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Human peripheral blood mononuclear cells (PBMCs) are the key drivers of the immune

responses. These cells undergo activation, proliferation and differentiation into various

subsets. During these processes they initiate metabolic reprogramming, which is

coordinated by specific gene and protein activities. PBMCs as a model system have

been widely used to study metabolic and autoimmune diseases. Herein we review

various omics and systems-based approaches such as transcriptomics, epigenomics,

proteomics, and metabolomics as applied to PBMCs, particularly T helper subsets,

that unveiled disease markers and the underlying mechanisms. We also discuss and

emphasize several aspects of T cell metabolic modeling in healthy and disease states

using genome-scale metabolic models.

Keywords: systems biology, multi-omics, peripheral blood mononuclear cells, PBMCs, immune system,
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INTRODUCTION

Human peripheral blood mononuclear cells (PBMCs) are peripheral blood cells carrying a single
round nuclei. PBMCs are comprised of several classes of immune cells, including T cells (∼70%),
B cells (∼15%), monocytes (∼5%), dendritic cells (∼1%) and natural killer (NK) cells (∼10%)
(Autissier et al., 2010; Kleiveland, 2015). The T cell co-receptor (CD3+ expressing T lymphocytes)
can be divided into CD4+ and CD8+ cytotoxic cells, which are present in PBMCs in approximately
2:1 ratio (Kleiveland, 2015). Activated CD4+ T cells are further divided into Th1, Th2, Th17, Th9,
Th22, follicular helper (Tfh) cell and regulatory T cell (Treg) subsets, based on the panel of cytokines
produced, transcription factors and surface markers expressed (Stockinger and Veldhoen, 2007;
Sakaguchi et al., 2008; Broere et al., 2011; Crotty, 2011; Akdis et al., 2012; Luckheeram et al., 2012;
Tan and Gery, 2012; Kleiveland, 2015; Golubovskaya and Wu, 2016). Treg cells can be natural cells
(nTreg) generated in the thymus or inducible Treg cells (iTreg) when activated in the periphery
(Wing and Sakaguchi, 2010). Likewise, activated CD8+ T cells (cytotoxic T cells) can be divided
into Tc1 or Tc2 subsets based on their signature cytokines (Croft et al., 1994). Different subsets of
T cells, their mechanisms of activation, differentiation and their functions have been extensively
reviewed (Broere et al., 2011; Luckheeram et al., 2012).

B cells or B lymphocytes are bone marrow derived cells, which express the B cell receptor and
bind to specific antigens against which they initiate antibody responses, thus forming the core
of the adaptive humoral immune system (Cooper, 2015). B cells mature into plasmablasts and
plasma cells, memory B cells, follicular B cells, marginal zone B cells, B regulatory and B-1 cells.
The cytotoxic natural killer cells (NK cells), unlike T and B cells, are critical components of the
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innate immune system and can directly destroy pathogen
infected cells. In addition, NK cells secrete lymphokines and
interact with other immune cells and thus participate in immune
responses by means other than direct cytotoxicity (Yuan et al.,
1994).

SYSTEMS APPROACHES APPLIED TO
PBMCS

Systems biology together with bioinformatics has begun
to emerge as an essential tool in immunological research.
Integration of complex multi-omics datasets has unveiled several
biomarkers and elucidated their physiological role (Buonaguro
et al., 2011; Li et al., 2013, 2014b, 2017b; Olafsdottir et al., 2016).
PBMCs, a large complement of inflammatory cells which is easy
and inexpensive to acquire, can provide a more comprehensive
overview of the immune system status than circulating serum
or plasma markers. PBMCs have been used extensively to study
several autoimmune disorders such as type 1 diabetes mellitus
(T1DM) (Foss-Freitas et al., 2008), asthma (Iikura et al., 2011;
Falcai et al., 2015), numerous allergies and cancer (Payne et al.,
2013). Below we provide examples of omics and systems based
approaches as applied to PBMCs, particularly to T helper cells
(Figure 1).

TRANSCRIPTOMICS

Global transcriptomics analyses of PBMCs have been successfully
used in elucidating the inflammatory mechanisms underlying
different autoimmune diseases (Bennett et al., 2003; Crow et al.,
2003; Greenberg et al., 2005; Achiron et al., 2007; Edwards
et al., 2007). A proinflammatory transcriptional signature of
interleukin-1 cytokine family wasmarked in patients with recent-
onset of T1DM (Wang et al., 2008; Levy et al., 2012). Gene
expression profiling of PBMCs using oligonucleotide array was
used to identify 330 transcripts that were differentially expressed
in rheumatoid arthritis (RA) patients as compared to the healthy
controls (Edwards et al., 2007).

