

WebWOZ is a web-based WOz tool with a focus on flexible incorporation
of Language Technology Components (LTC). WebWOZ supports one
wizard per test participant. (Schlögl, Doherty, Karamanis & Luz 2010)
During the development of WebWOZ, much focus was on the wizard
interface. The inventors argue that many wizard interfaces have been built
but that they are often designed for specific experiments. The authors
instead strive for a generic wizard interface of WebWOZ, suitable for
different experiments focusing on LTCs. Further work aiming for a generic
interface is reported by Schlögl, Schneider, Luz and Doherty (2011). To

50

reach the goal, WOz experiments were conducted, using WebWOZ, while
observing the wizards’ behaviour and interaction with the wizard interface.
Schlögl et al. (2011) identify two major problems for WOz interfaces:
(1) supporting the wizard but still keep him/her in control over the
interaction; (2) how to deal with response time issues. The experiments
resulted in preliminary sketches (see two works from 2010 by Schlögl and
colleagues) and later in prototypes (Schlögl et al. 2011; 2014).

Schlögl, Chollet, Milhorat, Deslis, Feldmar, Boudy, Garschall, and Tscheligi
(2013) report on their progress of offering voice controlled Home Care and
Communication Services, vAssist, “for seniors with chronic diseases and/or
(fine-) motor skills restrictions” (p. 517). The authors plan on collecting data
for the design of the voice interfaces using WOz, by incorporating the
WebWOZ tool presented above with other systems needed. WebWOZ was
chosen as it is open-source and “allows for testing interaction scenarios
which employ one or more Language Technology Components (LTCs)”
(ibid. p. 514; see also http://vassist.cure.at/home/).

Wizard of Oz tool for Android allows digitally created or scanned paper
prototypes to be tested. User action, wizard action, time or the user’s
location can trigger screen transitions. The prototype must be developed
beforehand because the tool automatically creates a folder with prototype
specific objects that must be transferred to the Android phone manually.
Communication TP – TL enabled by modified open-source VNC client for
Android. (Linnell, Bareiss & Pantic 2012)

WOEB – the Wizard of Oz Experiments Builder – belongs to the
‘evolution’-prototyping tool of the generic WOz tools: progressive
refinement finally replaces the wizard and results in an application, in this
case a multimodal mobile application. It uses WiFi (but also GPRS) for
sharing audio and video streams between wizard and the monitored and
controlled mobile unit. “In WOEB, the construction of WOz modules logic
and interfaces relies on a metamodel and a reference architecture. A typical
WOz environment provides a set of tools organized in a Client-Server
architecture.” (Bellucci, Bottoni & Levialdi 2009)

“In a way similar to the Server Module, the WOz Client
Module is automatically generated by the XML Interpreter. This
module is essentially a data viewer, which can display content
sent by the server and manage user pointing and oral
interaction. Pointing interaction is captured through the trigger
base, while audio inputs are processed by a Speech Capture
engine. A description of a triggered event is sent, while the

51

captured speech is streamed directly to the Dialog Manager on
the server (e.g. the human wizard).” (ibid.)

This was actually the initial modus operandi for the Director-based Ozlab in
2001. However, in the first trial the persons used as test wizards were
inexperienced in software design and could not manage two different files
for each prototype: a source file to edit and an object file to run – it differed
too much from what they were used to (cf. documents in Word,
PowerPoint, and Excel which are never run as programs of their own).
Ozlab was quickly re-implemented as a test-running program (instead of a
compiler), in which the wizard opened the prototype file (in Director’s .dir
format). A prototype builder was already provided, namely Director.
(Pettersson, 2002)

Protoype construction is managed in the WOEB environment by the WOz
Builder. “The builder can automatically organize the layout of the WOz
Server GUI, so that the buttons are distributed over columns labelled by the
request context.” (Bellucci et al. 2009). Again, this seems to deviate from the
Ozlab thinking, even if it is a bit hard to judge the extent of the differences
from a short paper. There is a difference between letting a tool generate the
wizard’s interface rather than building the interaction scenes including the
wizard’s controls, which should be placed right at the heart of where TP’s
GUI actions take place. But as Ozlab’s Testrunner provides some
‘permanent’ wizard controls, perhaps the difference is not so big between
the two approaches in this respect.

The work on WOEB was discontinued a few years ago (p.c. Bottoni 2014-
05-07). A more complete description of a previous incarnation of the
framework can be found in a technical report from the project (in Italian).

WozARd is a tool for WOz experiments on Android mobile phones, tablets
and glasses that afford communication between the wizard and puppet
device over wireless and Bluetooth. “It aims at offering a set of tools that
help the test leader control the visual, tactile and auditive output that is
presented to the test participant. Additionally, it is suitable for using in an
augmented reality environment where images are overlaid on the phone’s
camera view or on glasses” (from the Abstract of Alce, Hermodsson &
Wallergård 2013). WozARd is location aware and accepts images, video and
sound to be uploaded into the prototypes. WozARd logs test results and

52

visual feedback on a SD card.15 Content can be added during test. In Alce et
al. (forthcoming) it is explained that “WozARD lets the user interact with
the system through a SmartWatch”. Thus, TP does not only see things
through the augmented glasses but can also make some inputs to the system
(i.e. to TL). This forthcoming article also gives data from a test with 21 test
participants. WozARd was released as open-source in the summer 2014.16

A deliverable report from the 7FP EU project VENTURI (“immersive
ENhancemenT of User-woRld Interactions”) gives more details and
contains screen capture for all the different modes of the wizard control,
which are Filebrowser, Camera (“it can be started in the background without
the test person knowing it”, p. 11), Puppet (gives TL a view of the TP
device), Navigation (to help TP in real world walking), Notification (sending
different kinds of messages to TP), Tours (“With the tour function the
wizard can trigger different actions on different locations.”, p. 13), Predefined
sequence (to allow click-through for the wizard when running a test session),
and Log. (Alce, Hermodsson, Lasorsa, Liodenot, Michel, Razafimahazo &
Chippendale 2013; see also https://venturi.fbk.eu/.)

WOZ PRO is an attempt to resolve the problem with certain low-fi tools
being easy to use while not making testing easy, especially WOz testing
which the developers of WOZ PRO seem to regard as the obvious method
for low-fi prototyping. Hundhausen, Trent, Balkar, and Nuur (2008) find
neither “simple art supplies (e.g., pen, paper, and scissors)” nor
computerised supplies, such as PowerPoint and software specifically
designed for low-fidelity prototype creation “to be optimized for the key,
complementary activities of (a) rapidly creating a user interface prototype,
and (b) running wizard-of-oz tests.” (p. 86)

They identify two problems for these “existing technologies” for low-fi
prototyping (ibid.):

1. “Design change is cumbersome.”
2. “Running wizard-of-oz studies incurs a potentially high cognitive load.”

For (1), the developers phrase the relieving requirement as the ability to
“propagate a design change to other related screens”. Indeed, we
experienced from the use of our Ozlab, in its previous incarnation relying

15 SD is short for “Secure Digital” according to Wikipedia
http://en.wikipedia.org/wiki/Secure_Digital [2014-01-22] Official website is
https://www.sdcard.org/home/ but it does not seem to explain the abbreviation.
16 Cf. https://github.com/sonyxperiadev/WozARd

53

on Director and its film metaphor, that the use of sprites made it very easy
to simply stretch graphical elements over as many frames as we liked (each
frame could be made into an actual scene in a prototype or “interaction
shell”; see Chapter 2 above). This made changes easy to propagate, and it
has been a valuable feature, which is not as easy to replicate in the new,
web-based Ozlab, as it lacks the “Score” overview of Director. However,
being aware of the great utility of “propagation of changes” for a rapid-
prototyping tool, we are extending the reuse of scenes and similar things.

For (2), Hundhausen and his co-authors made it easy to define a subset of
scenes for the wizard to navigate to for each scene. This minimizes the
number of alternatives for a wizard when running a test session. However,
their system does not seem to support ad hoc scene transitions. (Good
screen shots are provided in an earlier paper: Hundhausen et al. 2007.)
Other possible wizard functions than navigation is not mentioned (such as
hiding / making visible different objects including popups, which is a way to
decrease the number of scenes dramatically).

In an experiment with 19 computer science students, the WOZ PRO

developers found that these untrained designers tended not to use the
“clone screens” and “propagate change” functions, and that defining scene
transitions was cumbersome when the state chart grew beyond a single
screen. It should be mentioned that WOZ PRO is pen-based because its
developers’ intention was to ensure that it is as easy to use for creating UI
prototypes – cf. (a) above – as the three other low-fi methods mentioned.
Their experiment notably showed some trade-offs between ease of
navigation during a WOz test and providing navigation clues for the wizard.
(The project web page is still available via http://helplab.org/projects/woz.)

It can be mentioned that in addition to the experiment with WOZ PRO,
Carter and Hundhausen made a questionnaire at the CHI 2008 conference
where they asked participants about how and why prototyping tools are
used. They presented the results at the 2010 IEEE Symposium on Visual
Languages and Human-Centric Computing. In their conclusion, they
reiterate the need for “better scaffolding for interface simulation.” (p. 211)
But the main result was that the majority of practitioners still used “art
supplies” for prototype construction of which more than half also used
these for usability studies, while some 40% used graphics editing software
and presentation software for usability studies. The authors sum it up thus:

“Another key take-home message of our survey is that, even
after over 20 years of research aimed at developing custom

54

user interface prototyping tools, few, if any, user interface
designers appear to be using these custom tools in practice.”

(Carter & Hundhausen 2010, p. 211)

At the same time many of the respondents cited “Cannot test complex
interactions” as a weakness for all three of the simple methods (i.e. pen, ps,
ppt). Carter and Hundhausen found that many practitioners were using two
or more prototyping techniques. “We were somewhat surprised by the
finding that the tools used by our respondents to create prototypes were not
always the same tools that they used to test prototypes with users.” (p. 210)
But could one hope for a tool providing the exactness of Photoshop with
the swiftness of pen and paper, and the interactivity of a multimedia
product? Seeing the tendency throughout this literature review that the
generic WOz tool has not been long-lived, this question merits further
discussion, which will be a recurrent concern in the following chapters as
well as in the immediately following section.

*

After the above literature review of WOz tools was made and the present
working paper was more or less complete, a pre-print of an interesting paper
by the WebWOZ group appeared (Schlögl, Doherty & Luz 2014, May). In
it, they report from an interview survey with twenty researchers/developers
using WOz (see our brief mentioning in section 6.5 and Chapter 7), as well
as devoting a special section to “Existing Wizard of Oz tool support”
including a subsection on “Challenges to generic tool support” where
problems for re-usable systems, especially Dialogue Management systems,
are discussed.

3.3 Requirements on generic WOz tools
Grill, Polacek, and Tscheligi (2012, p. 3), who presented ConWIZ (see
above), compared 18 WOz systems and concluded that the following
requirements should be met by generic tools:

Functionality: A WOz tool shall provide support in all phases of a study,
i.e. during the prototyping as well as conducting a study. [“Study”
presumably refers to one experiment rather than a full development
cycle from idea to a system launch.]

Flexibility: A WOz tool shall be usable in multiple contexts. This refers to
the flexibility of the tool which also should be applicable in mobile
contexts.

55

Observation: The wizard needs to know what the user does. This can be
achieved via proper real-time logging and data provision to the wizard as
well as through the possibility of the wizard observing the user directly
(in-situ or via video transmission). In addition, functionalities like screen
capturing are advantageous if the WOz prototypes are based on a
graphical user interface.

Configuration: In order to be re-usable in multiple studies the WOz tool
needs to be adoptable and configurable in a multitude of situations.

Simulation. The WOz tool needs to be able to simulate functionality of
the WOz prototype as well as to control objects in the study context.
Regarding mobile and ubicomp contexts the tool needs to be able to
control such remotely.

Collecting Data: The WOz tool needs to be able to record all the data
required. The particular data depend on a concrete study scenario, which
requires a flexible logging mechanism of data about the user interaction
as well about parameters about contextual objects and situations.

Real-time Functionality: The WOz tool needs to be able to simulate
scenarios in real-time.

Study Support. The WOz tool shall support the wizard during a study
scenario by providing functionality such as setting the current
participant-ID, note-taking, starting/stopping of the study session.

General applicability: The WOz tool shall be suitable for supporting WOz
studies for multiple domains and contexts.

Usability: The WOz tool shall be applicable and appropriate to support
human wizards throughout the whole study process. The usability of the
WOz tool shall be good.

Perhaps the Configuration requirement should be named Configurability, but
without going into such formal details of this list, it is noteworthy that most
if not all of these ten requirements could be further divided into sub clauses.
Now, a further division would make the list unmanageable if the systems
gone through so far were to be tabulated and checked requirement by
requirement. Grill and co-authors actually used a table to compare the
eighteen WOz systems they considered. However, already that table is
marred with exceptions and footnotes. In contrast, the present work puts
the details in the text while also trying to indicate the major ‘historical’
trends – if the expression may be allowed – of moving away from focusing
solely on natural-language processing, the acceptance of multimedia output
and multimodality input, the embrace of service robots and lately of smaller
mobile units that the user carries around.

56

In order to evaluate the requirements put up by Grill et al., it should be
noted, that for the input to the wizard there is no need – in ‘first iteration’ –
to delimit the modalities to what the future system should detect. The same
goes for the output from the wizard: even if the WOz tool itself should help
the wizard to produce the output envisaged for the future system, the tool
itself does not have to constitute the whole experimental setup for each test.

From such reasoning the next chapter will deal with wizard production of
some admittedly limited but nevertheless very basic forms of output, thus
providing a framework for requirements of this most essential part of any
WOz system. Here, some notes will be made concerning output production
and WOz simulation in connection to Grill’s list of WOz tool requirements.

To start with our own system, the original idea behind Ozlab was to find a
way to make GUI articulation swift in order to allow more dynamically
created man-machine dialogue (with faked machine expressions, as Ozlab is
made to facilitate Wizard-of-Oz experiments). Notably, an “articulator”
differs in scope from a WOz tool that provides “support in all phases of a
study, i.e. during the prototyping as well as conducting a study” (Grill’s
Functionality); there is not necessarily a drawing tool or a logging tool as long
as UI-specific dialogues can evolve relatively unplanned, that is, by letting
the wizard use appropriate UI widgets to make the test participant
understand what the UI is intended to convey.

An interesting aspect surfacing in some of the papers reviewed above is the
concept of a configurable user interface for the wizard (e.g., ConWIZ,
WozARd, and WOEB above). Probably this reflects an idea of the wizard
tool as any other machine with a UI for its operator. In contrast, the
development of Ozlab centred much on the interaction space for the TP.
Hence the TP screen became much of the TL control window, which thus
was unique for every test except for some general wizard functions as
explained in Chapter 2. The development challenges were never put as
making the TL-UI “configurable”. Surely, some helpful features were
implemented; but that the TL-UI should not be built for every shell (i.e.
prototype) was never on the agenda as Ozlab was made as a GUI articulator
for TL. (See also comments made above in section 3.2 on WOEB.) This
means also that if several TLs are using the same shell, they can adapt on-
scene widgets before their own test sessions to fit their own preferred
workflow. Li’s evaluation of different factors affecting consistency in WOz
testing found that “flexible layout design assisted [wizard] to build up an
efficient work space which fitted with personal operation preferences”
(2012, p. 159; Li & Bonner, 2011).

