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Abstract

Diabetic kidney disease (DKD) is a microvascular complication of type 1 and 2 diabetes with a
devastating impact on individuals with the disease, their families and society as a whole. DKD is
the single most frequent cause of incident chronic kidney disease (CKD) cases and accounts for
over 40% of the population with end stage renal disease (ESRD). Contributing factors for the high
prevalence are the increase in obesity and subsequent diabetes combined with an improved long–
term survival with diabetes. Environment and genetic variations contribute to DKD susceptibility
and progressive loss of kidney function. How the molecular mechanisms of genetic and
environmental exposures interact during DKD initiation and progression are the focus of ongoing
research efforts. The development of standardized, unbiased high throughput profiling
technologies of human DKD samples opens new avenues in capturing the multiple layers of DKD
pathobiology. These techniques routinely interrogate analytes on a genome–wide scale generating
comprehensive DKD associated fingerprints. Linking the molecular fingerprints to deep clinical
phenotypes may ultimately elucidate the intricate molecular interplay in a disease stage and
subtype specific manner. This insight will form the basis for accurate prognosis and facilitate
targeted therapeutic interventions. In this review, we present ongoing efforts from large scale data
integration translating “–omics” research efforts into improved and individualized health care in
DKD.
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Introduction

Diabetic kidney disease (DKD) is a common microvascular complication of diabetes
mellitus (DM) that is associated with progressive loss of kidney function, systemic
endocrine and cardiovascular complications, and premature death. In addition to the
personal impact, DKD imposes a great socio–economic burden and constitutes a significant
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public health challenge. As the epidemic of DM increases worldwide, developing countries
will account for ~70% of diabetic patients placing substantial demands on already scarce
resources [1,2]. DKD affects roughly 20–40% of individuals suffering from both type 1
(T1DM) and type 2 DM (T2DM) over a 10-year disease period. DKD is therefore not only
the single leading cause of incident chronic kidney disease (CKD) but also responsible for
over 40% of patients initiating renal replacement therapy due to end stage renal disease
(ESRD) in the United States, 18–40% across Europe according to European Registry Data,
and 35% and 51% in Australia and New Zealand respectively [3–8]. The increase in DKD
induced ESRD is widely attributed to the worldwide growing obesity and T2DM epidemic,
accounting for almost 85–90% of DKD cases overall. Furthermore, progressive DKD is an
independent risk factor that amplifies morbidity and mortality in patients with diabetes [9–
11].

Advances in our understanding of renal physiology and DKD pathogenesis have led to the
identification of Renin–Angiotensin–Aldosterone System (RAAS) inhibition, blood glucose
and blood pressure control as the pillars of DKD management. These interventions can slow,
but usually do not stop progression to ESRD, leaving a large unmet need for novel
therapeutic strategies in DKD for more than two decades. Even for established interventions,
robust prognostic biomarkers to detect patients at risk for DKD, predicting DKD trajectory
and response to therapeutic intervention, are widely lacking. Current classification and
treatment strategies primarily rely on a descriptive clinical phenotyping most likely lumping
patients with different disease mechanism and stages together. Ongoing research efforts
have uncovered potential genetic, behavioral and environmental contributions to disease
manifestation in a focused hypothesis driven manner. The development of molecular
medicine with genome–wide profiling capabilities of human biosamples offers an
opportunity to capture a holistic picture of DKD initiation and progression. Critical
questions with this strategy are: How can we effectively exploit these new technologies to
facilitate robust and reproducible molecular phenotyping and disease dissection? What
proportion of disease depends upon genetic variation? What are the interrelationships
between the different puzzle pieces captured by the–omics profiles? How can we integrate
this knowledge to define biomarkers of mechanism based disease prediction? How can we
distinguish the drivers of pathogenesis from associated, but not causal “passengers” of the
disease process? Integrating some of the answers into our current disease understanding and
classification will enable us to develop a detailed molecular taxonomy, which identifies
specific patient subgroups according to prognostic relevance and necessary therapeutic
intervention.

