
Received June 3, 2019, accepted July 30, 2019, date of publication August 21, 2019, date of current version September 4, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2936660

Perspectives on the Gap Between the Software
Industry and the Software Engineering Education

DAMLA OGUZ 1 AND KAYA OGUZ 2, (Member, IEEE)
1Department of Software Engineering, Yasar University, 35100 Izmir, Turkey
2Department of Computer Engineering, Izmir University of Economics, 35330 Izmir, Turkey

Corresponding author: Kaya Oguz (kaya.oguz@ieu.edu.tr)

ABSTRACT The gap between the software industry and software engineering education was first mentioned

three decades ago, in 1989. Since then, its existence has been regularly reported on and solutions to close it

have been proposed. However, after thirty years this gap resists all efforts for closure. In this study we assert

that the gap between industry and academia exists for several reasons that are related and intertwined. To take

a broader look at the problem from the perspective of all related entities, we (i) provide a detailed overview

of the profession and identify the entities, (ii) extract the causes that stem from these entities and discuss

what each entity should do, (iii) report and analyze the results of a questionnaire that has been conducted

with students and recent graduates, (iv) emphasize the highlights of the interviews conducted with students,

recent graduates and academics, (v) and compile a list of skills that are sought by the industry by analyzing

the software engineering job advertisements. We further contribute to finding solutions by considering all

entities involved, which provides an opportunity to access all of them, so that each can find out what they

can do to acknowledge and narrow the gap. Our study concludes that the gap requires constant attention and

hard work for all of the entities involved, and therefore all should be on the lookout for new technologies,

learn to embrace the changes and adapt to them, so that the gap is kept at a minimum.

INDEX TERMS Software engineering education, education gap, engineering curriculum.

I. INTRODUCTION

Software engineering is a challenging profession in many

aspects. The foremost challenge stems from the nature of the

software itself. Compared to other engineering disciplines,

the software product is not tangible and does not obey any

physical lawswhichmakes it rely on good practice rather than

a fundamental theory [1]. This abstract nature also affects

its design, since as the size of software increases, so does

its design complexity, which puts a strain on the shoulders

of software engineers [2]. Another challenge arises from its

manufacturing process. On top of the complexity of design

and implementation, human factors such as communication

and teamwork, come into play during the software develop-

ment process [3].

Students who take up the challenge of becoming software

engineers complete a set of courses, develop course projects,

complete their internship, and demonstrate their capabilities

with a capstone project [4]. However soon after graduation,

The associate editor coordinating the review of this manuscript and
approving it for publication was Haider Abbas.

they notice that real life projects are of a different breed

from the ones they have handled during their education [5].

This situation creates the famous gap between industry and

software engineering education. In a very broad sense, we can

define the gap as the differences between software engineer-

ing education and the software industry that are reflected

in the associated entities. The industry expects competent

graduates [6], while the students emphasize that their initial

experiences in industry have been rather different than their

education [5].

The gap is acknowledged in other engineering disciplines,

too. Alboaouh emphasizes the two to three years of time

required for the recent graduates to gain experience in the

engineering profession [7], while Goold finds out that the

engineering students are trained more in theory than in

practice [8]. Software engineering, in this regard, has its own

challenges that creates its own unique case. As mentioned,

the foremost challenge is handling the intangible and highly

malleable nature of the software which makes it rely on

good practice rather than laws of nature [1]. Even though

the students grasp the theory and apply it to problems that

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 117527

https://orcid.org/0000-0001-6556-7444
https://orcid.org/0000-0002-1860-9127


D. Oguz, K. Oguz: Perspectives on the Gap

are tailored for a course, more experience is needed for han-

dling real life projects with ambiguous specifications. On the

other hand, as a profession, software engineering is not only

a young but also a rapidly changing industry with a vast

range of applications. The advances in associated technolo-

gies create new and more capable hardware devices, which in

turn create new platforms, programming languages, libraries,

development environments, novel software processes, and

specialized jobs while the student is still working towards a

typical four-year degree in software engineering. Perhaps the

most relevant examples would be the introduction of smart

phones a decade ago which became devices more personal

than personal computers, and the more recent introduction

of Internet of Things (IoT) which redefined the meaning of

a host in the Internet as not only a computer but any device

which has networking capabilities. In this regard, developing

a mobile application is considerably different from develop-

ing an IoT system that is made up of several systems and

devices, since the platforms, target users, and objectives are

significantly different in both cases, while the profession is

still the same. It is not surprising, then, to have a gap between

the software industry and the world of academia considering

the intangible nature of the software and the rapid changing

state of the profession.

The gap is mentioned as early as 1989, in the opening

sentences of Ford and Gibbs’ recommendations on a mas-

ter of software engineering curriculum, at a time when an

undergraduate degree in software engineeringwas not offered

because the disciplinewas considered immature [9]. Almost a

decade later, Beckman et al. proposed a model for collabora-

tion between industry and academia to close the gap between

them [10]. The model suggests the formation of an advisory

board of industrial representatives to identify common objec-

tives and goals. By doing so, the activities can be planned

to meet these objectives. The progress should be regularly

measured and feedback should be given. Around the same

time, Shaw proposed a road map for software engineering

education in which she has emphasized keeping education

current with the rapid changes in the field [11]. Her fore-

sightful suggestions include the consideration of open source

development for keeping upwith practice and encouragement

of continuous self-learning. Also, Parnas has proposed a cur-

riculum for software engineering education that is radically

different than computer science education in its curriculum

philosophy, course style and content, and topic coverage [12].