57

The use of the word Simulation in Grill’s requirements list is not wholly well
chosen. Surely, a wizard simulates something when conducting a
demonstration or test, but it is only system internal functions that are
simulated. In contrast, the extrovert actions of the mockup system will have
to be real. Indeed, they often have to look as real system output, at least
when WOz is used to conceal the true nature of the noesis. In any case, the
output actions have to be real in the sense of being perceptible for test
participants. Other words fit better for the mock system responses, such as
“production”, “generation”, or “output control”, or, as indeed preferred by
Pettersson (2003), “articulation”.

To support simulation (when this word is used in its proper sense), the
wizard(s) will have to have good overview of the doings of the test
participant(s) – however, there is a problem if the wizard has more input
than the future system can possible have. For instance, mood recognition
(by the human wizard) can be realistic in a futuristic WOz, but it can also be
very helpful in a simple GUI-based pedagogical product – however, this
very helpfulness will give the wizard more input than the simple GUI-based
application can have once it has been programmed. On the other hand, this
cheating can be very useful in ‘first iteration’ as noted above. For instance,
in the very first use of Ozlab in 2001, the experiment run with special
educator progressed for several months by drawing the blind to the test
room and as a final step there was the possibility to shut off the microphone
in the test room. And long before this study commenced, the special
educators had already developed their training materials consisting of
laminated, coloured hand drawings and methods of engaging the small
children as well as their parents as tutors to the children. Thus, the tapering
of the communication channel, as Mavrikis and Gutierrez-Santos (2010) call
it, could be a planned working procedure and extend far beyond (far before)
the initial steps of the prototype(s) for a system.

Reflecting further on Grill’s and co-workers’ requirements, we can notice
that there are some main objectives behind the requirements. We identify
four goals:

Props Construction (Part of Functionality, namely construction of
“prototype”)

Broad Applicability (Flexibility, Configurability, and General Applicability)

Production of Output (Simulation and Real-time Functionality)

Protocol Support (Observation, Collecting Data, and Study Support)

The first part of Usability, i.e., “the WOz tool shall be applicable and
appropriate to support human wizards throughout the whole study

58

process”, seems to repeat the idea in Study Support, so it is left outside this
grouping, while the second part, “the usability of the WOz tool shall be
good”, is desirable but perhaps not necessary if professional designers use
the tool to trigger some responses they cannot have otherwise before there
is an implemented version (in contrast to large-scale scientific experiments
where the usability is more urgent to avoid wizard fatigue, but then one
might wonder if WOz is the right method). The swiftness of the
Production of Output is furthermore dependent on how much work is put
on the wizard who is dependent on how the mockup and setup is designed
in each case; thereby, this swiftness is not directly dependent on the tool
itself. A standard usability requirement is probably far easier to employ on
the Props Construction functions of the tool rather than on the wizard
functions.

The next chapter will concentrate mainly on the Production of Output.
The chapter following will focus on the question of platform dependency.
This issue is related to the question of the longevity of a generic WOz
system, which was raised in passing several times in 3.2. Slightly platform-
averse, we adopted web technology for the new implementation of Ozlab
despite problems in Props Construction and even in the timely and quick
Production of Output, as mentioned in Chapter 2 and as will be further
discussed in Chapter 5 and also in section 6.5, “Delays and time lag”.

59

4 How interaction is supported by the WOz tool

The WOz technique began as a way to explore and develop systems in an
area where technical limits were prominent, namely NLP, natural language
processing. When NLP researchers found that the WOz technique had to
adapt to the emerging GUI standard, the WOz method became more
cumbersome as specialised GUI systems had to be programmed even if the
idea was to avoid programming the NLP functions to be explored. In
addition, there was a lack of opportunities to do GUI experimentation in
the WOz way. This was the reason for the development of the generic,
graphical WOz system Ozlab (Pettersson 2002). Similar thoughts seem to
have resurfaced in the last decade, hence the development of several re-
usable WOz systems.

The following subsections attempt to characterise the various aspects which
were important for the original Ozlab and the new web-based variant. The
aspects overlap in some cases or are subordinated, but for the sake of
clarity, each aspect will be discussed within its own section, namely:

1. What output is supported by the WOz tool?
2. The continuum from demonstration over explorative testing to

evaluating design proposals
3. Explorative WOz: open response space for the wizard (that is,

insights [hypotheses] of the moment which can be “tested”).
4. Exploration by short interruptions to make changes to a prototype

during a test session
5. Web features in WOz experimentation.

So the first issue is about the wizard’s role, but limited to the materiality of
the output. It is not about input; it is not about the wizard’s ability to get
various sorts of input, because this could be made experiment-dependent
and is not strictly about the tool. For instance, God-like properties such as
seeing how the test subjects feel by watching a video monitor or peeping

60

through a mirror glass are independent of the WOz tool used – a video
camera and a monitor can always be externally added to any tool, or the tool
can be placed in a usability lab with a one-way window between the control
room and the test room.

Issues 2-4 deviate from the perspective of many WOz papers by not
focusing solely on the test-as-verification benefits of faking the
implementation of interaction design. Issue 2 (and by implication 3 and 4)
discusses WOz as Kelly once did, namely from a systems development
perspective. Test as exploration lends high degree of openness to the
wizard, in terms of the person’s capacity as a human being to understand
the requirements during a session of interaction. Issue 4 is related to both of
issues 2 and 3, but it puts an extra dimension to the exploration perspective,
viz. modifying the prototype after an interactive session has started.

Issue 5 targets a vulnerable point of the generic solutions, namely the
possibility of being able to run them in the context of an ever-changing
infrastructure where operating systems and other features vary and are not
backward compatible. At the same time, the World Wide Web supports
compatibility and general executability so the effect of web features on WOz
experimentation merits special attention.

4.1 What basic actions is the wizard supposed to execute?
There is a conceptual difference between what the wizard is supposed to
simulate and what kind of output the generic WOz tool supports. The
wizard can, for example, be supposed to simulate the system’s interpretation
of a person’s body movements, as in Höysniemi, Hämäläinen, and Turkki
(2004), but the output that the wizard provides the user with is graphical:
e.g., if the user moved as if he/she was swimming the wizard showed a
“swimming” avatar. Thus, the wizard provides the correct output and does
not simulate it. What is simulated is instead the system’s recognition of
bodily movements.

In this section, the intention is to show the wizard’s output possibilities in
the generic WOz tools rather than what the wizard is supposed to simulate.
Simulation might concern such things as the recognition of body
movements, of body position in relation to a physical object, of speech, of
written language, of a click on a link, of a mouse-over, of a swipe, etc. After
such recognitions the wizard has to produce some output, and this is what
this section will discuss, because the reusability of a WOz setup depends on
the possibility to do “any” kind of system response rather than only those
specific to a certain experiment.

61

However, the literature on WOz experiments makes clear that there is a
difference between a mockup and the total experimental setup. Example: in
the first experiments conducted with the Director-based Ozlab system, a
separate microphone and a voice disguiser were used, thus allowing the
wizard to give the user audio responses that purport to come from the
characters on the screen. It must be understood that certain experiment
setups provide the wizard with output possibilities outside the generic WOz
tool.

Below we develop this framework based on the smallest parts needed to
articulate a user interface (mainly for standard applications on standard
devices). We divide the elementary articulations into three main types:
visual, audible, and actuationary.

4.1.1 Visual output

SCENE MANAGEMENT

Graphical interface changes: Displaying or switching between
images/scenes/pages in the mockup as in Ozlab and in the Android tool by
Linnell, Bareiss and Pantic (2012).

“Narrative” as in Lee, Mott and Lester (2010; see sec. 1.2 above), that is, the
wizard opens up further parts of a programmed system (bringing the user to
the “next level”, so to speak).

GRAPHICAL OUTPUT

Pre-recorded animation/video as in the systems mentioned for scene
management. Live video does not seem to be included in any system except
as captured by the TP device (WozARd by Alce et al. 2013). Switching on
the video channel might be the wizard-part of the output.

Beautified user sketches as in SketchWizard by Davis, Saponas, Shilman and
Landay (2007).

Make an object visible/invisible. Can be used for notifications, alert boxes
and a range of other features such as blinking for attention.

Repositioning of objects visible to the test participant during a test session.

Drag-and-drop with visible drag in order to make (simple) animations
without pre-recording or pre-programming (see TownMap in Bergmann et
al. 2006). This function and visibility (hide/show) were two of the essential
requirements for the first Ozlab system as it made it possible to WOz
prototype GUIs in the multimedia area.

62

AUGMENTING OUTPUT

For prototyping so-called augmented reality applications, WozARd gives the
wizard the possibility to control the “augments” (at least to select among
pre-installed system output; Alce et al. 2013). For the development of our
framework, the question is if the output itself differs from the other things
listed here (like video + make an object visible); the augmentation pre-
supposes TP video and possibly, the wizard can switch it off or hide it.

TEXT OUTPUT

Choose from pre-written texts as almost all systems seem to allow. This
facilitates speedy execution and correct spelling.

Generating sentences by assembling text from pre-written words or phrases,
which Dahlbäck et al. (1993) found useful to make text output correctly
spelt and grammatical. Also MDWOZ allowed only selection during a
running session.17).

Wizard-written text as in Ozlab with its emphasis on explorative interaction,
and a few other systems. DiaWOz-II (Benzmüller et al. 2007) combines
free-writing with selection of standard words and mathematical symbols,
and the output is put in the right place by the system.

Re-using input from the Test Participant: this is standard in NLP
experiments but often fully automatized. For setups relying on speech
recognition or machine translation, there is both selection and editing and it
mixes with the interpretation task of the wizard (see Fig. 9 in Schlögl,
Doherty, Karamanis, Schneider & Luz 2010). In Ozlab the inclusion of TP
inputs in certain output, e.g., summaries, is possible but depending on the
design of the shell (prototype). The output is automatic but it can be seen as
wizard-generated as an Ozlab wizard can always choose to make it visible or
not. The input included in text outputs can consist both of TP-typed text
and of selections made by TP by lists, checkboxes, and radio buttons, as was
explained in section 2.2.1.

17 In fact, whether MDWOZ allowed only selection or also composition is hard to
say on the basis of the paper by Munteanu and Boldea (2000) but in an email letter
Munteanu explains: “the wizard could not edit the output once it was generated, but
the interface for managing the dialog states was designed to be reconfigurable, and
the wizard could easily add new template texts to each state. The output interface
had the technical capability to allow the wizard to edit the output text, but if I
remember correctly I was worried that this would overload the wizard’s tasks and
also run the risk of out-of-vocabulary items for the TTS system.” (p.c. 2014-07-27)

63

NUMERIC OUTPUT

Numbers can be seen as text, but they have a correctness standard that is of
a special kind: making a correct statement of something measurable. Topiary
calculates correct real-world distances between graphical objects the location
of which the wizard controls (on top of a map in this case; Li et al. 2004).
Sums would constitute the prototypical example but this fact was not
mentioned in the literature reviewed.

Displaying time digitally could also be viewed as a textual output. However,
a timer, especially a timer displaying seconds, has a correctness standard that
is of a special kind as it could quickly be noticed by the test participant if the
time-keeping is simulated by a human. The same holds for an output
displaying a clock.

4.1.2 Audible output

SPEECH OUTPUT

Text-to-speech (TTS) is speech composed synthetically and controlled by
the wizard by typing or selecting text, such as “Departing to London at
10:45 AM.”

Direct speech (a wizard may be reading a manuscript as in DART by Dow
et al. 2005; in Pettersson 2002 the wizards used voice disguiser to conceal
from the test subjects that the test leader were acting as characters in their
animated training exercises). This allows for exploring new responses during
a test session, but voice does not seem to be inherent in any of the mockup
controlling software.

Pre-recorded speech responses as in SUEDE (Klemmer et al. 2000). Any
system allowing for playing video-snippets on wizard’s demand can of
course also provide pre-recorded speech output.

Re-using input from the Test Participant: we are not aware of this being
made in any system by simple recording. In some spoken-language systems,
there is of course a transformation to machine-readable text which is then
used in speech production (but in WOz setups it seems there has always
been a wizard selecting among possible outputs before one text is read
aloud by the system).

SOUNDS OUTPUT

Pre-recorded music/notifications/sounds. Can be realised as specific
controls for specific sounds or by pre-recorded sounds as in the paragraph
immediately above.

64

4.1.3 Actuator output

TACTILE OR SENSORY OUTPUT

Tactile or sensory output as in and Ozlab (vibrations on Android devices).
These are directly directed to a specific TP.

CONTEXT PARAMETERS

Switching on/off e.g. lights but also varying intensity; Grill et al. mention
the fan they switched on and off (2012; see also Zachhuber et al. 2012, p.
227, who mention light intensity but also briefly mention “all human sense
[…] and olfactory sense”).

MOVEMENTS OF MACHINERY PARTS

Movements of mechanical limbs are more complex than just switching on
and off: there is a risk that other objects or the TP or other people interfere
with the movement. There are situations where the precise coordination
belies any attempt to bring it down into more elementary output forms.

MOVES OF MOBILE OBJECTS

Controlling the moves of i.e. service robots is again more complex than
controlling switches as the constituent x- and y-axis movements have to be
coordinated precisely and in concord with the speed adjustment. (Riek 2012)

4.1.4 Examples

Here we give only a few examples of how different kinds of wizard output
can be used together in a system:

In Topiary by Li, Hong and Landay (2004) the wizard can indicate location
and spatial relations in prototyped applications by using a number of the
above listed outputs such as: graphical output by managing scenes, showing
objects, and reposition objects; numeric output by showing distances
between objects, also time can be shown; and textual output.

WozARd by Alce, Hermodsson and Wallergård (2013) supports several
wizard-triggered outputs, especially AR. The wizard can generate/activate
visual and audio output on the user device, such as default or wizard-created
notifications (SMS, etc.), audio by TTS, visual navigation instructions by,
e.g., navigation arrows and by showing images depending on the user’s
location.

In MDWOZ the wizard can simulate the speech recognition and semantic
analysis functionality of the system, and provide TP with a text and/or text-
to-speech response to TP’s utterances. In their reported experiments,

65

however, Munteanu and Boldea (2000, p. 106) used pre-recorded words “to
synthesize the speech signal after the text is normalized”.

4.2 The Continuum from demonstration to evaluation
A Wizard-of-Oz prototype can be used within project groups to
demonstrate solutions. No papers are discussing this aspect of the generic
tools. Being able to demonstrate the interactive aspects of the proposed
solution should add insights to the development team and the other
stakeholders even if it is obvious that it is a faked interactivity. In fact, there
is a whole spectrum of various constellations of the use of a WOz prototype
from demos to final evaluations.

An experimental setup that is in-between the evaluation and explorative
setting is the one where the “test participant” is fully aware of the wizardry.
Such a setup has been used in Ozlab by using two adjacent PCs. It has also
been used with connected laptops. The wizard and the “test participant” (a
content expert in the project group) then sit next to each other, exploring
and discussing the mock-upped system, as in the photo in Figure 4
(connected laptops have also been used for real testing, esp. by student
groups).