Background

The multifactorial DKD pathogenesis is a consequence of an intricate interplay between
genetic factors, environmental exposure and lifestyle. On a molecular level, disease
pathogenesis is driven by the hallmark of DM – hyperglycemia, which is caused by
incremental lack of insulin in T1DM and target tissue insulin resistance in T2DM [12].
Current understanding suggests that hyperglycemia–driven generation of reactive oxygen
species (ROS) and formation of long lasting glycated protein products defined as advanced
glycation end products (AGEs) lead to substantial tissue damage. The downstream effects
include activation of the intracellular stress response machinery, increased activity of protein
kinase C (PKC) pathway, activation of inflammatory signaling mechanisms converging on
augmented transcriptional activity of NF–κB, JAK/STAT signaling and a plethora of other
effectors [13–15]. Upon initial kidney tissue injury and release of chemoattractants like
macrophage chemoattractant MCP–1, infiltrating monocytes/macrophages are a primary
source of tumor necrosis factor α (TNF α) release, although resident kidney cells such as
endothelial and tubular epithelial cells possess the capability to synthesize this cytokine [16].
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TNF–α driven receptor activation changes expression patterns of growth factors, adhesion
molecules and other inflammatory molecules. In this hyperglycemic environment TNF–α
mediated processes are unleashed from their regulatory constraints, perpetuating an increase
of proinflammatory cytokines sustaining further the process of kidney damage. TNF–α has
also been implicated in the unfavorable glomerular hemodynamics that characterize DKD
e.g. increasing expression of vasoconstrictor endothelin–1, and augmenting glomerular
permeability as well as further glomerular and interstitial recruitment of inflammatory cells
in DKD [17–22]. DKD associated vascular stress triggers local release of highly vasoactive
hormones and peptides influencing activity of the RAAS and endothelin signaling [13].
Activation of the autonomic nervous system [23] can contribute to kidney injury through
neuroimmune interaction, modulating interstitial macrophage recruitment and local TNF-α
expression during the progressive phase of DKD and CKD in general [24]. Concurrent to the
inflammatory processes, there is activation of potent profibrotic mechanisms, which
eventually lead to replacement of functional kidney tissue with extracellular matrix,
aggravating the progressive phase of DKD. One dominant protagonist is TGF–β
(transforming growth factor β) and its downstream mediator CTGF (connective tissue
growth factor) [25–27]. This persistent activation of pathogenic mechanisms is not matched
by an efficient recruitment of protective pathways (e.g. nitric oxide pathway) leading over
time to the specific and well characterized morphological changes and functional
deterioration of DKD.

The need for a molecular–based disease definition

The need for early predictors

Diabetic kidney disease develops only in a proportion of patients after decades with DM [8].
Eventually, a subset of those will further progress to ESRD. The current clinical definition
of DKD solely relies upon urinary excretion of albumin (usually determined by the urinary
albumin–to–creatinine ratio, ACR), using empirically defined thresholds, where ACR < 30
mg/g is termed normalbuminuria (NAlb), 30 ≤ ACR < 300 mg/g defines microalbuminuria
(μAlb) and ACR values ≥ 300 mg/g as macroalbuminuria (MAlb) and changes in
glomerular filtration rate (GFR) in the presence of T1DM or T2DM. ACR and in particular
GFR, are subject to substantial measurement variability, show a heterogeneous pattern and
do not necessarily correlate with physiopathology and predict renal function decline [28–
31]. Since albuminuria is an early feature of most non–diabetic kidney diseases and can
increase with diseases of non–renal origin, it is not very helpful in establishing early
diagnosis or in predicting prospective events [32,33]. More than 10 years ago, Caramori and
colleagues already emphasized that in context of T1DM GFR changes as well as detection
of albuminuria are not biomarkers of early disease stage but rather a sign of significant
tissue damage [34]. As such, ACR’s and GFR’s capability to detect and closely monitor
early pathogenic inflammatory and metabolic processes involved in DKD has significant
limitations [34–36]. ACR is the predominant clinical “biomarker” for establishing DKD
diagnosis and estimating risk of progression based on observational and interventional
studies [37]. However, recent analysis from subjects with T1DM enrolled in the Joslin Study
of the Natural History of Microalbuminuria suggests that progression of DKD occurs to a
substantial proportion even in the absence of μAlb, consequently challenging ACR as a
mandatory feature of DKD [35,38–40]. This finding has been corroborated in population–
based studies of DKD such as the National Health and Nutrition Examination Study
(NHANES) and the Developing Education on Microalbuminuria for Awareness of Renal
and Cardiovascular Risk in Diabetes study (DEMAND) [8,41]. Although, the risk of DKD
progression is highest among those T1DM individuals with longer diabetes duration, higher
HbA1c and increasing albuminuria, early renal function decline strongly supports the
concept that renal damage does not begin with or after development of albuminuria stage,
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but can occur much earlier. These observations have been corroborated in Native Americans
with T2DM–DKD [42]. Additionally, Karalliedde et al. pointed out the complex and
multifaceted pathophysiology of albuminuria [43]. The phenotype of diabetic albuminuria is
further confounded by the substantial ACR variation occasionally creating phenotypic
ambiguity [44]. These data clearly show the limits of our current understanding of early
changes in DKD pathogenesis and underline the need for research to define the fundamental
disease mechanisms and to develop potentially nephroprotective strategies. Furthermore,
ethnic differences not only influence the prevalence of DM but also have a substantial
impact on the prevalence of diabetes–associated complications and further disease
progression. For instance, DKD incidence is lowest in patients of Caucasian descent,
followed by Asians, Hispanics, Native Americans and African Americans [45]. On top of
racial disparities, DKD susceptibility and rate of progression is clustered in certain pedigrees
as results from The Family Investigation of Nephropathy and Diabetes (FIND) study [46,47]
and the Genetics of Kidneys in Diabetes (GoKinD) Study showed over the last years [48–
54].