Transcriptomics data from PBMCs across multiple studies
were used to characterize multiple types of diabetes, which
revealed that gestational and T1DM were related at the
transcriptome level (Collares et al., 2013). Meta-analysis
of PBMC based microarray datasets was used to identify
dysregulated pathways in patients with systemic lupus
erythematosus (SLE). The study revealed that toll-like receptor
(TLR) signaling, oxidative phosphorylation, diapedesis and
adhesion regulatory networks were differentially regulated in the
PBMCs of affected individuals (Kröger et al., 2016).

Transcriptomes from PBMCs have also been used to
characterize HIV phenotypes. Distinct transcriptomics
signatures with several dysregulated genes involved in apoptosis
were identified in rapid HIV progressors. The expression of five
miRNAs (miR-31, 200c, 526a, 99a, and 503) were also found to
be altered (Zhang et al., 2013). In another study, gene expression
profiling of PBMCs obtained from smokers exhibited a
signature of chronic obstructive pulmonary disease (COPD) and

emphysema characterized by multiple differentially regulation
of genes FOXP1, TCF7, and ASAH1 involved in sphingolipid
(ceramide) metabolism. Plasma metabolomics validated the
identity of glycoceramide as a marker of emphysema (Bahr et al.,
2013).

In addition, integration of transcriptomics and protein
expression profiles of PBMCs obtained from a large study
cohort suggested an association between decreased IL-16 and
emphysema; it also identified IL-16 cis-eQTL as a novel disease
biomarker (Bowler et al., 2013). PBMCs have also been analyzed
in the context of cancer. Whole genome cDNA microarray
analysis study of PBMC samples from 26 patients with pancreatic
cancer and 33 matched healthy controls identified an eight-
gene predictor set comprising SSBP2, Ube2b-rs1, CA5B, F5,
TBC1D8, ANXA3, ARG1, and ADAMTS20 (Baine et al., 2011).
Similarly, significant differences were observed in the PBMC
transcriptomes as obtained from renal cell carcinoma patients
and normal volunteers (Twine et al., 2003; Burczynski et al.,
2005).

RNA-Seq and microarray based transcriptomics datasets have
been used to characterize different subsets of T helper cells.
Transcriptomics of the differentiated subsets (Ciofani et al., 2012;
Hu et al., 2013) characterized differences between Th17 and Th0
cells (TCR stimulated CD4+ T cells), while functional analysis
inspired by these transcriptomes suggested differences in the
control of cell cycle regulation (Simeoni et al., 2015). In another
study, transcriptome analysis of cord blood-derived naïve T cell
precursors was used to identify several lineage-specific genes
involved in the early differentiation of Th1 and Th2 subsets
(Kanduri et al., 2015). Moreover, comparative transcriptomics of
mouse and human Th17 cells marked novel transcripts related
to Th17 polarization. Several human long non-coding RNAs
were identified in response to cytokines stimulating Th17 cell
differentiation (Tuomela and Lahesmaa, 2013; Tuomela et al.,
2016).

EPIGENOMICS

Epigenetics play a pivotal role in the regulation of gene
expression and inheritance of genetic information. Epigenome-
wide association studies of three human immune cell types
(CD14+ monocytes, CD16+ neutrophils and naïve CD4+ T
cells) obtained from 197 subjects were performed to assess the
impact of cis-genetic and epigenetic factors. The major outcome
of this study was the identification of 345 molecular trait QTLs
(quantitative trait loci) which co-localized with immune disease
specific loci (Chen et al., 2016). Epigenetic mechanisms in naïve
CD4+ T cell have been extensively reviewed (Lee et al., 2006;
Sanders, 2006; Aune et al., 2009; Hirahara et al., 2011; Oestreich
and Weinmann, 2012).