New insights can also be gained by letting one of the project group
members act as wizard or as TP. In fact, there are many combinations.
Pettersson (2002) reported on the special educators acting as TLs with their
clients (children and parents) as TPs. On one occasion, Pettersson acted as
TP to demonstrate to the educator some aberrant behaviours which users
sometimes engaged in and that she had to think of how her “computer
program” should respond to. The list in Figure 4 gives some major
constellations:

1. Professional developers use test subjects

2. Users test on peers

3. Users test on clients

4. Users test on developer

5. Developers and users together test/discuss

6. Developers and content experts together test/discuss (see the
photo!)

66

Figure 4. A PowerPoint slide used by Pettersson since 2003 to present the multi-faceted use of a
WOz tool

Evaluation itself is not further discussed here, because it does not differ
from other iterative design approaches but a note on teaching usability
testing can be worth making. As Ozlab has often been used by beginners
(students) over the years, the recording of wizards or wizards’ screens has
been a commonplace. Such wizards have always been designers to various
degrees but of course we have noticed weaknesses in notations from such
sessions. It is not uncommon that students believe they can remember their
thoughts also after the test session is over. Similarly, when a user
representative is TL while another user representative acts as TP one might
wish to rely on more than the wizard’s memory for making post-test
annotations; to compensate, the wizard’s runtime comments may constitute
good memory aids if there are no experienced designers or usability testers
available when sessions are run. Such comments can be made orally and
recorded together with the screen capture of TP’s or TL’s screen, provided
that the TP cannot hear the comments.

67

4.3 Explorative WOz
Conducting tests as exploration leaves a high degree of openness to the
wizard by respecting the wizard’s capacity as a human being to understand
the requirements during a session of interaction. This means that in
explorative WOz sessions the script for the wizard (i.e., the interaction
scheme or response scheme) can be of three kinds:

1. non-existent;
2. existent but subject to further development; or
3. existent but can be deviated from.

By explorative WOz tests the design team is developing the script as tests
are conducted. In order to conduct experiments without a pre-conception
of exactly what the interaction should look like, or what responses the
wizard should give, the experimental setup must allow the wizard to
interpret the test participant, and the WOz tool itself must provide a
possibility for the wizard to come up with responses on-the-run. For
exploratory WOz, the tool should enable the wizard to adapt the prototype
to the user’s comments, responses and input, in a quick and easily
conducted manner.

In earlier experiments conducted with the Director-based Ozlab, it has been
shown that Ozlab facilitates development of the interaction script by
enabling alterations of the interface or the interaction patterns in the
prototype according to the user’s actions or preference. Figure 5 below was
an early attempt to illustrate how the Director-based Ozlab system was used
in this manner, as it intends to show how the interaction script as well as the
interaction shell is developed through a series of iterations.

As cited in 1.2, Mavrikis and Gutierrez-Santos in their work on intelligent
tutoring systems acknowledge a much larger development cycle where pre-
prototype interaction between facilitator and learner is also included.
Similarly, in the first Ozlab study the test wizards used exercises from their
ordinary work as was mentioned in 1.1 and 3.3.

In addition, it can be noted that the explorative ideas that the wizard comes
up with during a session may go outside the limits of the WOz mockup. In
such a case the designers have to change something in the test setup in
order to carry through the novel ideas. It could be changes in the file(s) that
the generic WOz tool runs during that test session. This kind of changes is
discussed in the following subsection.

68

Figure 5. The evolution of an interaction shell and its concomitant interaction script during five
iterations (source: Pettersson 2003, p. 166).

4.4 Exploration by short interruptions to make changes to a
prototype during a test session

For the generic tools listed earlier it is often not clear whether they would
facilitate explorative testing that goes as far as interrupting a session to make
alterations to the prototype (apologizing oneself to the test participants, of
course) and then continues without ruining the test session. For instance,
WozARD allows for runtime improvements of the responses (3.4.3) as
apparent from the following statement: “It is easy to add content and create
lists of notifications without recompiling the application.” (Alce et al. 2013,
p. 602) However, it is hard to see what labour would go into adding new
scenes if it at all is possible without recompiling the application.

The same holds for “A Wizard of Oz tool for Android”: “Once all of the
files have been added to the project, the tool generates a folder containing
all the images and videos underlying the prototype that is manually loaded
onto the phone’s SD card.” (Linnell et al. 2012, p. 67) However, the tool

69

seems to support to some extent that changes are made to the prototype
during runtime: “The screen transitions and drawing of widgets are all
pushed from the laptop to the phone at runtime […] This means that the
experimenter can alter widgets or transitions during an experiment, and the
project does not have to be re-loaded onto the phone.” (ibid. p. 67)

In MDWOZ it seems as if the changes were done between each session (that
is, neither during runtime or by pausing): “During the simulations period,
the interaction model was changed, usually after a dialog session in which
the subject asked a valid question, but there were no paths through the
dialog graph which allowed answering it. This way, the interaction model
size increased from 23 to 32 states. Besides adding states, in certain cases
states were removed, and texts associated to wizard nodes were changed.”
(Munteanu & Boldea 2000, p. 170)

In Ozlab the wizard can either pause the test (by the Wait screen or by
freezing the TP screen) and apply changes, or terminate the session to apply
new objects to the interaction shell, and then restart the session. Adding
completely new objects in runtime is not supported in the present version of
the web-based Ozlab system (nor was it supported in the earlier Director-
based system), but would support conducting explorative tests even further.
For the purpose of exploring a multimedia chat within a web site, Malin Wik
is experimenting using two browser windows, so that she as wizard can stop
sessions, add content, and start sessions in one window while the test
participant seemingly seamlessly continue probing in whatever window is
available (the preliminary ideas are found in a poster presentation; Wik
2014).

4.5 Web features in WOz experimentation
This chapter has analysed the generic WOz tools’ capacity to support WOz
sessions, “production” in particular as well as the management of sessions in
general not from the viewpoint of how log all possible data but from the
viewpoint of ensuring an interesting interactive chat between TL and TP.
Admittedly, the latter aim often recurs in usability and corpus-generating
works, but it is of secondary importance in a general treatment of Wizard of
Oz as this technique can be used as in 4.2 – 4.4 where the aim is primarily to
enlighten the designers (even stakeholders) to come up with new ideas.
Video capturing of everything involved may often suffice for rehearsal and
debates rather than a detailed tagging of data files.

To round off, in the perspective of the present work, the discussion of the
problem of sustaining generic WOz tool in this chapter and the discussion

70

in the next chapter on web-based WOz tools, it may be appropriate to
briefly mention the major impacts of a webified solution.

Sluggishness: several things make communication via the web rather slow.
Without a direct link to TP’s unit, this will impact on TL’s ability to quickly
notice what TP is up to and it will of course impact on the time it takes for
TL’s actions to take place in TP’s device(s).

Scrolling: in a GUI-based WOz-experiment where (much) scrolling is
involved, there will be a problem monitoring and controlling the TP pane
and also managing TL’s own pane.

Surfing: as many resources are on the web, it is on many occasions natural to
let TPs access other sites. This can entail some problems to maintain control
of the experiment.

Browsers: restricted access to assets on the TP device limits what can be
tested. Also the problem of easily setting a browser in web pane only mode
limits what can be tested.

While the latter two can be solved, the first two are harder to overcome.
Especially the one on transmission speed is crucial: there is no experimental
setup where it will not matter.

71

5 Platform-independent WOz tools

As said in Chapter 3, the present work has indicated some major trends in
the history of the evolution of the Wizard-of-Oz method: moving away
from focusing solely on natural-language processing, the acceptance of
multimedia output and multimodality input, and the embrace of service
robots and lately of smaller mobile units that the user carries around.
Naturally, some of these directions partly overlap and the idea of very
general WOz tools suggests itself. On the other hand, the ‘ad hocity’ of the
method is lost if a research team is to develop an all-covering tool. From
one of the Grenoblers, to whom we sent a draft of this text inquiring about
any use of generic WOz tools in her group after NEIMO, we received the
following comment:

“We still develop Woz-based tooling on a case per case basis
(as opposed to NEIMO whose goal was to be as generic as
possible for the study of multimodal interaction). For example,
3 years ago, we have developed a ‘just-good-enough’ Woz-like
component to simulate typical situations in the context of end-
user programming for the home, situations that are difficult to
produce in real world scenarios because of middleware
malfunctions, or because the hardware and services (e.g.,
sensors/actuators, weather forecast) are not integrated yet. […]
In these days, I do believe that Woz tooling is necessary but it
has to be highly tailorable to the domain (‘ad-hocity’ is a
must).”

(Joëlle Coutaz, p.c. 2014-05-28)

With this pertinent caveat as a prologue we run three discussions below on
(1) tools for development for different platforms, (2) threats to generic
WOz tools, and (3) web-based tools respectively. A fourth section attempts
to present an overview of (4) possible limitations of web-based WOz tools.

72

5.1 WOz tools for tests on several platforms
From 1.2 and 3.2 one can see that there are many systems and tools
developed to support using the Wizard-of-Oz technique in the development
process of a system. As the demands for using systems on a large variety of
devices increase, Segura and Barbosa (2013) argue that the prototyping of
such systems should follow the demands. The authors furthermore argue
that even when using responsiveness, the user interfaces need to be
designed with different screen sizes, resolutions, input techniques etc. in
mind. However, all WOz systems are not totally generic. Many of the tools
are designed for testing prototypes on a specific platform (see, for example,
the WOz tool for Android by Linnell, Bareiss & Pantic 2012).

Some steps towards a WOz prototyping tool for multiple platforms and
devices have been made: Segura and Barbosa (2013) proposed an evolution
of their prototyping tool UISKEI in this direction to support the Wizard-of-
Oz technique and multi-device prototyping; in SUEDE (Klemmer et al.
2000) the prototype is generated as HTML, perhaps enabling tests on other
devices than computers; Ardito, Buono, Costabile, Lanzilotti, and Piccinno
(2009) developed MuMoWOz for testing multimodal systems on mobile
phones or desktop computers; and Alce, Hermodsson and Wallergård
(2013) present WozARd for WOz experiments on mobile phones, tablets
and glasses – and this group at SonyMobile in Lund is about to release it as
open source.

The tools might support tests of prototypes on different devices but it does
not mean that all kinds of devices are compatible with the tool. For
example, Segura and Barbosa state that they are developing UISKEI++ for
Windows 8 as well as Android devices, implying that running prototypes on
Apple’s products is excluded. In re-developing Ozlab as a web-based tool,
we have found the same problem, because even if the intention is that it can
run on a (Chrome) web browser on any device, there are different
restrictions in different mobile operating systems as to what hardware can
be accessed from a web browser. There is also the problem of the
nativeness of the browser engine – Apple and Google have used different
engines for their browsers since 2013. These and other aspects of basing a
re-usable tool on web technology will be brought up later on in this chapter.

5.2 Threats to generic WOz tools
A shared issue amongst the generic WOz tools is that they are vulnerable in
a longevity perspective. The intention in this subsection is to present
different aspects of this perspective, by making notes on how a tool can be
affected by changes in the system environment.

73

Tools based on a program

A WOz tool that is based on a specific program is at risk if the program is
either updated or outdated. The updates of the program can end in a
mismatch between the WOz specific functionality and the input/output that
the underlying program will accept. If the underlying program gets outdated,
it may become impossible to run, install, etc., as the program is not
supported by the distributor.

For the Director-based Ozlab system, also described in section 2.1, this
became an issue as Macromedia Director was acquired by Adobe and not
further supported.

Tools depending on a specific programming language

Vulnerability can be an issue for WOz tools that depend on a specific
programming language. One example is that of the Director-based Ozlab
system, which was dependent not only on Director, but also LINGO, the
programming language used in Macromedia Director. A programming
language will decrease the chances of further developments if it is not
commonly used.

This issue may be related to all generic WOz tools presented in section 3.2.

Tools adapted for tests on a specific platform (e.g., Android devices)

Some tools are adapted for running tests and prototypes on a specific
platform. Such tools make use of specific possibilities granted by the
platform or are adapted to specific limitations of the platform. For example,
if conducting tests on handheld devices that make use of touch input, the
tool may be adapted to forwarding such inputs (if it is hard for the wizard to
follow TP’s actions by direct observation).

Adapting the WOz tool to a specific platform, however, makes it vulnerable
regarding its durability. If the platform is redesigned in some way, e.g., what
input forms it allows or what output it enables, the generic tool needs to be
adapted to the redesign.

In tools such as WozARd by Alce et al. (2013), and the Android tool by
Linnell et al. (2012), this vulnerability could be an issue, but working with
the platform developer puts the longevity issue in quite a special perspective.

The very recent discussion by the WebWOZ team on challenges of generic
tools is worth mentioning here (Schlögl et al. 2014) as they identify factors
inhibiting re-use: in some cases the integration of a WOz tool in a larger
system is the cause, and for other applications the WOz setup has been

74

merely a throw-away prototype. Hardly any system has been directly
available for download.

5.3 Generic web-based WOz tools
Schlögl, Doherty, Karamanis, and Luz (2010, p. 113) argue that “[…] by
having a fully web-based implementation of a WOZ framework we would
be able to offer new possibilities when it comes to running WOZ based user
studies. That is, in theory it would not matter anymore whether a wizard is
hidden next door or actually works from a different country since the
framework providing the interfaces for the different parties and collecting
the data would live online.”

As argued by Schlögl et al., a web based Wizard-of-Oz system enables
remote experiments to be conducted. If the system furthermore is accessed
and run in a web browser, the setup difficulties and dependency to a certain
platform is decreased:

 “Existing WOZ and DM [Dialogue Management] tools mostly require a
certain platform dependent configuration of the host system in order to run
smoothly. Also they typically need an installation routine and a very specific
experiment setup (i.e. several computers acting as clients and servers,
multiple screens, cameras, microphones, etc.)” (ibid.)

In order to conduct tests with the previous Director-based Ozlab system,
especially if installing it on a new machine, a cumbersome environment
setup procedure was necessary. Several steps were needed to set up
Macromedia Multiuser Server (see section 2.1). In order to allow the
communication and writing/reading of files between the two computers
used in the tests, firewalls and sometimes sharing settings had to be
modified. The Director-based version was furthermore platform- and
software-dependent: it ran on computers with Windows installed and
needed Macromedia Director 8.5 or MX as well as Multiuser Server.

The web-based Ozlab system is less platform-dependent than the Director-
based version. If the web-based Ozlab system is running on an IIS 8 web
server, the wizard only needs a computer with the web browser Google
Chrome installed to access and use Ozlab.

The web-based Ozlab system is intended for experiments on graphical
interaction, just as the old Direct-based version was. Even though the web-
based Ozlab does not support integration of language technology
components as did, e.g., WebWOZ (Schlögl et al. 2010; 2013; 2014) or is
specifically developed to support design and tests on speech user interfaces
as was, e.g., SUEDE (Klemmer et al. 2000), experiments on speech

75

interfaces in Ozlab can be conducted by using a microphone and/or voice
disguiser (we have already at several occasions referred to the very first
experiment with the first version of Ozlab; Pettersson, 2002). However, this
would be a setup outside of the actual web system.