Rationale for a systems level definition of DKD

DM and its end organ damage, including DKD, are diseases affecting multiple interrelated
end organ systems, requiring a research strategy matching the systemic nature of the disease.
Over the last decade both data generation and data analysis approaches have matured to a
level that we can start to explore DM and DKD in patients on a systems level, generating a
network view of relevant disease processes [55,56]. The term “Systems Biology” in the
context of this review is used to describe the integration of large–scale data sets into
regulatory networks, using the concept of “Plurality of cause and effect” as introduced by
Sauer [57]. Molecular medicine has matured to a level that we are now in a position to
generate information from patients covering the entire spectrum from genetic variations such
as single nucleotide polymorphisms (SNPs) or copy number variations (CNVs) (Genomics),
along epigenetic modifications (methylation and histone modifications; Epigenomics),
coding and non-coding RNAs (mRNA, miRNA, lincRNA, tRNA, and rRNA;
Transcriptomics), down to the level of proteins (Proteomics) and metabolites
(Metabolomics), which are further refined by detailed morphologic characterization (Histo–/
Morphogenomics) and in depth ethno–demographics as well as clinical phenotyping
(Phenomics) along the “genome–phenome continuum” [58–60] (see Figure 1). This
approach has already facilitated a more comprehensive understanding of disease
pathogenesis in oncology and developmental biology [61]. This is the necessary step
towards individualized medicine – “the right drug, at the right time, at the right dose, for the
right person” [62] – in nephrology. However, in order to achieve this goal of a tailored and
risk adapted therapy we have to implement a systematic approach to define the impact of the
disease along the genotype–phenotype continuum [63]. This approach can be broken down
in four equally challenging steps:

I. Establish DKD cohorts with deep phenotypes and matching comprehensive
biorepositories for genome wide analysis.

II. Map genomic landscape in representative DKD tissue samples (e.g. kidney biopsy,
blood and urine).

III. Integrate generated large–scale data sets to define key disease drivers active across
multiple levels of the genotype–phenotype continuum.

IV. Test hypotheses derived from III. in model systems and in human interventional
trials.
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Several DKD cohorts, established over the last two decades, allow capturing of regulatory
networks on a genome wide scale, but further investment into patient cohorts as key
resources for systems biology are urgently needed. Several strategies are currently discussed
to overcome this obstacle ranging from protocol biopsies cohorts to postmortem acquisition
of tissue in well phenotyped patients. A recent workshop focused on the discussion of this
very key issue pertaining to DKD research [64]. A detailed discussion of this topic warrants
an independent review.

Mapping the genomic landscape in DKD

Genetics, Epigenetics and the concept of “metabolic memory” in DKD

Fueled by the discovery of monogenic defects causing rare hereditary forms of diabetes and
kidney diseases, strategies were developed to detect the genetic underpinning of DKD. First
reports suggesting a genetic contribution to disease risk were based on T1DM sib–pair
analysis where DKD subjects aggregated [65,66]. Soon thereafter, reports followed
suggesting a heritable component of DKD in T2DM as well [67,68]. Hallmark studies in
DKD revealed numerous genetic variations, with some of them replicated across different
ethnicities, in T1DM – and T2DM–DKD and some specific for the analyzed cohort and
phenotype ([46,69] and Metaanalysis in [70]). The studies published to date identified
genetic loci associated with DKD as starting point for functional analysis into disease
pathogenesis. However, the overall explained heritability is of low effect size, shared with
many other complex traits [71,72]. The very modest genetic effect size confirms the
polyetiological nature of the disease. Finding significantly associated genetic variations at a
genome wide level for DKD is only the first step. Validation by subsequent resequencing
and fine mapping studies to determine the actual causal variant that is in linkage
disequilibrium with the tagging SNP, replication in an independent cohort and generation of
a testable hypothesis of the mechanistic impact of the polymorphism are critical next steps
[73–75]. In oncology, Pomerantz et al. recently highlighted such a successful strategy and
the importance of experimental follow up [76]. In DKD, the currently available information
on genetic risk loci are not of sufficient effect size and robustly replicated as to be developed
for clinical decision support, despite the fact that several loci confer a statistically significant
increase in disease risk [70,77,78].

Long–term outcome data from DCCT/EDIC and the UKPDS study showing a lasting impact
of early intervention on the incidence of diabetic end organ complications [79,80], led to the
resurrection of the metabolic memory concept, first described by Engerman and Kern in the
dog retina of alloxan–induced diabetes [81]. In addition to long–lasting protein modification
like generation of AGEs, epigenetic modifications of the genome are prime candidate
memory mechanisms, due to their partial heritability and high plasticity in response to
internal and environmental challenges such as drugs, toxins, hyperglycemia and
inflammation [82–87]. The area of epigenomics in context of diabetic complications is
currently under intense investigation [88–91]. Integrating the epigenetic regulation of the
genome with the emerging information of genetic risk loci of DKD might allow defining the
individual genetic risk at a clinically relevant level [92]. Rapidly dropping sequencing costs
will further facilitate comprehensive sequence based analysis in populations at risk of DKD
[93].