PROTEOMICS

Proteome profiling of PBMCs has been carried out primarily for
two purposes: (a) to identify protein biomarker(s) associated with
specific pathophysiological processes, and (b) to characterize
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FIGURE 1 | (A) General illustration of T cell activation and differentiation. (B) Several omics based approaches applied to samples obtained from disease and healthy

individuals (controls). (C) Stratification of individuals based on metabolic phenotype. (D) Identification and validation of biomarkers. (E) Down-stream analysis of omics

datasets for identification and enrichments of differential pathways.

different subsets of immune cells based on their proteomes.
Recently, comparative proteomics using tandem mass
spectrometry (MS) was applied to PBMC samples obtained
from kidney biopsies of 40 kidney allograft recipients, either
with healthy transplants or those suffering acute rejection. A
total of 344 proteins were identified, cataloged and mapped to
2905 proteoforms (Savaryn et al., 2016). Comparative proteome
analysis also revealed differences between untreated and
inflammatory activated human PBMCs (T cells and monocytes)
using 2D-PAGE and LC–MS/MS. Several cell specific proteomic
signatures of activation and inflammation were identified
as NAMPT and PAI2 (PBMCs), IRF-4 and GBP1 (T cells),
PDCD5, IL1RN, and IL1B (monocytes) (Haudek-Prinz et al.,
2012).

Proteome profiling of the Th1 cells induced from naïve T
cells by stimulating with interleukin 12 (IL-12) was used to
identify 42 IL-12 regulated genes, among which 22 were up-
and 20 were down-regulated. Functional characterization of
the up-regulated proteins helped to identify a multifunctional

cytokine macrophage migration inhibitory factor and a novel
IL-12 target gene (Rosengren et al., 2005). In another study,
MS (stable isotope labeling by amino acids in cell culture,
SILAC) based profiling of cell surface proteome was used to
identify differentially expressed proteins between human Th1
and Th2 cells. Among the differentially expressed proteins,
BST2 (bone marrow stromal protein 2) and TRIM (T cell
receptor interacting molecule) were found to be significantly
differently regulated (Loyet et al., 2005). Moreover, global
analysis of highly purified primary naïve T and Th1 cell
proteomes using LC-MS/MS revealed differential regulation
of ubiquitination pathway upon T cell differentiation (Pagani
et al., 2015). Quantitative proteomics of Th cells using ICAT
labeling and LC MS/MS have identified (557) and quantified
(304) IL-4-regulated proteins from the microsomal fractions
of CD4+ cells extracted from umbilical cord blood. Among
these, small GTPases, mainly GIMAP1 and GIMAP4, were
down-regulated by IL-4 during Th2 differentiation (Filén et al.,
2009).
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METABOLOMICS

Circulating PBMCs are a complex mixture of different subsets
of immune cells in highly variable stages of their lifespan.
In addition to the natural genetic variation and immune
challenges, this heterogeneity is shaped by the myriad of
environmental conditions around them. In the light of the
current understanding, the key role of the cell metabolism in
immune cell function also underscores the potential impact of
metabolites in regulating immune system directly or indirectly
(Buck et al., 2015). For example, external perturbations to
key metabolic processes such as glycolysis, energy metabolism,
fatty acid and amino acid metabolism are known to affect
and impair T cell activation and differentiation (Berod et al.,
2014; Almeida et al., 2016; Geiger et al., 2016; Ma et al.,
2017).

Metabolomics of PBMCs obtained from affected or healthy
mice and humans have been used to identify metabolic
markers in various pathological conditions. For example,
gas chromatography coupled to MS (GC-MS) based targeted
metabolomics was used to quantify glucose derived metabolites
in PBMCs of healthy controls, schizophrenia and major
depressions. Most of these metabolites were found to be
significantly altered particularly in schizophrenic subjects.
In addition, ribose 5-phosphate showed a high diagnostic
performance for first-episode drug-naïve schizophrenia subjects
(Liu et al., 2015). Similarly, GC–MS was used to identify
metabolites such as malic acid, ornithine, L-lysine, stigmasterol,
oleic acid, adenosine and N-acetyl-D-glucosamine which were
significantly altered in resilient rats while statistical analysis
of metabolic pathways showed aberrant energy metabolism (Li
et al., 2017a).

Fatty acid composition of PBMCs phospholipids obtained
from 150 subjects were estimated and linked with immune
cell functions. The proportions of total polyunsaturated fatty

acids (PUFAs) in PBMC phospholipids were positively correlated
with phagocytosis by neutrophils and monocytes, neutrophil

oxidative burst, lymphocyte proliferation, and interferon-γ
production. The study also suggested that variations in the
fatty acid composition of PBMCs phospholipids might induce
subtle variations in immune cell functions as seen in healthy

individuals (Kew et al., 2003). Since the phospholipids are
primarily incorporated into cellular membranes, this effect
may be mediated by the altered membrane properties such as

fluidity and lateral pressure, due to their altered phospholipid
composition (Mouritsen, 2011).