One could argue that Ozlab prototypes are runnable on every device that
can run a modern web browser. However, this statement is not entirely true
as noted above in 5.1. The web-based Ozlab system is software-dependent
when it comes to which browser that renders the system properly, namely
Google Chrome. In addition to Android devices, Google Chrome is
available for iOS devices but for iOS devices, the web browser engine18
WebKit must be used. Both Chrome and Safari used to run on this web
browser engine, but since April 2013 Chrome instead uses Blink,19 while
Safari continues to use WebKit.20 This means that even though the look and
feel of a Google Chrome browser is the same on iOS devices as on Android
devices, the interpretation, rendering, and display of mark-up language and
formatting information are executed differently.

In addition to the Google Chrome dependency, the framework used for the
interface of the web-based Ozlab system is based on Sencha Ext JS. In
addition, it depends on IIS 8 with web sockets. These software
dependencies can make the web-based Ozlab vulnerable to the issues
brought up in 5.2. (Schlögl et al. report that “The WebWOZ platform has
been implemented using the Google Web Toolkit which supports the
construction of web interfaces using the Java programming language.” 2013,
p. 514; op. cit. also provides data on components.)

The next section attempts to present an overview of possible limitations of
web-based WOz tools. The problems mentioned are derived from the
experience with the on-going development of the web-based Ozlab
presented in section 2.2.

18 Web browser engine can also be called ‘layout engine’ or ‘rendering engine’. See
Wikipedia on Web browser engine http://en.wikipedia.org/wiki/Web_browser_engine
[2014-02-28]
19 The Chromium Blog (2013-04-03) Blink: A rendering engine for Chromium. Available:
http://blog.chromium.org/2013/04/blink-rendering-engine-for-chromium.html
[2014-02-28]
20 CNET, Stephen Shankland (2013-04-03) Google parts ways with Apple over WebKit,
launches Blink. Available: http://news.cnet.com/8301-1023_3-57577790-93/google-
parts-ways-with-apple-over-webkit-launches-blink/ [2014-02-28]

76

5.4 Limitations of the present web-based Ozlab system
Thus, in addition to the platform dependency just mentioned, this section
will bring up some points presently straining Ozlab experimentation.

1. Sluggishness

Ozlab has slow response times. Regarding ConWIZ, Grill and Tscheligi say
in a recent paper: “Future work includes enhancements of the ConWIZ
protocol towards the possibility to use UDP communication for specific
purposes.” (2013, p. 441) In the Director-based Ozlab UDP was used
because TCP had quickly turned out to be too slow but that was many years
ago.

Furthermore, as the Shell Builder is also a service provided by Ozlab,
making a prototype lends it the languorous feeling of a typical cloud service.

2. Connectivity outside the Internet

As the new Ozlab system is accessed through web browsers over internet
connections, the connectivity could be an issue when using Ozlab. If
experiments are conducted in environments where the connectivity is less
reliable (or non-existent), one solution could be that of running the server
locally. The TP device would then connect to the wizard’s computer
through some local connection. Preliminary data show that a laptop is
noticeably slower to run the Microsoft server, while downloading heavy
pictures can be speedier as there is no congestion to struggle with when
there is a local WiFi used only by TL and TP.

3. Security

With a web-based Ozlab system security issues follow as well. One needs to
protect the system and the network on which the system is running.

However, using firewalls also limits the access possibilities for “friendly”
accesses. This will be an issue if access is granted through specific ports, and
the same ports are blocked in the network from which the wizard is
connecting.

4. Limited TL access beyond the web browser

Apple’s restricted policies for access to system functions from web browsers
will make it hard to run more elaborated version of Ozlab on iOS devices.

In general, the restrictions that operating systems set on web browsers (to
prevent malicious web sites from overtaking a user’s computer) pose
problems for simple web-based WOz tests.

77

5. Browser controls and out-of-scope browsing

If the mockup runs in a web-browser, the experiment can be revealed if the
browser-specific controls and panels are not hidden. The easy and available
means to hide them is to run that browser in full-screen mode. A full-screen
browser, however, makes it harder to situate a prototype within an
environment with functioning applications.

Moreover, if the controls are not concealed, the user might navigate to
different websites other than the experiment web page (this is further
described in section 2.2.2).

6. Intended lack of responsiveness

By the design of Ozlab, an interaction shell does not automatically recognize
the size of the TP web browser window. This means that interaction shells
built in Ozlab are not responsive (Marcotte 2011) and do not adapt to the
screen size of the device on which the interaction shell is running. Instead, if
the content of the interaction shell is too big for the TP window, then
scrollbars show up in the browser. This means that when designing and
building the interaction shell, the designer must take the screen size into
consideration. If the system had adapted to different TP device sizes
automatically, the wizard would lose control over how the design is
displayed. Such automatic adaptation makes the comparative testing of
several design solutions hard and defeats the whole purpose of conducting
WOz tests. On the other hand, the lack of adaptation might make for some
problems if each test session is to be run vis-à-vis TPs who are running their
browsers in their own modes on their own machines.

7. No automatic scrolling on the wizard’s side

Graphical interfaces might be continuing below “the fold” (cf. e.g. Krug
2006 or Nielsen 2010) and the user only gets to this part by scrolling down
the page, that is, the content might be longer than the device’s screen height
(or, more correctly, the window height). When the interaction shell is larger
than the screen of the device (the TP window), and TP is scrolling in any
direction, the Ozlab wizard must manually scroll the wizard interface to be
able to see what TP is viewing and interacting with (this should not be
automatic as the wizard might like to fix a few things on the upper part of
the scene while the TP is browsing the lower parts). On a computer setup
this is easy, because the wizard can see the TP’s pointer at all times. For
touch devices it is not that simple. For future versions of the Ozlab system
the TP browser must be made to signal back to the system which part of the
scene is visible to TP.

78

6 Limitations of the Wizard-of-Oz technique

After the account just given of limitations inherent in a specific technology
used for the implementation of a generic WOz tool, this chapter will give an
account of limitations in the Wizard-of-Oz method itself. These problems
have been touched upon here and there in the literature review and will now
be summed up and expounded on. All limitations are not applicable to every
conducted WOz experiment – different purposes set different standards. In
an exploratory setting, for example, the reliability issue mentioned below is
not really an issue as researchers may indeed seek unforeseen interaction
patterns and responses.

However, as with all techniques and methods, being aware of the limitations
and disadvantages is necessary as the experiment can then be properly
adapted and issues dealt with. The limitations presented below are in some
settings issues to be accounted for when conducting WOz experiments.

6.1 Validity
This sections starts by addressing the question: Valid for what? Some
experimenters stress the experience of the wizard and perhaps the whole
design team. For instance, among the lessons learned in the Turvy project,
the experimenters comment: “The designer benefits greatly by becoming the Wizard.
[¶ …] By acting as Wizard, facilitator, and interviewer, the experimenters
become immersed in the experiment and many important results become
obvious.” (Maulsby, Greenberg & Mander 1993, p. 283)

The experience of working inside the user interface gives the designer a
better feeling for what the means of production can actually express and
also for what the targeted user group would need. This feeling is hard to
‘validate’ and it would be easy to brush it aside by saying that the
experimental setup must bias the experience in some ways. However,
analysing the premises of the experiment should not be harder in WOz than
in other prototype testing or when using interviewing techniques.

79

Consequently, we argue that such concerns should not make developers and
designers hesitant to meet representatives of the future user groups face-to-
interface rather than only face-to-face.

When gauging the validity of an experiment from this perspective – i.e.,
designer’s experience of the interaction (“DX”, as it were, not UX) – the
standards must be those of design support and idea generation.

The main issue regarding the validity of Wizard-of-Oz experiments is
otherwise – or was initially at least – whether such man-made elicitations of
user behaviour could be comparable to real human-computer interaction.
As seen in section 1.2, the Swedish NLP group working with ARNE
addressed several aspects of the validity issue:

 Existing systems elicit other behaviours than the imagined system
would trigger; thus, one needs to mimic the imagined systems to
make valid HCI experiments.

 People are indeed fooled by the Wizard-of-Oz setup.
 Laboratory-based studies entail rather artificial situations, but

depending on the purpose this might not affect the validity of a
study at all (one may add that nowadays many Wizard-of-Oz studies
are run in the wild).

Concerning the last point, Dahlbäck’s and co-workers’ argument was that to
generate a natural-language corpus, there is simply no chance for ordinary
people to role-play on the relevant linguistic levels. However, Eklund (2010)
later pointed to the fact that informing test participants that they are being
recorded may change some of their behaviour – in the study he related,
“filled pauses” turned out to be much more frequent than in laboratory
studies. But this is more a question of reliability than of validity. One might
note that for a usability testing purpose, a system that does not pass even a
lab test will have fairly small chances to work in the wild anyhow.

The reasons for hiding the wizard, and thus deceiving the user, can vary. In
NLP research it is often vital that the test subject believes that he/she is
talking to a real computer system, as the goal is to find out how such
interaction would look (sound) like (Dahlbäck et al. 1993). Benzmüller et al.
(2007) argue that it is crucial when conducting WOz experiments that the
user is led to believe that he/she is interacting with a fully developed system.
Deceiving the subjects is not always easy. Munteanu and Boldea (2000, p.
107) conducted their experiments with students in computer science as test
subjects, who were “very suspicious about the system” which made
deceiving the subjects harder.

80

However, some of the articles reviewed show that the wizardry necessarily
does not need to be hidden from the user:

 In the Turvey project, “While we did not deceive users, they quickly
bought into the illusion. They spoke more curtly to Turvy than to
the facilitator, and referred to Turvy and the Wizard as two separate
entities” (Maulsby et al. 1993, p. 281).

 White and Lutters (2003) conducted a WoZ study where they
discussed the methodology with the participants prior testing.

 Molin (2004 p. 427) conducted studies with surgeons who
participated during the GUI design process with “the effect that the
‘computer’ was given a human face”.

 Lee, Mott and Lester (2010) told their participants that they would
interact and cooperate with another human during the test (i.e. the
wizard acting as a director agent).

 In explorative WOz tests the wizard does not need to be hidden
from the test subject, as discussed in 1.1.

 In general, and in contrast to natural-language experiments, GUI
interaction may carry the user away from any human-to-human
behaviour; thus, secrecy is often not essential (cf. refs. in section
2.1.1 on Ozlab-based studies).

It should be noted that some systems should not be simulated by using
WOz even if they are very graphical and not based on NLP at all:
attempting to simulate action games is highly inappropriate as the whole
point in some games is that the computer is quicker than the human player.
In general, a human wizard cannot compensate for the simulation
environment’s response time, no matter how fast he or she works. Using a
simulation environment with a large latency would make it impossible for
the wizard to simulate direct manipulation and to interpret the subject’s
behaviour quickly (Salber & Coutaz 1993; Serrano & Nigay 2010). Similar, a
wizard must not perform better than the intended system. An example is
given in Pettersson’s (2002) report on a study where one of the educators
acting as wizard started to converse with the test subject in a too humanly
manner. If not faithful to the method, the experiment will simulate a
different system than the intended one.

This relates to the danger of endowing a mock system with a functionality
that no real system could have. When evaluating new concepts, this might
not be wrong, but if the system is to be developed in the near future, the
wizard’s powers should be considered and constrained to a reasonable level
(again, one can refer to Maulsby, Greenberg & Mander 1993; see section 1.2

81

above). That said, the iterative development procedure should also be
emphasised because at the first stages the interaction space is larger than
what the intended system would allow for. One example of narrowing the
communication between the user and the wizard is the study concerning
linguistic training reported by Pettersson (2002). During a test session a few
months into the project the wizard “was not allowed to peep into the test
room but only get the stimuli a real computer program would have got, in
this case the mouse. For the same reason, audio feedback from the test
room was prevented.” (p. 153) Mavrikis and Gutierrez-Santos (2010, p. 644)
argue that reducing face-to-face interaction down to what the proposed
system would grant the facilitator should be made gradually, making a
stepwise refinement of the system’s pre-defined feedback possible. Similar
tapering methods are not commonly reported. These two examples stem
from the educational area where there already are methods for guiding
people, namely by teachers, and hence the first rounds may not need any
WOz technology at all: it is more about capturing how good teachers
perform when guiding students. (Admittedly, teachers are not always
successful. Nevertheless, the general presumption is that teachers help
students, at least if the teachers are applying good pedagogical methods and
if there is enough time; lack of time could potentially be compensate for by
educational software).

To conclude this last discussion on validity, interaction spaces out of range
of the intended system’s interaction capacity are not wrong in themselves.
They simply belong to preliminary and early design iterations.

This conclusion will affect how corpus generating experiments are valued
(NLP experiments in particular have often aimed at presenting interaction
corpora). The reviewers of Wooffitt et al.’s book-length study on Human,
Computers, and Wizards (1997) find it hard to see how the researchers can
know which system capacity should be simulated in order to generate useful
data. “Arguably, if we were ever able to develop a computer system whose
speech abilities were indistinguishable from those of a human, then none of
the differences between human-human and human-computer dialogues
reported in this book would occur,” argues de Vicente (1998, p. 81) and
suggests that “many of the differences reported here are caused by the
particular ‘implementation’ of the system”. Two other reviewers note that
“no example is given of how exactly the data analysis presented in this book
could be used in the development of speech recognition systems” (Hak
1999, p. 587) and “it is disappointing that no practical demonstrations are
provided of how systems designers are to benefit from the study” (Button
1998, p. 897). In systems development, WOz data from one iteration

82

highlighting some specific unwanted features will influence the re-design
and, hence, the data collection will in principle not be valid any longer
because the interaction design tested will not be further used. This
invalidation is of course not that definitive in reality, corpora can be used
and re-used, but the ‘C’ in HCI is always a human construct as much as the
‘H’ is depending on target groups. A prototyping perspective sheds light on
this as prototyping works by the model: HC1I → HC2I → HC3I →… (and
even this un-fixed Ci in this model is actually too linearly developing for an
explorative phase of a systems development where branches will be allowed
for).

The next issue to be discussed is reliability, that is, whether or not the
method (compared to other methods) produces results with such high
precision (randomlessness) that these results are really useful.

6.2 Reliability
One criterion of good reliability is that if B repeats a ‘reliable’ experiment
originally made by A, B would reach the same results as A. Is this possible
with Wizard-of-Oz methods? Perhaps not. The wizard would suffer from
fatigue if not already in A’s experiment, at least when re-employed by B.
This line of reasoning hinges on W being used as wizard all the time. If the
crucial component, i.e. W, is replaced between A’s and B’ experiment, we do
not have the same experiment. The reason for having tens or hundreds of
test subjects in experiments is to even out individual differences, or at least
to make such differences reappear in representative proportions for each
experiment. There is definitively a question of how much the individual
characteristics of the wizard(s) affect in the results.

This is compounded by the risk that one and the same wizard may behave
differently from one session to the next even if properly trained in pilot
tests. Just as we rarely recommend test sessions lasting for several hours
because people will be exhausted,21 we must take wizard fatigue in WOz
experimenting into account. Even within one (extensive) session a wizard
may not perform uniformly.