Transcriptomics and the next generation profiling of diabetic kidney disease

Transcriptomic analysis, the comprehensive mRNA expression analysis, was the first
genome wide profiling approach available for broad application in human tissues [94].
Initially, microarrays using predefined oligonucleotides or cDNAs were employed. These
array technologies are currently starting to be replaced by unbiased RNA Sequencing
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(RNA–Seq.) technology. Expression profiles can be simultaneously interrogated in kidney
tissue, blood and urine, offering the chance to compare across organ boundaries and evaluate
their potential for non–invasive surrogate marker. With the adoption of a standardized
technique of specimen handling and RNA isolation developed by the European Renal cDNA
Bank, a robust protocol was established taking advantage of diagnostic renal biopsies for
molecular profiling studies in an international multicenter setting [95,96] and the approach
has been adopted by multiple networks around the globe. Initial studies focused on targeted
analysis of candidate transcripts identified by the analysis of monogenetic renal diseases
[97] or model systems [98], followed by studies comparing in vitro responses to proteinuria
to the in vivo setting [99]. Baelde and colleagues compared the glomerular transcriptome
from two cadaveric healthy donors with two DKD cases and where able to partially
recapitulate findings from prior studies investigating gene expression changes in cell culture,
animal models and human biopsy sections [100]. A first comprehensive transcriptional
network analysis combined with promoter modeling approaches identified a specific NF–κB
model as a key driver in progressive DKD compared to early DKD and other proteinuric
diseases [101]. Additionally, the mechanism involving hypoxic gene regulation, vascular
plasticity as well as JAK/STAT signaling pathway show temporal and compartment specific
gene expression patterns in human DKD [15,102]. Furthermore, transcriptomic profiling not
only validated prior documented significance of complement pathway and inflammatory
signaling pathways but also described new pathways involved and/or affected by DKD,
which haven’t been suspected yet or underestimated e.g. caveolar–mediated endocytosis and
lipid metabolism [103]. Current limitations of kidney tissue specific transcriptomics relate
primarily to the limited available sample size and the cross sectional design with limited
inference of causality. Most studies using clinical biopsies represent established DKD stages
with impaired eGFR and high degree of proteinuria and describe the inflammatory and
fibrotic response seen with progression to ESRD [101,103]. A significant concern is the
selection bias for patients with suspected DKD undergoing biopsy, as kidney biopsy in most
centers is not part of the routine DKD diagnostic evaluation, except in cases of sudden
unexplained rise in serum creatinine, drop in eGFR or increased proteinuria [104], requiring
careful evaluation of clinical and histological features to select cases of DKD without
secondary disease manifestation.

Several groups have implemented renal research or protocol biopsies in early stages of
T1DM– and T2DM–DKD [105,106]. A low incidence in kidney biopsy related
complications in carefully selected patients and improved diagnostic value for disease
entities potentially amenable to treatment have been reported with modern biopsy
technologies [107,108]. The unique renal macro– and microarchitecture with multiple cell
lineages arranged in a defined order and spacing along the nephron (e.g. podocytes,
mesangial cells) contribute to substantial heterogeneity. This can be addressed to some
extent by manual microdissection of the nephron compartments [109,110] or “in silico”
microdissection using cell–lineage specific transcripts [97]. Methods using the concept of
cell lineage specific transcripts on a genome scale to deconvolve the transcriptome of
complex tissues are currently being developed [111].

As with all genome wide profiling approaches, validating diagnostic candidate markers of
molecular pathways in an independent replication cohort is a critical step to address the
inherent danger of overfitting large–scale data on small sample sizes (see [112] and a
detailed discussion by the Institute of Medicine [113]). Generating the necessary cohorts and
subsequent data analysis will require further integration of existing efforts and expansion of
international collaborative networks. As most groups use comparable tissue procurement,
processing and analysis platforms for transcriptional profiling, data integration and
comparative analysis are an achievable goal.
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Proteomics and Metabolomics in DKD

Advances in high throughput profiling technologies facilitated an unprecedented explosion
in generating large–scale molecular data that is not any longer constrained to the genome
and transcriptome level, but also leads to significant improvements on the level of
proteomics and metabolomics. The proteomic studies start to highlight the substantial role of
posttranscriptional regulatory mechanisms and simultaneously reveal how gene expression
affects actual protein abundance and function [114–116]. The various layers of
posttranscriptional and posttranslational regulation add an additional level of complexity in
proteomic studies. Major advances in analytical chemistry, including improved
chromatographic and mass spectrometry (MS) platforms supported by sophisticated
computational algorithms are finally starting to bring proteomics towards a level of protein
coverage for widespread use in systems biology [117,118].