High-resolution MS was recently used to generate dynamic
metabolome and proteome profiles of human primary naïve T
cells upon activation. The study reported a dramatic decrease
in intracellular L-arginine concentration which has impact on
metabolic fitness and survival capacity of T cells related to anti-
tumor responses (Geiger et al., 2016). Metabolism of T cells
during naïve, activated, proliferative and differentiated states
have been extensively reviewed (Gerriets and Rathmell, 2012;
MacIver et al., 2013; Pearce and Pearce, 2013; Pearce et al., 2013;
Buck et al., 2015; Dimeloe et al., 2017).

GUT MICROBES AND IMMUNE CELLS

The link between diet, gut microbiota and the immune response
is currently well recognized. It is known that the immune system
plays a significant role in the regulation of gut microbiota
and in turn microbiota contribute to the development, training
and tuning of the immune responses (Round and Mazmanian,
2009; Belkaid and Hand, 2014). Imbalances in the microbial
composition or host specific interactions have been linked to
inflammatory and autoimmune diseases (Brugman et al., 2006;
Wen et al., 2008; Roesch et al., 2009; Kostic et al., 2015). It has
been demonstrated that composition of the gut microbiota may
be altered in individuals at risk of developing T1DM (Brown
et al., 2011; Giongo et al., 2011; de Goffau et al., 2013; Murri
et al., 2013). The phenomenon was first observed in a cohort
of Finnish children at high HLA-associated risk of developing
T1DM, where fecal samples from individuals seropositive with
multiple pancreatic islet antigen specific autoantibodies were
compared to seronegative healthy controls (Giongo et al.,
2011; Kostic et al., 2015). Furthermore, Kostic et al., examined
the relationship between dynamics of human gut microbiome
throughout the infancy in a cohort of 33 infants genetically
predisposed to T1DM. The study showed a decline in alpha-
diversity in T1DM progressors between seroconversion and
T1DM diagnosis; followed by an increase in microbial species
which promote in inflammation, altered gene functions and
stool metabolites (Kostic et al., 2015). Links between diet, gut
microbiota and T cell associated disorders have been reviewed
elsewhere (Kosiewicz et al., 2014; Mejía-León and Barca, 2015;
Knip and Siljander, 2016).

A comprehensive list of omic approaches applied to PBMCs
and T helper subsets is provided in (Table 1).

GENOME-SCALE METABOLIC MODELS
AS A TOOL TO STUDY METABOLISM

With the rapid advancement of cutting-edge technologies in
PBMC research, there is a growing need for development of
integrative methods and computational models to cope with the
increasing amounts of data. These approaches when applied at
the systems level could mechanistically relate entities like gene,
proteins and metabolites that might unveil the disease markers
and related processes at the systems level (Sen et al., 2016).

Genome-scale metabolic modeling (GSMM) is a constraint-
based mathematical modeling approach that integrates
biochemical, genetic and genomic informations within a
computational framework (Price et al., 2004; Orth et al., 2010;
Bordbar et al., 2014; O’Brien et al., 2015). It is used to study
metabolic genotype-phenotype relationship of an organism.
GSMM have been continuously evolving over the past 30 years.
Genome-scale metabolic models (GEMs) have been used in
in silico metabolic engineering for designing studies such as
essentiality of the reaction/gene (Patil et al., 2005; Suthers
et al., 2009), relevance of foreign pathway(s) (Pharkya et al.,
2004) and over expression or suppression of metabolites and
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TABLE 1 | List of studies performed by using PBMCs and T cells as model systems.