As already stressed in the preceding section, variance in wizard performance
may not be detrimental and sometimes actually intended. But for corpus
building or for some test-as-evaluation setups, the result of the study can be
less reliable due to variations in human behaviour. Commonly discussed is

21 Well, there are other reasons too, as Jakob Nielsen reminds the reader in his blog
post “Time budgets for usability sessions” (2005).

83

the consistency of the wizard, but for clarity, let us recognise that there are
two different dimensions: one about consistency within and between test
sessions (could also be said to be within and between test subjects), and one
consistency dimension that pertains directly to wizards. To start with the
first one:

 Intra-session consistency. There is a risk that the wizard will be tired or
stressed causing more errors at the end of the session (but, if TL
does this for every session, there is both an intra-wizard consistency
at whole-session level and inter-subject/session consistency). In
explorative WOz tests the level of inter-sessional consistency
should be low, at least during early iterations. (Fig. 1, p. 166,
Pettersson 2003, or see 4.3 above)

 Inter-session consistency. Between different sessions (often then,
between different subjects (i.e. test participants) the responses from
the faked system remains the same.

Then, for the wizard consistency dimension, it should be noted that all
studies are not using a single-wizard setup, which is why wizard consistency
can concern the following:

 Intra-wizard consistency: The study can have one single wizard who
interacts with all participants in the study. Intra-wizard consistency
pertains to the requirement (or tacit presumption) that the wizard
interacts (simulates the system) in a consistent way with all
participants.

 Inter-wizards consistency: The study can have several wizards but only
one wizard interacts with the test subject during each session, i.e.
the wizards are switched between sessions. Inter-wizards
consistency means that all wizards interact with test subjects (i.e.,
simulate the system) in a similar way.

 Multi-wizards consistency: The study can have several wizards who
interact with the test subject during each session. Multi-wizards
consistency means that all wizards interact (simulate the system)
with the one test subject in a consistent way.

In the study reported by Pettersson (2002) the educators acting wizards
found the spoken feedback to the participants harder to produce than the
graphical ones. The bullet about multi-wizard consistency is important
considering the observation by Oviatt that, “when a recognition error does
occur, users alternate input modes” (1999, p. 79). As noted in section 1.2,
Oviatt was referred to by Serrano and Nigay (2010) when explaining why

84

mixed systems are necessary for fair evaluation and unbiased development
of systems with multimodal input: the human stand-ins for the less reliable
parts make for a unbiased interaction, but it entails the requirement that all
wizards perform on an equally skilled level.

In general, before conducting WOz experiments the wizard must be aware
of how to act in the different situations that may occur during the sessions.
Further, the wizard must know what information is possible to provide to
the user and how to acquire it. Otherwise, the wizard’s actions will make the
results less generalizable. Pilot tests conducted before the real experiments
can provide the wizard with such knowledge (Dahlbäck, Jönsson &
Ahrenberg 1993, p. 264); see the final section of this chapter for pertinent
examples of lazy students who did not do the homework (pilot straining)
before the real tests! Intra-sessional lack of consistency will reveal the
human source of the system responses and may make test participants
behave as speaking to a human. However, Dahlbäck et al. argued that their
use of several wizards ensures that participants’ sentence constructions are
“not the reflection of the idiosyncrasies of one single person’s behaviour”
(p. 265) – thus thwarting the ordinary rule “less reliability threatens the
validity of the study”. Also Höysniemi and co-workers in their study on
gesture control of animated characters regard idiosyncrasies as the real
problem:

“The collected movement corpus is context dependent and is
influenced by the wizard’s abilities to adapt to the user’s
actions. To decrease the wizard’s effect on the test data, it is
advisable to use several wizards. This, on the other hand, leads
to more time-consuming tests and data analysis.”

(Höysniemi et al. 2004, p. 33)

At any rate, some argue that by providing the wizard with guidelines on how
to act and respond the simulation can be made more consistent, even when
switching wizards between sessions (i.e. ensuring the inter-wizards
consistency) (Mäkelä, Salonen, Turunen, Hakulinen & Raisamo 2001).
Maulsby et al. (1993) state that in order to keep the simulation honest, it
should be based on an algorithm. They add that such algorithms could be
used to code the results if too complex for the wizard to follow during
runtime. However, Lee et al. (2010) experienced that wizards can have
different styles of interacting with the test subject even though the wizards
received procedure, interaction and narrative protocols developed during
pilot studies, and the same training before the experiments were conducted.

85

Li’s dissertation from 2012 aims at giving an understanding of the threats to
consistent system operation. As mentioned in section 1.2, Li demonstrates
through a series of WOz experiments the impact on the consistency of
system operations of four factors: interaction schema, wizard user interface,
wizard’s interpretation of participant’s actions, and inter-wizard variations.
E.g., observations of details in idiosyncrasies and inter-wizard variability as
concerns interpretations of test participants’ activities and of participants’
intentions are illuminating even if Li’s sample is very small (ibid., pp. 11f,
146f). The individual findings are probably not unknown to designers of
WOz experiments but perhaps seldom considered in their totality as Li
does. Li seems to suggest more control and re-work to reach more perfect
(consistent) WOz sessions (pp.156-160), which place this work far from the
explorative applications of WOz methodology and from the practical,
resource-constrained world of systems development.

To conclude, wizard variability must be reckoned with but not desperately
avoided. There is only one rule: if no variability is tolerated, don’t bother to
call in the Wizard from the Emerald City but use a programmed prototype
instead.

6.3 Efficiency and reuse of prototypes and results
Some of the authors in the reviewed literature criticize the Wizard-of-Oz
technique for not enabling reuse of prototypes and results in the iterations
following the WOz experimentation in a systems development cycle.

Li and Bonner (2013, p. 3) mention that the method is criticized for “the
repetitive development of separate interfaces for system facilitation and
interaction”. Dow et al. (2005, p. 18) argue that “designers tend to use WOz
studies once (or perhaps twice) during a system’s evolution”.

If the underlying simulation system is built each time an experiment is to be
conducted, the efficiency of WOz experimenting is not very impressing. A
generic WOz tool would take care of this issue. When it comes to reuse of
the prototypes and results, the present authors find argument for letting
WOz remain a rapid-prototyping technique, or rather, a throw-away
prototyping technique. Thus, WOz is used to find the best possible idea or
design, not to produce source code, while acknowledging that the Wizard-
of-Oz technique is not applicable for all purposes, just as paper prototyping
cannot be used for all purposes in design and development (noted by, inter
alia, Davis et al. 2007, p. 119).

Also the ConWIZ team repeats the assumption in Dow et al. (2005), saying
that “designers have to bridge the gap between the wizard’s role and actual

86

system implementation” (Zachhuber et al. 2012, p. 226). Enabling rapid
prototyping and reuse of WOz should be possible to incorporate the WOz
prototype into the real prototype, as Zachhuber et al. (2012) and Dow et al.
(2005) argue. Serrano and Nigay (2010, p. 218) launch the argument that
some imperfect system parts should be replaced with WOz. This then
makes it valuable to incorporate the WOz modules in the rest of the
implemented system.

Now, it is quite a burden to maintain a WOz system and also a development
environment. Serrano and Nigay were working on a framework rather than
a system (see esp. the footnote to OpenWizard in section 3.2). Building on
existing platforms for development such as Director, which DART did (as
well as the original Ozlab albeit with a lesser scope), entails the risk of being
stranded when the producer no longer maintains the platform. For
corporate labs, mixed systems such as WozARd, developed in the labs of
Sony Mobile Communications, may last longer than the first experiment.
However, based on the review of (more or less) generic WOz tools it is fair
to conclude that the mixed systems designed for inclusion in programming
environments do not live long. This is perhaps no argument for not
including WOz facilities in multimedia/UI development tools, but most
programmers will probably not see the use of such modules while designers
cannot be limited to tools which extend far beyond their scope, namely into
implementation.

6.4 Ethical considerations
Commonly, the wizard is hidden to the participants when conducting
Wizard-of-Oz experiments. We have argued earlier in this work that in
many employments of the WOz technique it is not necessary to hide the
wizard or the fact that there is a test leader monitoring and controlling the
system. However, in studies where the user “needs” to be and actually is
deceived, one must take the ethical aspects of such experiments into
consideration.

Dahlbäck, Jönsson, and Ahrenberg (1993) debriefed their participants on
how the experiment was conducted after each session as a solution to these
aspects. None of their participants showed any hard feelings. The authors
argue that this might be explained by the nature of the research. Conducting
studies where the subjects are put in uncomfortable situations, the
subsequent reactions might be different.

Interestingly, Höysniemi, Hämäläinen, and Turkki (2004) make a pro-ethical
argument for WOz: they argue that by using WOz, their study became less
discriminating than the testing of a “fully” functional prototype would have

87

been, as the wizard could interpret the children’s body movements better.
Thus, the children were not put in compromising situations as the “system”
could understand them. (Compare this with the scientific argument by the
multimodalists: WOz is needed for validity by increasing the reliability; see
the discussion on multi-wizard consistency above).

While all authors relying on deception seem to agree on the necessity to
inform afterwards about the non-existence of a system with the
functionality just tested by the participants, there is quite a tricky type of
situation which calls for special attention, namely when small children are
involved (or people with learning difficulties – or both, as in the first Ozlab
study reported by Pettersson 2002). Parents will of course be informed but
the most pertinent issue in this particular case is not to let the wizard engage
in a fully human-like capacity as this will not only make a wrong impression
on the child of what a computer can understand but probably also a lasting
one (ibid.).

Finally, conducting WOz experimentation in web pages that are already up
and running (or in other applications which are running online) obviously
has the drawback that users are not aware of being supervised. While it may
not differ much from post-hoc monitoring of web pages (for instance for
web analytics; Peterson 2005), there is a risk in human real-time
interpretation performed for an organisation’s intranet or smaller
community that the wizard recognises the user and that the user displays
behaviours (clicks-streams) or text or other input that he/she would not
have made if conscious of the human monitor. On the other hand, queries
in search boxes are most likely not the same when put to a search engine as
when put to a human. Thus, information of the possibility of human
monitoring should be displayed at the relevant web pages even if the true
nature of the production of answers is not revealed. (This is comparable to
so-called interactive FAQs where an answer is promised within, say, 24
hours, even if the human behind the answers in the FAQ is revealed.)

6.5 Delays and time lag
“In terms of problems researchers were facing it seems that delays coming
from the wizard constitute the biggest challenge, specifically mentioned by 9
of the 20 interviewees” Schlögl, Doherty, and Luz report from a telephone
interviews with researchers from industry and academia (2014; see their
Table 1 and sec. 4.2). In fact, there are several reasons why time lag or
delays can occur. This is either due to the wizard’s interpretations of the
user’s input, the wizard’s actions, and/or perhaps due to time lag in the used
system/WOz tool. Dahlbäck, Jönsson, and Ahrenberg (1993, p. 264) note

88

the importance of the wizard’s knowledge of the simulated system, the
simulation environment, and its information when conducting experiments.
Without such knowledge the wizard will cause simulation delays.

Time lag and delays can affect the participants in the study. Akers (2006, p.
459), for example, note that “[u]sers found it frustrating that some of their
actions took over a minute to simulate using the Wizard of Oz controls.”
Akers suggests that the frustration could perhaps have been avoided if
“artificial delays to even out the timing” were implemented but argues
further that “additional delays would have introduced further frustration”
(ibid.; cf. Robins et al., 2008, even if their study of children relied on 2-
minute interactions, which is too short to predict real system usage).

By comparing WOz experiments with other prototyping techniques, the
time-lag issue can also be put into perspective. For example, when
conducting evaluations with paper prototypes, the test participants know
and play along with the evaluation technique. The Wizard-of-Oz
experiments could be adapted in the same way. Even if the test participant is
not told that all interactions are simulated by a human acting wizard, the
participant can be told that what is being tested is a prototype which is why
the response time can be longer than normal.22 Another solution is that the
wizard simply simulates some time lag, which can lead the test subject to
play along – a slow pace interaction sets the tone for the interaction (cf. the
tendency to convergence; Leiser 1989). One can also ask TP to “think
aloud”. This generally slows people down. Admittedly, thinking aloud might
make people think more than normally, or at least differently. In a longer
design cycle with several iterations this will generally not be a problem – the
time will come when the wizard and the prototype shell are prepared for
what people will do.

It should be noted, though, that all wizards are not causing delays that affect
the study, as noted by Höysniemi, Hämäläinen, and Turkki (2004). The
wizard in their study did not cause significant delays when interpreting and
acting on the children’s movement when playing their (simulated) body
movements controlled game. The task of this wizard and that of the wizard
in the case reported by Akers differ markedly. As noted in Chapter 1,

22 From experience we also know how frustrating it is when the alleged functioning
prototype is introduced, replacing the paper and Ozlab mockups, and it turns out
that response time delay counts in minutes for some functions or else the prototype
is caught in an infinite loop without any immediate sign of this. It is really not a
pleasant experience for the experimenter to expose test participants to such
meaningless usability testing.

89

Akers’s setup allowed participants to design and test gestural interface for
3D selection. As also described in Chapter 1, Skantze’s and Hjalmarsson’s
“incremental” method for building system’s utterances included self-repair
strategies, which allowed a wizard to work efficiently. “The experiment also
shows that it is possible to achieve fast turn-taking and convincing
responses in a Wizard-of-Oz setting. We think that this opens up new
possibilities for the Wizard-of-Oz paradigm, and thereby for practical
development of dialogue systems in general.” (Skantze & Hjalmarsson 2010,
p. 8)

 Li and Bonner (2013 p. 3) acknowledge that WOz is criticised for “the
delay of the designer’s responses which are incurred by the designer’s
interpretation of user interactions between two types of interfaces”.
However, Li and Bonner state that in their study, “[a]lthough there was a
noticeable speed decrease from study one to three, users’ feedbacks
suggested that slow responses were not often sensed.” (p. 10) On the other
hand, Li and Bonner used an experienced wizard already in the first study,
so perhaps the delays were not long to begin with. (It is perhaps somewhat
remarkable that Li and Bonner used an experienced wizard while they claim
their system makes WOz much easier than traditional WOz; cf. LIVE in
section 3.2). From the accumulated wisdom gained by Ozlab users, we can
add that the people making the shell (the prototype) have a much shorter
learning period to act as wizards than other persons.

6.6 Cognitive load – Wizard stress and fatigue
Many of the reviewed articles discuss the wizard’s role when conducting
Wizard-of-Oz experiments. Depending on what kind of system or aspects
of a system are being simulated, the wizard’s cognitive load can be higher or
lower. Overall, however, the Wizard-of-Oz technique does seem to put the
person(s) acting wizard under some stress. The most reported reason for
stress and cognitive load is that of interpreting the user and making up
responses in a timely manner. In an interview with Jenny Nilsson, an expert
user of the Director-based Ozlab system, it became clear that simulating a
system is demanding. Nilsson stated that she could perform about three test
sessions a day, as the wizardry demanded such a high degree of
concentration and energy. She was then working alone, including receiving
and debriefing participants and making notes.23 In the experiment of

23 Of 1-1.5 hour time with a test participant (i.e. excluding note taking afterwards),
0.5-1 hour was spent on the actual Ozlab-based prototype interaction. (p.c. 2014-
06-12)

90

Mäkelä, Salonen, Turunen, Hakulinen, and Raisamo (2001) the members of
the test group changed roles, as the wizard role was demanding and required
alertness. Dow, Lee, Oezbek, MacIntyre, Bolter, and Gandy (2005) argue
that their wizard(s) suffered under huge task load. During the iterations in
the experiments by Dow et al. (2005), the wizard role altered from
monitoring the context and controlling the prototype to stepping in when
needed. The wizards’ interface was also redesigned during the iterations,
hence the tasks for the wizards could be carried out in a more effective
manner.