Proteomics

Since ACR does not accurately predict clinical endpoints in DKD, several investigators have
focused on urinary and plasma proteome patterns from healthy volunteers, T1DM and
T2DM patients with and without various degrees of albuminuria and different ranges of
GFR [119–125]. Three recent examples highlight the potential of an untargeted proteomics
approach. Otu and colleagues using a nested case–control design and surface–enhanced laser
desorption/ionization time–of–flight mass spectrometry (SELDI–TOF/MS) of urine from
type 2 DM Pima Indians were able to distinguish initially NAlb subjects developing DKD
within a 10 year follow up period based on a 12–peak urine peptide signature detected in
urine collected at time the individuals were still NAlb [126]. Rossing and co–workers
compared gender and age matched healthy controls, and T1DM patients from the Steno
Diabetes Center with varying degrees of albuminuria (NAlb, μAlb and MAlb) [124]. They
evaluated the potential of Capillary electrophoresis (CE) MS to define urinary polypeptides
signatures an identified increased albumin fragments, decreased uromodulin and collagen
type I fragments. Overgaard et al. utilized isobaric mass tags (iTRAQ) coupled with liquid
chromatography (LC) MS and SELDI–TOF/MS to identify plasma protein/peptides in a
cross–sectional analysis of 123 T1DM cases previously classified as NAlb, μAlb and MAlb.
This strategy yielded many promising candidates including transthyretin, apolipoprotein A1,
apolipoprotein C1 and cystatin c. Interestingly, unidentified plasma protein peaks showed
promising features in improving predictability of DKD [127,128]. Other studies applied CE–
MS and confirmed urinary peptides such as collagen fragments as robust predictors of CKD
and DKD respectively [129–133]. One of the limitations of these studies is that majority of
the identified fragments arise from abundant plasma proteins. As the glomerular filtration
barrier fails with DKD, non–selective, albumin predominant pattern ensues which may skew
detected polypeptides to abundant proteins [134]. Methods effectively addressing the
detection of low abundance proteins have recently been developed, in order to provide a
higher degree of disease specificity and unravel low–abundant proteins which are likely to
be of mechanistic significance [135]. Immunodepletion and glycoprotein enrichment
techniques allow effective depletion of albumin, immunoglobulins and other highly
abundant urinary and plasma proteins while providing a more in depth analysis of a sub
fraction of the inquired proteome. As glycosylated proteins are critical for cellular
interactions and signaling cascades, disease states are likely to cause early and specific
alterations in urinary glycoprotein excretion. Indeed, glycoproteins are now important
markers of autoimmunity and malignancy [136,137]. More recently, the plasma
glycoproteome has been used to predict nephropathy in diabetic subjects [138]. Despite this
promising role as a non–invasive and specific biomarker of disease, little is known about the
urinary glycoproteome in DKD. Consequently, we hypothesized that the urinary
glycoproteome would be altered in patients with CKD compared to healthy controls, and
that specific glycoprotein alterations might be useful in predicting CKD progression. We
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performed an exploratory analysis of the urine glycoproteins in patients with CKD that
included DKD subjects [139]. We utilized a hydrazide enrichment technique combined with
tandem MS identification of glycoproteins. In urine, this strategy identified several
differentially expressed proteins compared to healthy controls, including proteins with
endopeptidase inhibitor activity, protein–binding functions, and acute–phase/immune–stress
response activity that have been previously linked to kidney disease and therefore
supporting the existing hypotheses that inflammation plays a key role in renal disease
pathogenesis. Additional renal specific sources of proteins include analysis of excreted
urinary exosomes (30–90 nm vesicles), which consist of an evolutionary conserved tissue–
and cell–type specific set of proteins. Due to its tissue specificity, exosomes analysis might
facilitate a more accurate representation of renal pathology [140,141]. Despite these
advances, several challenges remain in proteomic analysis. These include: a) impaired
detection of low–abundant proteins and skewing to high–abundant proteins especially in
blood and urine (while strategies involving depletion of high–abundant proteins and
enrichment of low–abundant proteins have improved detection, coverage still lacks depth);
b) obstacles dependent on employed techniques and software data analysis issues [142] and
c) difficulty in predicting the functional context of the protein. For example protein
abundance may vary but functionality may not change as it may depend on posttranslational
modifications such phosphorylation, acetylation and glycosylation. These issues have been
recently addressed in a position statement including recommendations for quality and
reporting metrics, data deposition and quantification methods [143–145], similar to the
MIAME reporting guidelines for transcriptomic analysis [146]. Collectively, these
observations suggest that the human proteome and in particular the glycoproteome may
serve as a discovery source for novel disease mechanism–based biomarkers not only in
DKD but also in renal diseases in general but challenges remain in translating these findings
to functional context.