Omics Study Cell type References Identifiers and other data sources

Transcriptomics Systemic lupus erythematosus PBMCs Bennett et al., 2003; Chaussabel et al., 2008;

Fernandez et al., 2009; Smiljanovic et al.,

2012; Kröger et al., 2016

[–, GEO: GSE11909, GSE13887,

GSE38351, –]

Dermatomyositis PBMCs Greenberg et al., 2005 [GEO: GSE1551]

Acute multiple sclerosis PBMCs Achiron et al., 2007 –

Rheumatoid arthritis PBMCs Edwards et al., 2007; Teixeira et al., 2009 [–, GEO: GSE15573]

T1DM PBMCs Wang et al., 2008; Levy et al., 2012 [–, GEO: GSE35725]

Multiple types of Diabetes PBMCs Collares et al., 2013 –

HIV PBMCs Zhang et al., 2013 –

COPD PBMCs Bahr et al., 2013 [GEO: GSE42057]

Pancreatic cancer PBMCs Baine et al., 2011 –

Renal cell carcinoma PBMCs Twine et al., 2003; Burczynski et al., 2005 –

– T cells Ciofani et al., 2012; Hu et al., 2013 [GEO: GSE40918, GSE48138]

– Th1 & Th2 Kanduri et al., 2015 [GEO: GSE71646]

– Th17 Tuomela et al., 2016 [GEO: GSE52260]

Epigenomics – T cells (Naïve CD4+) Tuomela and Lahesmaa, 2013; Chen et al.,

2016

–

Proteomics Kidney transplant (biopsies) PBMCs Savaryn et al., 2016 –

Inflammation PBMCs Haudek-Prinz et al., 2012 –

– T cells Filén et al., 2009 –

– Th1 Rosengren et al., 2005; Pagani et al., 2015 [–, PRIDE: PXD001066]

– Th1 & Th2 Loyet et al., 2005 –

Metabolomics Schizophrenia and depression PBMCs Liu et al., 2015 –

– PBMCs Kew et al., 2003 –

– T cells Geiger et al., 2016; Angelin et al., 2017; Mak

et al., 2017

–

In case of meta-analysis (Kröger et al., 2016) all the datasets recruited in the study are also cited and their corresponding data identifiers and references are added. Symbol “—“ denotes
no data identifier mapped to public repositories. GEO stands for Gene Expression Omnibus and PRIDE stands for PRoteomics IDEntifications database.

metabolic pathways (Pharkya and Maranas, 2006). They are
efficient tools for prediction of growth in living cells/tissues
exposed to different nutrients (Förster et al., 2003; O’Brien et al.,
2013).

Over the past years, the components and functionalities of
GEMs have been extended to study metabolism in human. The
first in silico global reconstruction of human metabolic network
Recon 1 (1,905 genes, 3,742 reactions, and 2,766 metabolites) was
built with a vision to integrate and analyze biological datasets
(Duarte et al., 2007). Subsequently, the Edinburgh Human
Metabolic Network (EHMN) (2,322 genes, 2,823 reactions,
and 2,671 metabolites) (Ma et al., 2007) was developed, these
models were parsimonious and provided partial knowledge about
human metabolism. Thereafter, Recon 2 (2,194 genes, 7,440
reactions, and 5,063 metabolites) (Thiele et al., 2013), Recon 2.2
(1,675 genes, 7,785 reactions, and 5,324 metabolites) (Swainston
et al., 2016), a community-driven consensus human metabolic
reconstruction, and Human Metabolic Reaction (HMR) (3,668
genes, 8,181 reactions, and 9,311 metabolites) (Mardinoglu et al.,
2013, 2014) were designed that comprehensively captured human
metabolism. The human metabolic reconstructions have been

used to study cell, tissue and organ specific metabolism (Agren
et al., 2012; Wang et al., 2012) in the context of various diseases
such as cancer (Yizhak et al., 2015), non-alcoholic fatty liver
disease (NAFLD) (Mardinoglu et al., 2014; Hyötyläinen et al.,
2016), diabetes (Väremo et al., 2016). Furthermore, GEMs as an
integrative tool has been used to model diet-tissue (Sen et al.,
2017) and multi-tissue interactions in humans (Bordbar et al.,
2011).

The structure of GEM provides scaffolds for integration
of different types of omics data such as transcriptome,
proteome and metabolome/fluxome (Blazier and Papin, 2012).
Several algorithms were designed that allow integration and
contextualization of GEMs based on expression datasets.
GIMME designed by Becker and Palsson considers a single
gene expression dataset and compares it to a certain threshold,
it subsequently lists active and inactive reactions within a
GEM model (Becker and Palsson, 2008). On the other hand,
iMAT discretize expression dataset to low, moderate and
highly expressed genes and categorize GEM reactions into low,
moderate and active sets (Shlomi et al., 2008; Zur et al., 2010).
MADE allows integration of multiple expression datasets, it
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was devised to overcome the user supplied expression threshold
that might be unrealistic (Jensen and Papin, 2011). MADE
decomposes gene expression data into a binary state and
determines sets of low or highly active reactions. E-flux is a
threshold based method that does not reduce the expression
data into binary states, rather it converts the expression data to
some suitable constraints that sets upper and lower limits to the
reactions (Colijn et al., 2009). INIT (Integrative Network Inference
for Tissues) algorithm uses cell specific protein abundances to
generate genome-scale active metabolic networks (Agren et al.,
2012).