It should be noted that when simulating a system, the time lag does not
always have to be a big issue ruining the experiment. However, being new to
the technique might mean that one believes this to be the case.
Inexperienced designers, new to the field of usability testing and the Wizard-
of-Oz technique in particular, can be sensitive to their lack of experience,
which in itself can be a source of stress (compare the following section).

Some work on reducing the workload, and thus possibly the cognitive load,
for the wizard in WOz studies has been reported. For example, if location
tracking is simulated, it requires high attention and gives the wizard a great
task load. Therefore, Li, Welbourne, and Landay (2006) tested four
simulation techniques for continuous location tracking. The authors
compared two benchmarking techniques (“Pick&Drop” and “Drag&Drop”)
with two new techniques (“DirectionalCrossing” and “Steering”), and found
that the latter two significantly reduced the work load for the wizard as well
as achieved similar tracking accuracy.

Most of the WOz tools in the reviewed articles support a single-wizard
setup (see for example ConWIZ, WebWOZ, MDWOZ and DiaWOz-II in
section 3.2). However, in WOz experiments on multimodal systems the
Information Bandwidth (Salber & Coutaz 1993), meaning the (subject’s)
possibilities for input, increased and this affects the task load and cognitive
load for the wizard. If interpreting and simulating system responses to
several input modalities at the same time, Salber and Coutaz (1993) argue
that the wizard’s responses could become inconsistent. The authors suggest
that in such cases a multi-wizard setup should be preferred, where each
wizard handles each modality. Examples of such WOz setups are NEIMO
(Coutaz, Salber, Carraux & Portolan 1996) and OpenWizard (Serrano &
Nigay 2010). In both NEIMO and OpenWizard, every wizard can be
designated to simulate a specific modality. The wizards in the OpenWizard
study pointed out that the “multi-wizard configuration helped them
managing stress” (ibid., p. 224)

91

However, several wizards controlling different modalities or aspects of the
system are not always wanted, nor needed. The special educators acting
wizards in the trial version of the first Ozlab system (Pettersson 2003),
obviously managed both the graphics and voice (disguised to GUI
characters’ voices), and also took care of test participants before and after
test. Dow, Lee, Oezbek, MacIntyre, Bolter, and Gandy (2005) argue that
several wizards could have been used during their “Voices of Oakland”
experiment, although only one wizard was used. On the other hand,
Höysniemi, Hämäläinen, and Turkki (2004) argue that a multi-wizard setup
in their study would have affected the test subjects and the collected data, as
a multi-wizard setup would have resulted in more adults than children in the
test environment.

Some arguments have been found in the reviewed articles for modifying the
WOz system to do some of the work for the wizard – automatically (see for
example Klemmer, Sinha, Chen, Landay, Aboobaker & Wang 2000).
However, implementing automatic responses makes the test-setup more
rigid, and the possibility to conduct explorative WOz tests is reduced. Using
wizard guidelines, as discussed above, for increasing reliability, could
potentially reduce the cognitive load if it is easy for the wizard to follow
both TP actions and the script. However, it might also make the wizard a bit
less open-minded: “One test person tried to use the time axis to shift scenes
(i.e. to navigate between pages). The wizard rejected this attempt and
thereby missed the opportunity to allow for unintended use of this feature.”
(Larsson & Molin 2006, p. 368)

In conclusion, therefore, wizard stress and fatigue are factors to expect in
experiments using the Wizard-of-Oz method. The effect of the results
depends on the purpose of the experimentation and the degree of
automated wizard support as well as on the training done involving a
particular setup, session length, and distribution of workload across several
test leaders.

6.7 Example: Wizards’ interaction patterns when learning Ozlab
Acting wizard can come with heavy cognitive load and stress as discussed
above. Here we give some glimpses of problems in using the WOz
technique when designers are new to user testing and to this technique in
particular. Data come from a course run in the autumn 2013 with the first
release of the web-based Ozlab. Screen recordings were made of TL screen
in a mandatory pilot test and some days later when “real” test sessions were
made.

92

The stress of acting wizard were especially noticeable in the students who
had not practised the wizard role (enough) prior to conducting the tests.24
The screen recordings show that some groups had not practiced the
possible navigation paths through the interaction shell or discussed how the
wizard should act and respond to potential ways in which a participant
could interact with the prototype.

However, when analysing the screen recordings from the test sessions, it
became clear that the time needed for the students to learn how to act as a wizard was
short. Often the role of being a wizard was refined already during the first
session. For example, in some interaction shells the test participant could
not move to new scenes without the wizard producing a scene change, so to
make a hasty change of scenes the wizard should keep the mouse cursor
over the list of scenes to the left of the interface. However, during the first
test session several wizards held the mouse cursor in the scene area, close to
where the test participant interacted with the prototyped interface. Later in
the same session, or in following sessions, the wizard seems to have learnt
that if the mouse cursor lingered over such areas, he/she must move the
cursor to the scene list, locate the link to the scene corresponding to the test
participant’s choice, and then click that link in order to effectuate the scene
change. Of course, the amount of time for doing this is not extensive, but it
could at least be argued to be more stressful than just clicking the link to go
to the expected scene.

There are also other instances of learning which have more to do with
prototype development: 4 of 12 student groups included “Quit” as an
available option for TP but included no scene indicating that the game was
terminated, for instance a mockup of the Windows desktop. Of course,
these groups immediately realised their error when running tests with a TP
not from their own team (again, see the previous footnote; for more details
on this trial, see a report by Malin Wik available on the Ozlab web site25).

24 That is, prior to a pilot test and “real” test; such practicing could of course also be
labelled “pilot testing” but in the Ozlab team, with our long experience of WOz, we
reserve the word “test” – including “pilot test” – to cases where more or less “real”
users participate, that is, when participants are not from the design group.
25 http://www.kau.se/en/ozlab/research-and-development-projects/student-works

93

7 Concluding Remarks

The preceding chapters have dealt with the characterisation of prototypes
and prototyping, the development of the Wizard-of-Oz method, Ozlab’s
structure and other generic WOz tools. Then the focus shifted to more
targeted discussions on the practicalities of WOz work, the platform-
dependency of WOz tools, and finally on issues inherent to the Wizard-of-
Oz method itself.

Classification schemes for prototypes may easily overlook some essential
parts of Wizard-of-Oz prototyping, especially since a WOz mockup may be
used in an explorative manner, and later to evaluate an interaction paradigm
that largely lies in the hands (and mouth) of the wizard. The discussion of
this in Chapter 4 centred on exemplifying explorative WOz prototyping and
the different experimental roles that the stakeholders in a development
process can take; for instance, the prospective users may end up as wizards
in some runs. Using the human wizard as a human being was stressed already
in Chapter 1, because if the wizard is used only as a machine substitute it
will largely restrict interactive prototyping to testing and exclude
explorations of details. Moreover, hiding behind the curtain is often not
needed – rather, different stakeholders can “speak” via a WOz mockup to
better understand the limits and demands of certain types of UI solution.
Such exercises reveal many requirements for a future user interface.

Chapter 4 also elaborated on the classification of the wizard output
production. This is only indirectly related to what test subjects experience.
Some interesting development for the future relates to using test subjects’
input in the wizards’ output. The important thing in the present work was to
highlight the many aspects of wizard-supporting functions of what might be
seen as the same sort of output directed to test subjects (even if the
enumeration did not go into the detail of the movements of physical objects
in 3D space).

94

The historical exposé in section 1.2 show many purposes for which WOz is
employed. In each case, there are one or several humans to execute the
system responses. Our own Ozlab fits into this history as an attempt to
cater for more flexible prototyping of GUI communication between test
subject and wizard while at times we also used it in conjunction with speech
output and robot arm movements. It was also important to provide a
system rather than a setup so it could be reused for a wide range of
applications. However, even if a re-usable WOz tool is made to circumvent
the need for programming prototypes, the tool itself will eventually need re-
programming to accommodate changes in operating systems and UI
hardware. Chapter 3 demonstrated how hard it is to have a generic system
just waiting for someone to use it. In the case of Ozlab, the repeated use not
only for different research purposes but also for undergraduate courses and
in student projects made it possible to keep it running for a decade before it
had to be replaced completely. The problem to fit more elaborated WOz
systems into ordinary university curricula is acknowledged in the recent
WOz survey by the WebWOZ group:

“From a design perspective, students studying Human-
Computer Interaction (HCI) and Interaction Design will
generally be introduced to WOZ, yet only a small proportion
of these will actually experience the method when compared
with exercises based on the use of paper prototypes. One
reason for this lack of practical usage might be that in order to
be applicable in an HCI teaching context, any approach would
have to have a low logistical and technical overhead to enable
students to quickly design and carry out evaluations.”

(Schlögl, Doherty & Luz 2014, p. 3)

Ozlab’s simplicity came from the focus on ordinary GUI applications. A
group of students could easily make a meaningful design to test. However,
the dependence on a multimedia production tool eventually made the first
implementation of Ozlab crumble.

Now we are elaborating a web-based solution as mentioned in Chapters 2
and 5; indeed, some other WOz teams are doing the same, as shown in
Chapter 3. While the web is a fairly generic technology popping up in nearly
every modern hardware, it also has some distinct disadvantages, especially
the prolonged response time, but also the problems of keeping control of
scrolling, surfing, and browsers, as discussed in Chapter 5.

Bringing this report to a close, we would like to remind the reader of some
of the problems with Wizard of Oz noted in Chapter 6, especially wizard

95

learning and fatigue, and wizard UI discussed in some contexts in Chapter 3.
Our point was not that the dimensions of production enumerated in section
4.1 would find a uniform and consistent wizard UI. Rather, we maintained
that except for some standard functions such as “lock input” and “freeze
screen”, each WOz mockup deserves its own wizard UI even in a generic
WOz tool. Other WOz experimenters have highlighted the design of the
wizard UI but there seems to be different paradigms for this; in Ozlab, the
GUI of the test subject is the natural place for the design of the wizard user
interface. This makes prototype design and wizard UI design concurrent
events. It seems, moreover, that the possibilities of web browser based UIs
strengthen such a claim.

The topic of the design of wizard controls should merit more attention in
the years to come, not least as new devices and applications are growing in
numbers in areas such as augmented reality, social network supported
applications, service robots, and systems with active attendants (support
staff, wizards). It is to be noted that different interaction modes are
increasingly integrated in new products. This is very obvious in smartphones
with their accelerometers, cameras, GPS, microphones, touch sensitive
GUIs, flash lights, vibrations, and loudspeakers.

In conclusion, there are several aspects one could pay attention to in future
WOz-supported studies and studies on WOz tools. In discussion with
various colleagues (in particular Cosmin Munteanu, Univ. of Toronto), we
see especially the following points worth to comment on (or explore) in
future studies:

 Platform-dependence of WOz tools

 Efficiency and reuse of prototypes and results

 Validity and reliability issues arising from the WOz method (time
lags, variations in wizard performance, etc.)

 Issues of cognitive load (wizard stress and fatigue; wizards’ user
interfaces)

 WOz setups in the wild (with and without physically present wizards)

 Applicability and challenges of using WOz with mobile platforms

 Definition of the various approaches to the deployment and support
of human wizards during experimentation / development cycles

97

References

Akers, D. (2006). Wizard of Oz for Participatory Design: Inventing a
Gestural Interface for 3D Selection of Neural Pathway Estimates. In
CHI'06 Extended Abstracts on Human Factors in Computing Systems, pp. 454-
459.

Alce, G., Hermodsson, K., Lasorsa, Y., Liodenot, D. Michel, T.,
Razafimahazo, M. & Chippendale, P. (2013). D3.2 Interface design
prototypes and/or mock ups. Submitted 2013-01-29. VENTURI.
https://venturi.fbk.eu/results/public-deliverables/ [2014-05-30]

Alce, G., Hermodsson, K. & Wallergård, M. (2013). WozARD: A Wizard of
Oz Tool for Mobile AR. MobileHCI 2013, Munich, Germany, August 27-
30, pp. 600-605.

Alce, G. & Hermodsson, K. & Wallergård, M. (forthcoming) Evaluation of
WozARD: a Wizard-of-Oz tool for wearable devices.

Ardito, C., Buono, P., Costabile, M. F., Lanzilotti, R. & Piccinno, A. (2009).
A tool for Wizard of Oz studies of multimodal mobile systems. HSI
2009, Catania, Italy, May 21-23, pp. 344-347.

Aubergé, V., Sasa, Y., Bonnefond, N., Meillon, B., Robert, T., Rey-Gorrez,
J., Schwartz, A., Antunes, L., De Biasi, G., Caffiau, S. & Nebout, F.
(2014) The EEE corpus: socio-affective “glue” cues in elderly-robot
interactions in a Smart Home with the EmOz platform. Presentation at

ES
3
LOD 2014, the 5th International Workshop on Emotion, Social Signals,

Sentiment and Linked Open Data. Reykjavik, Iceland, May 26-27, 2014.

Baum, L.F. (1900) The Wonderful Wizard of Oz. With illustrations by W. W.
Denslow. Georg M. Hill Company, Chicago.

Beaudouinn-Lafon, M., Mackay, W., (2003). Prototyping tools and
techniques. In The Human-Computer Interaction Handbook. Fundamentals,

98

evolving technologies, and emerging applications. Eds. Jacko & Sears. Lawrence
Erlbaum Associates. Pp. 1006 – 1031.

Bellucci, A., Bottoni, P. & Levialdi, S. (2009). WOEB: Rapid Setting of
Wizard of Oz Experiments and Reuse for Deployed Applications.
Proceedings of the IUI'09 Workshop on Model Driven Development of Advanced
User Interfaces, MDDAUI’09. Ed. by Meixner et al.. Sanibel Island, USA,
February 8, 2009. CEUR Workshop Proceedings, Vol 439.

Benzmüller, C., Horacek, H., Kruijff-Korbayová, I., Lesourd, H., Schiller,
M. & Wolska, M. (2007). DiaWOz-II – A Tool for Wizard-of-Oz
Experiments in Mathematics. In KI 2006: Advances in Artificial Intelligence.
Springer Berlin Heidelberg, pp. 159-173.

Bergmann, M., Rost, M. & Pettersson. J.S. (2006). Exploring the Feasibility
of a Spatial User Interface Paradigm for Privacy-Enhancing Technology.
Presented at ISD´2005, Karlstad. Published in Advances in Information
Systems Development, eds. A.G. Nilsson et al., Springer-Verlag, pp. 437-448.

Bernsen, N.O., Dybjkaer, H. & Dybkjaer, L. (1998). Designing interactive speech
systems. From first ideas to user testing. Springer.