Metabolomics

Metabolomics is the rapidly evolving field that attempts to systematically capture, identify
and quantify endogenous and exogenous metabolites within a biological sample. The small
molecules represent the result of complex biological processes in a given tissue or organ and
the final functional read–out of a biological system. Therefore, metabolites form attractive
candidates as biomarkers, as they are closer to the final phenotype. The chemical diversity
of the metabolites makes analysis a formidable challenge. The rapid development of a
variety of MS and nuclear magnetic resonance (NMR) based platforms have enabled
detection, separation, characterization and quantification of such chemically diverse low–
molecular weight structures such as lipids, amino acids, nucleic acids and organic acids
(reviewed in [118]). Metabolite profiling strategies have been implemented successfully to
identify metabolic markers of disease in cancer, cardiovascular disease (CVD) and diabetes
[147–155]. We recently utilized an untargeted metabolomic strategy to explore underlying
unifying mechanisms of disease progression and treatment response in order to identify
novel metabolite biomarkers of progressive murine DKD [156]. The urine from control
DBA/2J and streptozotocin–induced diabetic mice as well as mice treated for 10 weeks with
rosiglitazone (which reverses DKD phenotype) was analyzed with LC electrospray
ionization (ESI) TOF/MS [156]. In total 56 features showed up– or down–regulation by > 2–
fold in the diabetic animals. Of the 56 molecular features, 32 were identified by database
searching. Rosiglitazone reversed nine of these 32 compounds back to baseline and may
therefore serve as potential biomarkers for response to treatment and reversal of rodent DKD
phenotype. For compound identification, we leveraged the publicly available METLIN
Metabolite Database [157] and the Human Metabolome Database [158]. The
pathophysiology of the metabolic changes that include ubiquinone and indoxyl sulfate is
currently under intense investigation. Interestingly, a study from Barreto et al. reported that
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serum indoxyl sulfate correlates inversely with renal function and might have a direct
relationship with aortic calcification and pulse wave velocity in patients with CKD [159]. In
survival analyses, the highest indoxyl sulfate tertile was a powerful predictor of overall and
cardiovascular mortality. The predictive power of indoxyl sulfate for death was retained
after adjustment for age, gender, diabetes, albumin, hemoglobin, phosphate and aortic
calcification. Other clinical studies highlight the potential application of metabolomics in
DKD research. The study from Zhang and colleagues utilized Ultra performance liquid
chromatography (UPLC) coupled with TOF/MS to distinguish the serum metabolic profiles
of 25 healthy volunteers, 33 T2DM and 8 DKD patients [160]. Significant changes in the
serum level of leucine, dihydrosphingosine and phytosphingosine were noted, indicating
perturbations of amino acid metabolism and phospholipid metabolism. Another study
investigated 52 T1DM patients recruited in the FinnDiane Cohort who were prospectively
followed over 5–6 years, during which one half developed proteinuria (progressors) and the
other half did not (non–progressor) [161]. Metabolite profiles of baseline 24–h urine
samples were analyzed by gas chromatography–mass spectrometry (GC-MS) and liquid
chromatography–mass spectrometry (LC-MS). Multivariate logistic regression modeling of
the GC MS data resulted in a classifier profile that had an overall accuracy of 75% and a
precision of 73% for a binary classification model of progressor vs. non–progressor. The
discriminating metabolites included acyl–carnitines, acyl–glycines, and metabolites related
to tryptophan metabolism. Other studies of DKD yielded metabolic profiles indicating
alterations in carbohydrate, lipid, nucleic acid, and amino acid metabolism [121,162]. The
biomarker potential for these metabolic markers for predicting clinical phenotypes need to
be validated in large–scale clinical trials.

Systems Genetics: linking genetic variance to clinical outcomes via

intermediary phenotypes

Genome wide association studies (GWAS) of complex traits have been very effective in
defining statistically significant risk loci by mapping genome wide genetic variance in large
cohorts onto clinical traits. However, this approach is agnostic concerning the molecular
mechanism and intermediate regulatory cascades responsible for the manifestation of the
clinical phenotype. To close the molecular knowledge gap, systems genetics employs as a
key tool association studies linking genotypic information with intermediary molecular traits
of interest, e.g. transcript level or metabolite level (expression/metabolic Quantitative Trait
Locus, eQTL/mQTL) [163–165]. Subsequent integration of molecular QTLs with
association studies aids to identify the molecular impact of genetic variance associated with
a disease phenotype.

For instance, the metabolome, as a close “proxy” of the final phenotype in metabolic
diseases like DM, can be associated with the genetic variance seen in a population to
establish links between genetic variance and metabolite levels in a defined biosample during
a disease process [166–169]. A key study by Ferrara et al. linked tissue metabolite levels to
genetic variation. The authors performed transcriptome analysis and whole genome
sequencing of liver samples from a diabetes–resistant C57BL/6 leptinob/ob and diabetes–
susceptible BTBR leptinob/ob mouse strain and further refined their analysis by integrating
quantitative metabolite levels [168]. Various groups of liver metabolites significantly
associated with distinct chromosomal regions suggesting that they were under the control of
genetic variations in those regions. Suhre et al. reported on the genetic association of urinary
metabolites detected by NMR spectroscopy in urine of 862 male participants from the
epidemiological Study of Health in Pomerania (SHIP) [170]. An independent validation in
additional 2,031 samples (1,039 independent SHIP and 992 samples from the Cooperative
Health Research in the Augsburg Region (KORA) study) revealed consistent genome wide
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significant loci tagging SLC7A9 and NAT2 which have been already associated with CKD
and drug–induced liver toxicity respectively [171–173]. Kettunen et al. utilized NMR
spectroscopy based detection of serum metabolites of over 8,000 genotyped Finish
individuals and were able to ascertain a high degree of heritability for metabolic phenotypes,
ranging from 40% up to 60% [174]. The quantitative traits of various body fluids are
currently being mapped for intra– and inter–individual comparison on a population scale
[175,176]. While these represent early stage discoveries, they already help to bring genetic
variance closer to disease phenotypes.