GEMs have been used tomodel cataloged human gutmicrobes
(Qin et al., 2010; Li et al., 2014a) based on their metabolic
functions (El-Semman et al., 2014; Shoaie and Nielsen, 2014;
Bauer et al., 2015; Magnúsdóttir et al., 2016). Magnúsdóttir
et al., introduced AGORA (Assembly of Gut Organisms through
Reconstruction and Analysis) that includes semi-automatically
reconstructed GEMs of 773 human gut bacteria (205 genera, 605
species). The reconstruction can accommodate metagenomics
or 16S rRNA sequencing datasets that can be used to
study metabolic diversities among microbial communities
(Magnúsdóttir et al., 2016). Furthermore, GEMs derived from
human gut microbiome were used to decipher microbe-
microbe, diet-microbe and microbe-host interactions. Another
GEM based comprehensive computational platform, CASINO
(Community And Systems-level INteractive Optimization) was
designed to study the effect of diet on microbial communities
(Shoaie et al., 2015).

GENOME-SCALE METABOLIC MODELS
APPLIED TO PBMCS AND CONCLUDING
REMARKS

The availability of genome sequences of human cell lines together
with the existing humanmetabolic reconstructions (Duarte et al.,
2007; Agren et al., 2012; Wang et al., 2012; Mardinoglu et al.,
2013, 2014; Thiele et al., 2013; Swainston et al., 2016; Väremo
et al., 2016) and large volume of PBMC data, provides an
opportunity to develop the PBMC-specific GEMs (Figure 2).
These metabolic networks could be refined by the experimental
data such as metabolite intensities, fluxes, enzyme abundances,
and gene/transcripts expression. Network refinement adds more
confidence to the metabolic reactions and their associated
entities, and thus eliminates the false positives (Becker et al., 2007;
Schellenberger et al., 2011). Integration of omics data with these
networks makes it condition-specific, on which different analyses
could be performed. One such analysis is the identification of
reporter metabolites (RMs), i.e., metabolite within a metabolic
network around which significant transcriptional changes occurs
(Patil and Nielsen, 2005). RMs are actively involved in one
or more metabolic reactions regulated by gene expression
and/or enzyme abundances. RMs could also inform about the
regulation of a metabolic pathway(s)/subsystem(s) (for e.g.,
glycolysis).

Likewise, omics data can be used to contextualize PBMC-
specific networks under healthy and disease states. RM analysis

can identify metabolic hotspots, modules and subnetworks,
which might enhance our knowledge and understanding of
immunometabolism under specific conditions. Moreover,
integration of metabolomics data could help to characterize
reporter reaction(s), i.e., reactions marked by significant and
coordinated changes in the surrounding metabolites following
the environmental/genetic perturbations. By combining
transcriptome data, it is possible to infer whether the reactions
are hierarchically or metabolically regulated (Cakir et al., 2006).
Furthermore, fluxes estimated by PBMC-specific GEMs using
Flux Balance Analysis (FBA) (Orth et al., 2010) could guide
to understand the relevance of multiple pathways involved in
glucose, energy, arginine and serine metabolism and ubiquinone
biosynthesis with higher proficiency than previously possible
(Liu et al., 2015; Almeida et al., 2016; Ma et al., 2017).

Similarly, GEMs can be reconstructed for specific immune
cells. RAW 264.7 cell line, a GEM for macrophage have
been developed by integration of transcriptomics, proteomics,
and metabolomics datasets (Bordbar et al., 2012). The model
was used to assess metabolic features that are critical for
macrophage activation. It was also used to determine the
metabolic modulators of the cellular activation. In another
study, GEMs for naïve T cells (CD4T1670) were reconstructed
by integrating transcriptomics and metabolomics datasets. This
model was used to study carbohydrate metabolism, fatty acid
metabolism and glutaminolysis (Han et al., 2016). Availability
of the omics data for immune cell subsets, particularly CD4+ T
helper cells (Th1, Th2, Th17) (Kanduri et al., 2015; Tuomela et al.,
2016) provides an opportunity to reconstruct T helper specific
GEMs, that could be used to characterize metabolic phenotypes
of Th subsets and predict differences between them.