Berry, D.C., Butler, L.T. & de Rosis, F. (2005). Evaluating a realistic agent in
an advice-giving task. International Journal of Human-Computer Studies, 63(3),
pp. 304-327.

Boehm, B. (1986). A spiral model of software development and
enhancement. SIGSOFT Softw. Eng. Notes, 11(4), pp. 14–24.

Bönisch, B., Held, J. & Krueger, H. (2003). Prototyping.ppt – Power Point
® for interface-simulation of complex machines. In Jacko J. &
Stephanidis C., Human computer Interaction –Theory and Practice (Part II),
Volume 2 (Proceedings of HCI International 2003, 22-27 June, Crete).
LEA Lawrence Erlbaum Associates, pp. 1066-1070.

Broen, P.A. & Siegel, G.M. (1972). Variations in normal speech disfluencies.
Language and Speech, 15(3), pp. 219-231.

Button, G. (1998). Book Reviews. [Wooffitt et. al. (1997).] Sociology 32, pp.
896-898.

Buxton, B. (2007). Sketching user experience: getting the design right and the right
design. Elsevier/Morgan Kaufmann.

Caelen, J. & Millien, E. (2002). MultiCom, a Platform for the Design and the
Evaluation of Interactive Systems. Application to Residential Gatewats
and Home Services. In Les Cahiers du numérique, 3(4), pp. 149-171.

99

Carter, S. & Mankoff, J. (2005a). Prototypes in the Wild: Lessons from
Three Ubicomp Systems. IEEE Pervasive Computing, Vol. 4(4), pp. 51-57.

Carter, S. & Mankoff, J. (2005b). When participants do the capturing: The
role of media in diary studies. CHI 2005, April 2-7, 2005, Portland,
Oregon, USA. Pp. 889-908. ACM.

Carter, S., Mankoff, J. & Heer, J. (2007). Momento: Support for Situated
Ubicomp Experimentation. CHI 2007, 28 April - 3 May, 2007, San Jose,
California, USA. Pp. 125-134 ACM.

Carter, S., Mankoff, J., Klemmer, S. & Matthews, T. (2008). Exiting the
cleanroom: On ecological validity and ubiquitous computing. Human-
Computer Interaction 23(1), pp. 47-99.

Carter, A.S. & Hundhausen, C.D. (2010). How is user interface prototyping
really done in practice? A survey of user interface designers. In Proc. 2010
IEEE Symposium on Visual Languages and Human-Centric Computing, pp.
207-211. IEEE Computer Society, Washington DC, USA.

Cavalluzzi, A., Clarizio, G., De Carolis, B. & de Rosis, F. (2005) A Persona
is Not A Person: Designing Dialogs With ECAs After Wizard of Oz
Simulations. Report presented at HUMAINE WP6 workshop on
“Interaction and Communication”, Paris, March 2005. Available at
http://www.di.uniba.it/intint/Humaine/H-Woz.html [2014-04-29]

Cavalluzzi, A., de Rosis, F., Mazzotta, I. & Novielli, N. (2005) Modeling The
User Attitude Towards An ECA. UM’05 workshop on “Adapting the
Interaction Style to Affective Factors”. Edinburgh, July 2005.
http://www.di.uniba.it/intint/Humaine/H-Woz.html [2014-04-29]

Consolvo, S., Harrison, B., Smith, I., Chen, M. Y., Everitt, K., Froehlich, J.,
& Landay, J. A. (2007). Conducting In Situ Evaluations for and With
Ubiquitous Computing Technologies. International Journal of Human-
Computer Interaction, 22(1-2), pp.103-118.

Coutaz, J., Nigay,. L. & Salber, D. (1995). Multimodality from the User and
System Perspectives. In ERCIM’95 Workshop on Multimedia Multimodal
User Interfaces, Crete, Greece.

Coutaz, J., Salber, D., Carraux, E. & Portolan, N. (1996). NEIMO, a
Multiworkstation Usability Lab for Observing and Analyzing Multimodal
Interaction. Video presentation at CHI’96, Vancouver, British Columbia,
Canada, April 13-18, pp. 402-403.

Dahlbäck, N., Jönsson, A. & Ahrenberg, L. (1993). Wizard of Oz Studies –
why and how. Knowledge-Based Systems, 6(4), pp. 258-266.

100

Davis, R. C., Saponas, T. S., Shilman, M. & Landay, J. (2007). SketchWizard:
Wizard of Oz Prototyping of Pen-Based User Interfaces. UIST’07,
Rhode Island, USA, October 7-10, pp. 119-128.

de : de Rosis, de Ruyter, and de Vicente are sorted as Rosis, Ruyter, and
Vicente, respectively.

Dey, A.K., Sohn, T., Streng, S. & Kodama, J. (2006). iCAP: Interactive

Prototyping of Context-Aware Applications. In K.P. Fishkin et al. (Eds.):
PERVASIVE 2006, LNCS 3968, Springer Verlag. Pp. 254 – 271.

Dow, S., Lee, J., Oezbek, C., MacIntyre, B., Bolter, J.D. & Gandy, M.
(2005). Wizard of Oz Interfaces for Mixed Reality Applications. Poster
presentation at CHI 2005, Portland, Oregon, USA, April 2-7, pp. 1339-
1342.

Dow, S., MacIntyre, B., Lee, J., Oezbek, C., Bolter, J.D. & Gandy, M.
(2005). Wizard of Oz Support throughout an Iterative Design Process.
Pervasive Computing Oct-Dec 2005, pp. 18-26.

Edlund, J., Gustafson, J., Heldner, M. & Hjalmarsson, A. (2008). Towards
human-like spoken dialogue systems. Speech Communication, 50(8-9), pp.
630-645.

Eklund, R. (2010). The effect of directed and open disambiguation prompts
in authentic call center data on the frequency and distribution of filled
pauses and possible implications for filled pause hypotheses and data
collection methodology. Proceedings of DiSS-LPSS Joint Workshop 2010,
September 25-26, 2010, Tokyo, Japan, pp. 23-26.

Erdmann, R. L. & Neal, A. S. (1971). Laboratory vs. Field Experimentation
in Human Factors–An Evaluation of an Experimental Self-Service
Airline Ticket Vendor. Human Factors, 13(6), pp. 521-531.

Fournier, H., Lapointe, J.-F., Kondratova, I., Emond, B. & Munteanu, C.
(2012). Crossing the barrier: a scalable simulator for course of fire
training. Proceedings of Interservice/Industry Training, Simulation, and Education
Conference (I/ITSEC) 2012, 2012-12-06, paper no. 12187, 10 pp. NRC
Publications Archive / Archives des publications du CNRC, Canada.

Gould, J. D., Conti, J., & Hovanyecz, T. (1983). Composing letters with a
simulated listening typewriter. Communications of the ACM, 26(4), pp. 295-
308.

Green, A., Eklundh, K. S. S., Wrede, B., Li, S. (2006). Integrating
miscommunication analysis in natural language interface design for a

101

service robot. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4678-4683. IEEE.

Green, A., Hüttenrauch, H., & Eklundh, K. S. (2004). Applying the Wizard-
of-Oz framework to cooperative service discovery and configuration. In
13th IEEE International Symposium on Robot and Human Interactive
Communication (Ro-MAN), pp. 575–580. IEEE.

Grill, T., Polacek, O. & Tscheligi, M. (2012). ConWIZ: A tool supporting
contextual Wizard of Oz simulation. In Proceedings of the 11th International
Conference on Mobile and Ubiquitous Multimedia, Ulm, Germany, December
4-6, pp. 21-28.

Grill, T. & Tscheligi, M. (2013). The ConWIZ Protocol: A Generic Protocol
for Wizard of Oz Simulations. Computer Aided Systems Theory -
EUROCAST 2013. Springer Lecture Notes in Computer Science,
Volume 8112, 2013, pp. 434-441.

Hak, T. (1999). Book Reviews. [Robin Wooffitt et al. (1997)] Discourse &
Society 10(4), pp. 586-588.

Hartmann, B., Klemmer, S.R., Bernstein, M., Abdulla, L., Burr, B.,
Robinson-Mosher, A. & Gee, J. (2006). Reflective physical prototyping
through integrated design, test, and analysis. In UIST06, October 15–18,
2006, Montreux, Switzerland. pp. 299-308. ACM.

Hauptmann, A.G. (1989). Speech and Gestures for Graphic Image
Manipulation. CHI’89, pp. 241-245.

Hong, J.I. and Landay, J.A. (2000) SATIN: A toolkit for informal ink-based
applications. CHI 2000, pp. 63-71.

Höysniemi, J., Hämäläinen, P. & Turkki, L. (2004). Wizard of Oz
Prototyping of Computer Vision Based Action Games for Children. In
Proceeding of the 2004 conference on Interaction design and children, Maryland,
USA, June 1-3, pp. 27-34.

Hudson, S., Fogarty, J., Atkeson, C., Avrahami, D., Forlizzi, J., Kiesler, S.,
Lee, J.C. & Yang, J. (2003). Predicting Human Interruptibility with
Sensors: A Wizard of Oz Feasibility Study. In Proceedings of the SIGCHI
conference on Human factors in computing systems, Florida, USA, April 5-10, pp.
257-264.

Hundhausen, C.D., Balkar, A., Nuur, M. & Trent, S. (2007). WOZ pro: a
pen-based low fidelity prototyping environment to support wizard of oz
studies. In CHI ’07 : CHI ’07 extended abstracts on Human factors in computing
systems, pp. 2453-2458. New York, NY, USA: ACM

102

Hundhausen, C., Trent, S., Balkar, A. & Nuur, M. (2008). The design and
experimental evaluation of a tool to support the construction and
wizard-of-oz testing of low fidelity prototypes. In VLHCC ’08:
Proceedings of the 2008 IEEE Symposium on Visual Languages and Human-
Centric Computing, pp. 86-90. Washington, DC, USA: IEEE Computer
Society.

Hüttenrauch, H., Eklundh, K. S. S., Green, A., & Topp, E. A. A. (2006).
Investigating spatial relationships in human-robot interaction. In
Proceedings of the IEEE/RSJ International Conference on intelligent robots and
Systems (IROS), pp. 5052-5059. IEEE.

Kelley, J.F. (1983). An empirical methodology for writing User-Friendly
Natural Language computer applications. In CHI’83 Proceedings, ACM
Press, pp. 193-196.

Kelley, J.F. (1984). An iterative design methodology for user-friendly natural
language office information applications. ACM Transactions on Office
Information Systems, Vol. 2(1), pp. 26-41.

Kilbrink, N. (2008). Användningstester Plattformen. Working paper in Swedish.
Karlstads Universitet.

Klemmer, S. R., Sinha, A. K., Chen, J., Landay, J. A., Aboobaker, N. &
Wang, A. (2000). SUEDE: A Wizard of Oz Prototyping Tool for Speech
User Interfaces. In Proceedings of the 13th annual ACM symposium on User
interface software and technology, pp. 1-10.

Krug, S. (2006). Don’t Make Me Think! A Common Sense Approach to Web
Usability, Second Edition. Berkeley: New Riders.

Lamberg, C. (2011). HTML5 for Ozlab. Student course report in pdf format
available at http://www.kau.se/en/ozlab/research-and-development-
projects/student-works

Lamberg, C. & Brundin, A. (2011). Evaluating the future development options for

Ozlab. Bachelor thesis. Karlstad University. http://urn.kb.se/resolve?

urn=urn:nbn:se:kau:diva-795

Larson, R. & Csikszentmihalyi, M. (1983). The experience sampling method.
New Directions for Methodology of Social and Behavioral Science, 15, pp. 41-56.

Larsson, N. & Molin, L. (2006). Rapid prototyping of user interfaces in
robot surgery. Presented at ISD´2005, Karlstad. Published in Advances in
Information Systems Development, eds. A.G. Nilsson et al., Springer-Verlag,
pp. 361-371.

103

Lee, S. Y., Mott, B.W. & Lester, J.C. (2010). Investigating Director Agents’
Decision Making in Interactive Narrative: A Wizard-of-Oz Study. In
Proceedings of the Intelligent Narrative Technologies III Workshop (INT3 2010),
Monterey, CS, USA, June 18. Article 13, 8 pp.

Leiser, R.G. (1989). Exploiting convergence to improve natural language
understanding. Interacting with Computers 1(3), pp. 284-298.

Li, A.X. & Bonner, J.V.H. (2011). Improving control panel consistency of
wizard of oz design and evaluation studies. In: Proceedings of the 17th
International Conference on Automation & Computing. Chinese Automation
and Computing Society, Huddersfield, UK.

Li, A.X. & Bonner, J.V.H. (2013). Using wizard-of-oz method to build
multipurpose platform for domestic ambient media research and
applications. Multimedia Tools and Applications, pp. 1-16 (on-line pre-
publication 2013-03-13).

Li, X. (2012). Improving the Reliability and Validity of Wizard-of-Oz
Methods. PhD Thesis. School of Computing and Engineering,
University of Huddersfield. eprints.hud.ac.uk

Li, Y., Hong., J. I. & Landay, J. A. (2004). Topiary: A Tool for Prototyping
Location-Enhanced Applications. UIST’04, New Mexico, USA, October
24-27, pp. 217-226.

Li, Y., Welbourne, E. & Landay, J.A. (2006). Design and Experimental
Analysis of Continuous Location Tracking Techniques for Wizard of Oz
Testing. In Proceedings of the SIGCHI conference on Human Factors in computing
systems, Montréal, Québec, Canada, April 22-27, pp. 1019-1022.

Lim, Y.-K., Stolterman, E. & Tenenberg, J. (2008). The Anatomy of
Prototypes: Prototypes as Filters, Prototypes as Manifestations of Design
Ideas. ACM Transactions on Computer-Human Interaction, Vol. 15(2), article
7.

Lindström, M. & Nilsson, J. (2009). Usability test report. Third pilot test of “Trust
Evaluation”. PrimeLife-project.

Linnell, N., Bareiss, R. & Pantic, K. (2012). A Wizard of Oz Tool for
Android. MobileHCI’12, San Francisco, USA, September 21-24, pp. 65-
70.

Löwgren, J. & Stolterman, E. (2004) Thoughtful Interaction Design: A Design
Perspective on Information Technology. MIT Press, Cambridge, Massachusetts.

104

Lu, D.V. & Smart, W.D. (2011). HRI ’11 Proceedings of 6th ACM/IEEE
International Conference on Human-Robot Interaction, March 8-11, 2011,
Lausanne, Switzerland. ACM. Pp. 197-198. (Poster accessible via
cse.wustl.edu/~dvl1/publications/polonius-poster.pdf .)

MacIntyre, B., Gandy, M., Dow, S. & Bolter, J.D. (2004). DART: A Toolkit
for Rapid Design Exploration of Augmented Reality Experiences. UIST
’04 Proc. ACM Symp. User Interface Software and Technology, ACM Press, pp.
197-206.

Magnusson, C., Anastassova, M., Tolmar, K., Pielot, M., Rassmus-Gröhn,
K. & Roselier, S. (2009). The mobile Oracle: a tool for early user
involvement. Poster presentation with extended abstract in MobileHCI
'09 Proceedings of the 11th International Conference on Human-Computer
Interaction with Mobile Devices and Services. Article No. 84.