Building regulatory networks in health and disease

Networks are increasingly used to display complex dependencies in biological systems. A
network is a graph consisting of nodes and edges. Nodes represent specific entities or
objects for instance a gene, a protein or trait of interest and the edges represent a defined
relationship for connected nodes (e.g. protein–protein interaction). These relationships can
be directed, where node A interacts and activates node B, or without a specific directionality
merely describing an interaction. As each level of information has its own merits and
weaknesses, the integration of multiple –omics layers might circumvent or minimize those
drawbacks and deliver a more accurate picture of the ongoing processes [177–181]. One
such way is to generate and visualize integrated, functional networks by combining genomic
information, transcriptomic and proteomic data obtained from the same individual tissue.
This approach aids in understanding how DNA sequence variation (e.g. from GWAS) and
transcriptional events lead to corresponding changes in pathway functionality. A key aspect
of network Employing such a strategy enables the characterization of genetically determined
transcriptional regulatory networks in health and their perturbation in disease [101,182].
Moreover, by combining results from time series experiments one can expand and track
dynamic changes within those networks over time and detect driving core components and
even distinguish between early or late events in the disease process [183,184]. Leveraging
this uniform integrative strategy allows combining the strengths and compensates for the
limitations on each of the multiple lines of evidence. The resulting hierarchical and
comprehensive “disease map”, defines key molecular functionalities, highlighting points of
conversion that might be more amenable for further exploration and therapeutic intervention
[185]. Through a combination of causal and probabilistic methods across mouse and
humans, Schadt and co–workers were able to pin point key functionalities with high
confidence and provide a framework for targeted downstream experimental evaluation. Due
to the unbiased nature of these strategies, integrative approaches are capable of uncovering
new disease specific relationships and can shed additional light into cellular and organismal
pathophysiology [184,186,187].

A crucial step in advancing integrative network biology analysis into the clinical arena will
rely on a robust and comprehensive visualization of these multilayered interactions
[188,189]. Cytoscape, the versatile open source bioinformatics platform is the most common
and powerful tool used to visualize and analyze networks [190]. Even though network
representation has proven useful in the past years, networks are still compressing
multidimensional data sets into two or maximal three dimensions [191] and represent
therefore a highly simplified version of the true underlying dynamic processes. This “static”
network concept has to be expanded to capture dynamic interactions and to adapt to
environmental and genetic constraints over time in order to gain full insight into cellular
dynamics [184]. Defining human health and disease on a genome wide scale has already
yielded very exciting results across the genome–phenome continuum. The concept of
integrated personal –omics profiling (iPOP) is increasingly gaining attraction [192], but
challenges remain: a) discovery of rare variants and variants with smaller effect sizes, b)
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understanding the link between genetic variations and perturbation of pathophysiology, and
finally c) translating –omics results efficiently into improved patient care.

Biomarker: the surrogates for diagnosis, risk assessment and prognosis

In order to facilitate an accurate diagnosis, predict risk of progression and response to drug/
dietary intervention clinical medicine relies on specific, disease–associated biomarkers.
Biomarkers are objective, quantitatively or qualitatively measured characteristics indicating
normal or pathogenic biological processes or response to therapeutic intervention [193–195].
Sensitivity, specificity and positive or negative predictive value of those markers influence
our therapeutic decision–making and patient counseling. However, the available biomarkers
for DKD, such as ACR and GFR, harbor significant limitations and can be misleading in the
research and clinical setting (see above). The optimal biomarker should reflect consistency,
strength of relationship between “marker” and outcome in question, i.e. for DKD
progression to ESRD. Biomarkers strength are of higher impact if an adequate
characterization of disease dynamics can be established a priori e.g. the marker precedes the
desired outcome, outperforms the already established disease predictors and responds
favorably to therapeutic interventions that are known to have salutary effects on disease
progression. The degree of confidence can be augmented further if the biomarker does not
only show a pure “guilt by association” characteristic but is also an integral part of the
pathophysiologic process in question [43,196]. Biomarkers can be classified according to
their purpose: diagnostic, disease staging and prognostic, as well as source based – genomic,
transcriptomic, proteomic and metabolomic marker(s). The field of biomarkers in DKD and
kidney disease in general is rapidly evolving and has been extensively reviewed in
[119,197,198].

Challenges and perspectives

What we can learn from Oncology

Over the past years, we witnessed a substantial progress in uncovering new
pathophysiologic mechanisms of neoplastic disease and their explicit characterization on a
molecular and network level. The advent of profiling technology enabled the transition from
a pure experimental screening method to implementation of tumor specific fingerprinting in
prospective clinical trials guiding therapeutic decision [199]. However, recent studies
showed that vigorous analytical assessment of generated data as well as documentation of
robust reproducibility in independent cohorts is of paramount importance, as ambiguous
results can impact the decision making process leading to misassignment of targeted
therapeutics and severely harm patients [200,201]. One such instance that served as a
wakeup call for the entire –omics research community is the experience from a recent case
involving scientific misconduct in translating –omics research results to clinical patient
stratification without rigorous validation [202,203]. After retraction of a series of articles in
Journal of Clinical Oncology, Nature Medicine and New England Journal of Medicine [204–
206], and at request of the National Cancer Institute (NCI) the recently released report from
the Institute of Medicine (IOM) pertaining to the topic of “translational OMICS” establishes
guidelines to assure reproducible omics–based test technology grounded on sound scientific
conduct [113]. Therefore, robust validation strategies need to be employed, including
oversight by federal regulatory agencies such as the Food and Drug Administration (FDA),
when the intended use of developed tests will extend into clinical trials [207].