There is growing evidence suggesting metabolism could be
regulated by epigenetic modifications (Lu and Thompson, 2012).
This is facilitated by perturbation of metabolic gene(s) under
suitable conditions (Colyer et al., 2012; Yun et al., 2012).
Salehzadeh-Yazdi et al., incorporated epigenetic constraints in
GEMs to show the impact of the mutated histone tails on
metabolic reactions, thereby estimating its overall impact on
yeast metabolism. The network topology was analyzed with an
assumption that down-regulated metabolic genes are presumably
under epigenetic control and thus affecting the metabolism
of the entire organism (Salehzadeh-Yazdi et al., 2014). Similar
strategy can be adopted when modeling the effect of epigenetic
modification on T cell metabolism. The estimated epigenetic
constraints for the down-regulated genes (presumably under
epigenetic control) can be added as an additional constraint
(reaction score or weight) to the associated metabolic reaction(s)
within GEMs.

GEMs can be used to model and study metabolic interactions
between immune cells and gut microbes on a genome-
scale. This enables the identification of key regulators
(metabolites/substrates, genes and enzymes) that modulate
immune responses. They could also be used to identify resident
microbe(s) which perform specialized metabolic functions.
Moreover, GEMs can provide mechanistic overview of substrate
allocation, microbe-microbe competition for resources and
microbe-assisted modulation of the host immune responses.
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FIGURE 2 | (A) It shows disease and healthy individuals (controls) from which PBMCs samples are obtained for omics analysis. (B) Differential omics expression and

analysis for contextualization. (C) Reconstruction and contextualization of condition specific genome-scale metabolic models. (D) Reaction components (R) of

Genome-Scale metabolic models: S, substrates; E, enzymes; P, products. (E) Stoichiometric matrix (S) of Mn metabolites and Rn reactions, directionality of each

metabolites consumed (−1) or produced (+1) or not involved in the reaction (0). (F) Flux-Balance Analysis (FBA) for model simulation, optimization and estimation of

flux (v) phenotype at the steady state. (G–I) The panel shows functionalities of genome-scale metabolic models such as regulations of metabolic pathway, metabolic

marker identification and identification of differential pathways.

Modeling metabolic interactions among cells- and tissue-
specific GEMs using a cellular compartment and/or metabolic
intermediates have been previously possible (Bordbar et al.,
2011; Shoaie et al., 2015; Magnúsdóttir et al., 2016; Bauer et al.,
2017).

While GEMs mechanistically link metabolic genotypes
and phenotypes, at the same time they handle multitude
of constraints and variables which could in turn enhance
uncertainty of predictions. Therefore, clear standards for GEM
reconstruction, solver integration and usability has to be decided
prior to the modeling (Orth et al., 2010; Chindelevitch et al.,
2014; Ebrahim et al., 2015; Ravikrishnan and Raman, 2015).
Availability of experimental data can help to refine GEMs to

higher quality and thus lead to more accurate predictions. It is
important that the predictions of GEMs are iteratively validated
with the experimental data.

As indicated in this review, transcriptome, proteome,
epigenome and signaling of PBMCs and Th subsets, have been
well studied. In comparison, the metabolism of Th subsets and
its underlying regulations is so far poorly studied. It is known
that metabolism of circulating T cell undergoes dramatic changes
under the environmental stress which drives the immunity
(Gerriets and Rathmell, 2012; Pearce and Pearce, 2013; Pearce
et al., 2013; Buck et al., 2015). We are currently making several
efforts to characterize metabolic phenotype and regulations
of PBMCs as obtained from pre-diabetic children at risk of

Frontiers in Molecular Biosciences | www.frontiersin.org 7 January 2018 | Volume 4 | Article 96

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Sen et al. Systems Modeling of PBMCs

developing T1DM. We believe that the congruence of GEMs
based predictions and experimental data could bridge the gaps
in “Big data” generated from PBMCs research. Furthermore,
GEMs of PBMCs could enhance our knowledge of immune
cell metabolism and allow one to better characterize PBMCs
as a model system for studying immune responses under
metabolically aberrant conditions.
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