Mäkelä, K., Salonen, E-P., Turunen, M., Hakulinen, J. & Raisamo, R. (2001).
Conducting a Wizard of Oz Experiment on a Ubiquitous Computing
System Doorman. In Proceedings of the International Workshop on Information
Presentation and Natural Multimodal Dialogue, pp. 115-119.

Malhotra, A. (1075). Design Criteria for a Knowledge-Based English
Language System for Management: An Experimental Analysis. PhD
Thesis, MIT Massachusetts Institute of Technology, Project MAC TR-
146.

Marcotte, E. (2011). Responsive Web Design. A Book Apart, New York.

Maulsby, D., Greenberg, S. & Mander, R. (1993). Prototyping an intelligent
agent through Wizard of Oz. In ACM SIGCHI Conference on Human
Factors in Computing Systems, Amsterdam, The Netherlands, May, pp. 277-
284.

Mavrikis, M. & Gutierrez-Santos, S. (2010). Not all wizards are from Oz:
Iterative design of intelligent learning environments by communication
capacity tapering. In Computers & Education 54 (3), pp. 641-651.

Molin, L. (2004). Wizard-of-Oz Prototyping for Cooperative Interaction
Design of Graphical User Interfaces. NordiCHI ’04, Tampere, Finland,
October 23-27, pp. 425-428.

Molin, L. & Pettersson, J.S. (2003). How should interactive media be
discussed for successful requirements engineering? In Perspectives on
multimedia: communication, media and technology, eds. Burnett,
Brunström & Nilsson. Wiley.

105

Munteanu, C. & Boldea, M. (2000). MDWOZ: A Wizard of Oz
Environment for Dialog Systems Development. In LREC, Athens,
Greece, May 31-June 2, pp.104-107.

Nielsen, J. (2010). Scrolling and Attention. Posted March 22, 2010, at
Nielsen Norman Group, http://www.nngroup.com/articles/scrolling-
and-attention/.

Nielsen, J. (2005). Time budgets for usability sessions. Posted September 12,
2005, at Nielsen Norman Group, http://www.nngroup.com/articles/
time-budgets-for-usability-sessions/.

Nilsson, J. (2005). Interaktionsdesign av pedagogisk programvara. En experimentell
studie av demonstrationer som hjälpfunktioner i ett övningsprogram för
mellanstadiebarn. Master Thesis Information Systems. Karlstad: Karlstad
University.

Nilsson, J. (2006). Användbarhetsutvärdering av H-RIB XM – Ozlabprototyp 2.
Internal development project report at Räddningsverket, Karlstad.

Nilsson, J. & Siponen, J. (2006). Challenging the HCI concept of fidelity by
positioning Ozlab prototypes. Presented at ISD´2005, Karlstad.
Published in Advances in Information Systems Development, eds. A.G. Nilsson
et al., Springer-Verlag, pp. 349-360.

Oviatt, S. (1999). Ten myths of multimodal interaction. Communications of the
ACM 42(11), pp. 74-81.

Peterson, E. (2005). Web Analytics Demystified. http://www.webanalytics
demystified.com/downloads/Web_Analytics_Demystified_by_Eric_Pet
erson.pdf.

Pettersson, J.S. (1996). Grammatological Studies: Writing and its Relation to
Speech. Ph.D. dissertation. RUUL #29. Uppsala: Dept. of Linguistics,
Uppsala University.

Pettersson, J.S. (1997). Framing the written sign. Digital Creativity 8(2), pp.
67-73.

Pettersson, J.S. (2002). Visualising interactive graphics design for testing
with users. Digital Creativity, 13(3), pp.144-156.

Pettersson, J.S. (2003). Ozlab – a System Overview with an Account of Two
Years of Experiences. In Pettersson, J.S. (ed.) HumanIT 2003. Karlstad:
Universitetstryckeriet Karlstad. pp. 159-185.

Pettersson, J.S. & Nilsson, J. (2011). Effects of Early User-Testing on
Software Quality – Experiences form a Case Study. In Song, W.W et al.

106

(eds.) Information Systems Development. Springer Science+Business Media,
LLC. pp. 499-510.

Pettersson, J.S. & Siponen, J. (2002). Ozlab – a Simple Demonstration Tool
for Prototyping Interactivity. In NordiCHI, Århus, Denmark, October
19-23, pp. 293-294.

Poschmann, P., Donner, M., Bahrmann, F., Rudolph, M., Fonfara, J.,
Hellbach, S. & Böhme, H-J. (2012). Wizard of Oz revisited: Researching
on a tour guide robot while being faced with the public. In RO-MAN,
2012 IEEE, Paris, France, September 9-13, pp.701-706.

Riek, L.D. (2012). Wizard of Oz Studies in HRI: A Systematic Review and
New Reporting Guidelines. Journal of Human-Robot Interaction, Vol. 1(1),
pp. 119-136.

Robins, B., Dautenhahn, K., te Boekhorst, R. & Nehaniv, C.L. (2008).
Behaviour Delay and Robot Expressiveness in Child-Robot Interactions:
A User Study on Interaction Kinesics. HRI ’08, March 12-15, 2008,
Amsterdam, Netherlands. ACM. Pp. 17-24.

de Rosis, F., Cavalluzzi, A., Mazzotta, I. & Novielli, N. (2005) Can
Embodied Conversational Agents Induce Empathy In Users? Presented
at AISB’05: Social Intelligence and Interaction in Animals, Robots and
Agents, 12-15 April 2005, Hatfield, UK. Proceedings of the Joint Symposium
on Virtual Social Agents. pp. 65-72.
http://www.aisb.org.uk/asibpublications/convention-proceedings; also
http://www.di.uniba.it/intint/Humaine/H-Woz.html [2014-04-29]

Rösner, D., Frommer, J., Friesen, R., Haase, M., Lange, J. & Otto, M.
(2012). LAST MINUTE: a Multimodal Corpus of Speech-based User-
Companion Interactions. Proceedings of the Eight International Conference on
Language Resources and Evaluation (LREC'12), Istanbul, Turkey, May 23-25.
European Language Resources Association (ELRA). Pp. 2559-2566.

de Ruyter B., Saini P., Markopoulos P. & van Breemen A. (2005). Assessing
the effects of building social intelligence in a robotic interface for the
home. Interacting with Computers 17(5), pp. 522-541.

Salber, D. & Coutaz, J. (1993). Applying the Wizard of Oz Technique to the
Study of Multimodal Systems. In Bass, Gornostaev & Unger (Eds.),
Human-Computer Interaction. Third International Conference, EWHCI ’93,
Moscow, Russia, August 1993, Selected Papers. LNCS 753, Springer. Pp. 219-
241.

107

Schlögl, S. (2011) Sketching Language: User-Centered Design of a Wizard of
Oz Prototyping Framework. Human-Computer Interaction -
INTERACT 2011, 13th IFIP TC 13 International Conference, Lisbon,
Portugal, September 5-9, 2011, Proceedings, Part IV. Lecture Notes in
Computer Science Volume 6949, 2011, pp. 422-425.

Schlögl, S., Doherty, G., Karamanis, N. & Luz, S. (2010). WebWOZ: A
Wizard of Oz Prototyping Framework. EICS’10, Berlin, Germany, June
19-23, pp.109-114.

Schlögl, S., Doherty, G., Karamanis, N., Schneider, A. & Luz, S. (2010).
Observing the Wizard: In Search of a generic Interface for Wizard of Oz
Studies. In Proceedings of iHCI, Dublin, Ireland, September 2-3, pp. 43-50.

Schlögl, S., Schneider, A., Luz, S. & Doherty, G. (2011). Supporting the
Wizard: Interface Improvements in Wizard of Oz Studies. In Proceedings
of the 25th BCS Conference on Human-Computer Interaction, Swinton, United
Kingdom, pp. 509-514.

Schlögl, S., Chollet, G., Milhorat, P., Deslis, J., Feldmar, J., Boudy, J.,
Garschall, M. & Tscheligi, M. (2013). Using Wizard of Oz to Collect
Interaction Data for Voice Controlled Home Care and Communication
Services. In Proceedings of the IASTED International Conference, Innsbruck,
Austria, February 12-14, pp. 511-518.

Schlögl, S., Doherty, G. & Luz, S. (2014). Wizard of Oz Experimentation
for Language Technology Applications: Challenges and Tools. Interacting
with Computers, Advance Access published May 9, 2014.

Sefelin, R., Tscheligi, M. & Giller, V. (2003). Paper Prototyping – What is it
good for? A Comparison of Paper- and Computer-based Low-fidelity
Prototyping. Short talk presented at CHI 2003, April 5-10, 2003, Fort
Lauderdale, USA, pp. 778-779.

Segura, V. C. V. B. & Barbosa, S. D. J. (2013). UISKEI++: Multi-Device
Wizard of Oz Prototyping. EICS’13, London, United Kingdom, June 24-
27, pp. 171-174.

Serrano, M. & Nigay, L. (2010). A wizard of oz component-based approach
for rapidly prototyping and testing input multimodal interfaces. Journal on
Multimodal User Interfaces, 3(3), pp. 215-225.

Serrano, M., Juras, D. & Nigay, L. (2008). A three-dimensional
characterization space of software components for rapidly developing
multimodal interfaces. In: Proceedings of ICMI’08. ACM, New York, pp.
149–156.

108

Siegel, G.M., Lenske, J. & Broen, P. (1969). Suppression of normal speech
disfluencies through response costs. Journal of Applied Behavior Analysis, 2,
pp. 265-276.

Siponen, J., Pettersson, J. S. & Alsbjer, C. (2002). Ozlab Systembeskrivning.
Arbetsrapport. Karlstads Universitet: Institutionen för informations-
teknologi.

Skantze, G. & Hjalmarsson, A. (2010). Towards incremental speech
generation in dialogue systems. In Proceedings of the 11th Annual Meeting of
the Special Interest Group on Discourse and Dialogue (SIGDIAL '10), Tokyp,
Japan, September 24-25, 2010. Association for Computational
Linguistics, Stroudsburg, PA, USA, pp. 1-8.

Sohn, T.Y. & Dey, A.K. (2003). iCAP: An Informal Tool for Interactive
Prototyping of Context-Aware Application. CHI 2003 (Poster, Extended
abstract), pp. 974-975.

Spindler, M., Weber, M., Prescher, D., Miao, M., Weber, G. & Ioannidis, G.
(2012). Translating Floor Plans into Directions. In Computers Helping
People with Special Needs. Part II. Springer Berlin Heidelberg. Pp. 59-66.

Standage, T. (2002). The Turk: The Life and Times of the Famous Eighteenth-
Century Chess-Playing Machine. Walker & Co, Bloomsbury. Also published
as The Mechanical Turk: The True Story of the Chess-Playing Machine that Fooled
the World. Allen Lane the Penguin Press.

Suchman, L. (1987). Plans and Situated Actions: The Problem of Human-Machine
Communication. Cambridge University Press.

Sutton, S., Cole, R., et al. [15 authors] (1998). Universal Speech Tools: the
CSLU Toolkit. Proceedings of the 5th International Conference on Spoken
Language Processing (ICSLP’98), Sydney, Nov 30 - Dec 4, 1998. Pp. 3221-
3224.

Tennant, H.R. (1981a). Evaluation of Natural Language Processors. PhD
Thesis, University of Illinois at Urbana-Champaign.

Tennant, H. (1981b). Natural Language Processing. An Introduction to an Emerging
Technology. PBI Petrocelli Books Inc., New York and Princeton.

Uceta, F.A., Dixon, M.A. & Resnick, M.L. (1998). Adding interactivity to
paper prototypes. Proceedings of the Human Factors and Ergonomics Society
Annual Meeting, Vol. 42(5), pp. 506-510.

109

de Vicente, A. (1998) Book review: Humans, Computers, and Wizards.
Analysing human (simulated) computer interaction by R. Wooffitt, N.M.
Fraser, N. Gilbert, and S. McGlashan. ReCALL 10(2), pp. 80-82.

Ward, W., Cole, R., Bolaños, D., Buchenroth-Martin, C., Svirsky, E., Van
Vuuren, S., Weston, T., Zheng, J. & Becker, L. (2011). My science tutor:
A conversational multimedia virtual tutor for elementary school science.
ACM Transactions on Speech and Language Processing (TSLP), Vol. 7 (4),
Article No. 1, 29 pages. www.bltek.com/our-work/projects/ies-myst/

Webb, N., Benyon, D., Bradley, J., Hansen, P. & Mival, O. (2010). Wizard
of Oz Experiments for a Companion Dialogue System: Eliciting
Companionable Conversation. Proceedings of the 7th International
Conference on Language Resources and Evaluation (LREC2010), Valletta,
Malta. Pp. 875-879. http://www.companions-project.org

White, K.F., & Lutters, W.G. (2003). Behind the Curtain: Lessons Learned
from A Wizard of Oz Field Experiment. ACM SIGGROUP Bulletin,
24(3), pp. 129-135.

Wik, M. (2014). Interactive In-Situ Requirements Gathering: Extending
Beyond Questionnaires and Interviews. Poster presentation at SIDER’14
Student Interaction Design Research conference, 11-12 April 2014, Stockholm
(sider2014.csc.kth.se/wp-content/uploads/sites/8/2014/04/sider14_
submission_11.pdf)

Wooffitt, R., Fraser, N., Gilbert, N. & McGlashan, S. (1997). Humans,
Computers, and Wizards. Analysing human (simulated) computer interaction.
Routledge.

Zachhuber, D., Grill, T., Polacek, O. & Tscheligi, M. (2012). Contextual
Wizard of Oz. In Ambient Intelligence, Springer Berlin Heidelberg, pp. 224-
239.

Perspectives on Ozlab in the cloud

The Wizard-of-Oz method has been around for decades, allowing researchers

and practitioners to conduct prototyping without programming. The extensive

literature review in the field reported here, however, revealed that the re-usable

tools supporting the method do not seem to last more than a few years. Generic

systems started to appear around the turn of the millennium, but very few are still

in use. New systems are designed nevertheless. The systems and issues presented

here should be of interest to people in the field of prototyping interaction design.

This review was inspired by the authors’ ongoing re-development of their own

Wizard-of-Oz tool, the Ozlab, into a system based on web technology. The

report takes stock of some key features of Ozlab as well as reviews and contrasts

other re-usable Wizard-of-Oz tools with the ambition to list every generic tool.

The introductory chapter compares and contrasts prototyping in general with

Wizard-of-Oz prototyping and provides an historical overview of Wizard of Oz

in the development of digital interactive systems, spanning the years 1971-2013.

Chapter 2 briefly describes the operation of Ozlab, and Chapter 3 presents the

literature review of generic WOz tools. Chapter 4 discusses how interaction

is supported by WOz tools and Chapter 5 how platform dependency affects

the longevity of generic tools, while Chapter 6 points to the limitations in the

Wizard-of-Oz method itself from several perspectives. Chapter 7, finally, presents

concluding remarks including a list of points for future methodological analysis

and development.

WORKING PAPER | August 2014

Faculty of Arts and Social Sciences