Thus far, the limited studies using a data mining strategy on genome wide DKD data sets
have not only confirmed established pathophysiological mechanism, but also described
novel mechanisms associated with disease pathogenesis. One major aspect contributing to
the limited capability of robust mechanistic discoveries and uncovering potential
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confounding factors is the availability of high quality samples for –omics analysis in
conjunction with in–depth clinical phenotyping data in sufficiently sized cohorts. However,
increasing the sample size is and can only be a first step in the process of dissecting the
underlying molecular mechanisms of DKD. Curtis et al. demonstrated the power of
integrative –omics data analysis in combination with longitudinal follow up of over 2,000
clinically annotated breast cancer specimens [208]. Based on experimental, observational
and interventional data DKD can be considered as a spectrum of “diseases” with extreme
phenotypes at each end e.g. fast progressors vs. non–progressors regardless of intervention
(“resistant to the effect of poor metabolic control” [209]). The Joslin 50–year Medalist
Study has established a longstanding cohort of T1DM patients with no apparent end organ
damage after decades of DM [210]. The hope is that these cohorts will allow to capture the
genetic and environmental sources of phenotypic heterogeneity in DKD.

An additional source of mechanistic heterogeneity seen in DKD relates to disease process
activation in a stage specific manner. Pathogenic disease processes such as ROS generation,
inflammation and profibrotic pathway activation may contribute differently at various
disease stages and might not be equally affected by therapeutic interventions. Loss of
differentiation and inflammation might play a more significant role during initiation of
complications, but might be superseded in late stages of progression by profibrotic
mechanisms. To distinguish these events sufficient large cohorts with clinical and structural
information on disease stage are essential. However, even modest samples size can allow to
define a compartment and stage–specific regulation, as has been demonstrated for the JAK/
STAT pathway with activation during early DKD in the glomerular compartment, followed
by the tubulointerstitial compartment during the progressive phase of the disease [15].

Tackling critical steps in a collaborative effort in order to assemble necessary cohorts for
multilevel outcome analysis is a crucial challenge in DKD. These strategies are already
implemented in other glomerular diseases i.e. as realized for Nephrotic Syndrome with the
Nephrotic Syndrome Study Network (NEPTUNE, [211]) where a multidisciplinary team of
scientists work together with patients and their families towards a comprehensive picture of
glomerular failure. To ensure effective use of large–scale data sets by the renal research
community requires innovative concepts of data processing and sharing between different
knowledge domains (for a formal analysis of this collaborative interdisciplinary process see
[212]). We need easily accessible platforms that allow data storage in reasonable accessible
repositories, facilitate data exchange between involved researchers, and allow dissemination
to the research community. First tools serving these functionalities in defined knowledge
domains are emerging (i.e. Nephromine for renal transcriptional data sets [213]) and more
comprehensive solutions concerning this key challenge of large–scale data research are
currently pursued [214].

Concluding remarks

DKD develops as a consequence of systemic disease, diabetes, driving the intrarenal disease
progression via a multitude of interrelated molecular pathways. DKD and other diabetic
complications, particularly CVD, interact via multiple feedback loops leading to the demise
of the entire organism. Molecular medicine strategies described in this review allow for the
first time to capture the complexity of these individual regulatory events in a genome wide
manner. The emerging tools for network–based analysis of biological systems will provide a
starting point to understand the regulatory cascades of DKD on a tissue and organismal
level. Matching the complexity of DKD disease process with a comprehensive research
approach should allow defining the key drivers across disease stages and organs. This will
define the critical entry points for molecular based diagnostics, prognostics and targeted
therapy.
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Figure 1. From Genome–to–Phenome – An Integrative Systems Biology Perspective on Diabetic
Kidney Disease
Each biological system (e.g. diabetic kidney) can be regarded as being composed of discrete
components. Each component can be independently inquired through unbiased high
throughput “–omics” profiling or imaging technologies (ultrasound, nuclear magnetic
resonance imaging, positron emission tomography), but individual level data is embedded in
an interaction network that connects and integrates the various components in a functional
context. Potential interactions between two or more components are indicated through
arrows e.g. gene–by–environment interaction (1), gene–by–gene interaction (2), protein–
DNA interaction (3), metabolite–protein interaction (4) e.g. allosteric regulation of enzymes
by small metabolites and reciprocal Phenome–“omes” interaction (5). Technologies applied
to generate –omics level data are: Genome/Epigenome (SNPs, CNV, promoters): e.g.
genome sequencing, high–density SNP chips, methylation assays (MeDIP), histone
modifications; Transcriptome (mRNA, miRNA, lncRNA, piRNA, tRNA, rRNA):
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microarray(s) and RNA sequencing; Proteome (Phosphoproteome, Glycoproteome,
Acetylome): yeast two–hybrid, coimmunoprecipitation, 2D differential gel electrophoresis;
Metabolome (sugars, lipids, amino acids, small molecules): nuclear magnetic resonance
spectroscopy and mass spectrometry; Morphome (tissue damage/integrity): histology,
immunohistochemistry; Phenome (ACR, GFR, retinal microaneurysm): clinical chemistry,
clearance measurement, imaging studies; Environment and Ancestry (Drugs, Nutrition,
Comorbidities): nutritional assessment, environmental exposure and socio–economic
assessment.
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