Another decade later, Begel and Simon have reported the

results of their ethnographic study about the struggles of

the new software developers [13]. They found out that while

new developers were capable of design and implementation,

their communication, teamwork and orientation skills were

lacking. Consequently, the authors suggested a reform in the

curriculum of computer science education. Today, the gap

is still a relevant topic of interest as the recent study by

Craig et al. reports the analyses of interviews of twenty early

career developers [5]. Apparently the gap resists closure after

three decades of its existence in spite of several analysis,

reports, suggestions and applications.

As academics with industrial experience, it is impossible

not to notice the fact that most of the students will struggle

in an industrial environment when their exams and course

projects are evaluated. Although formal feedback of students

is received regularly via the mechanisms that are inherent

in the system, casual and informal conversation can provide

more insight because the matter can be tracked by asking

follow up questions immediately in the vicinity of the ses-

sion. Such conversations with students, as well as fellow

academics, lead to the conclusion that the gap still exists, and

will continue to exist because of several causes.

In this study we assert that the gap between industry and

academia exists because

• there is no single source of the problem,

• the software engineering profession is able to quickly

react to new platforms and trends that require the acqui-

sition of new skills while academia is not,

• academia is not quick enough to incorporate the changes

in the profession into its curriculum,

• it is challenging to create realistic experiences in engi-

neering education,

• lack of realistic experiences make it more challenging

for the students to acquire soft skills that are needed

for the collaboration to develop large-scale software

projects.

We contribute to the literature about our assertion of

the persistent gap by offering the following to narrow and

close it:

• analyzing the gap from various different perspectives

that involves all related entities,

• using questionnaires and conducting interviews with

students, recent graduates and academics to get com-

ments and views on the problem,

• compiling a list of skills that are sought by the software

companies, composed by careful inspection of fifty soft-

ware engineering position advertisements,

• presenting our own conclusions and discussing proposed

methods that will help students and software engineers

to bridge the gap.

The remainder of this paper is structured as follows.

Section II presents an overview of the software engineering

profession to identify its major and minor entities on differ-

ent dimensions. In Section III, various perspectives on the

gap are discussed in detail. Section IV includes the feed-

back from students, recent graduates and academics. This

section also includes a survey of skills sought in software

engineering by analyzing current software engineering job

advertisements, and includes remarks of industry practition-

ers from the existing studies in the literature. In Section V,

we give a summary of what each entity should do to identify,

acknowledge and narrow the gap. The paper concludes with

comments on the current status and the future of the gap

in Section VI.

117528 VOLUME 7, 2019



D. Oguz, K. Oguz: Perspectives on the Gap

II. AN OVERVIEW OF SOFTWARE ENGINEERING

We asserted that the gap between the industry and the educa-

tion exists because there is no single source of the problem.

It is then necessary to take a step back and look at the

field from a higher point of view. In Figure 1 we identify

several entities that form and shape the profession along with

their connections to either the academia or the industry. The

arrows show binary relations, while the diamonds are used

to represent multiple relations. The distinction between the

academia and the industry are not always clear cut for some

entities and practices. However, it is essential to point them

out because the gap is between them, by definition.

FIGURE 1. A view of the entities that form and shape software
engineering. Both the industry and the academia contribute to the body
of knowledge of the profession, while the hard and soft skills are the
abilities of the students and software engineers. The arrows show binary
relations, while the diamonds are used to represent multiple relations.

Figure 1 contains the entities that are in the academia and

the industry, as well as two additional dimensions that are

orthogonal to each other and to the dimension of the entities.

Software Engineering Body of Knowledge (SWEBOK) is

composed of fifteen Knowledge Areas (KA) along with seven

related disciplines [14]. It is bound neither to the academia

nor to the industry, since it encompasses and affects both of

themwhile also being affected by both. It includes everything

about the profession whichmakes it, in a sense, the profession

itself. The skills dimension represent the abilities of students

and software engineers. They are acquired by both education

and experience, depending on their type and the context.

The figure includes their categorical view; the hard skills are

also called technical skills, such as programming, while the

soft skills are also called social skills, such as written and

oral communication. They are essential because a student

becomes a software engineer by getting education via a soft-

ware engineering program in order to gain and improve their

relevant and related skills. They are also essential in the sense

that they are used to evaluate software engineers when they

are considered for a position in the industry.

As can be seen in the Figure 1, every entity is related to

others without a clear hierarchical structure. This creates a

challenge for those whowant to study them in isolation, while

they should be studied as a whole. We define students as can-

didates who are getting an education in a software engineer-

ing program that follows the guidelines in Software Engineer-

ing Education Knowledge (SEEK) in order to become soft-

ware engineers. The academic institutions and accreditation

agencies for software engineering programs follow SEEK,

which in turn is recommended by SWEBOK [4]. Students are

expected to acquire both hard and soft skills to make them

competent in the profession. They do so by completing their

education, developing personal projects, contributing to free

and open source software (FOSS), and acquiring freelance

jobs from customers, as the arrows represent in the figure.

Students become software engineers when they are

awarded a degree from the software engineering program.

The figure intentionally refers to them as early career soft-

ware engineers (ECSE) because they will, hopefully, bridge

the gap when they become senior engineers. The same

sources of experience are also valid for the ECSE, how-

ever, there are cases where companies choose to apply

pre-employment or post-employment training to software

engineers to improve the skills of their employees [15], often

using a curriculum based on SWEBOK [16], [17].

The academia has two major contributions to the profes-

sion; the first one is to train and educate students to become

software engineers. The second contribution is provided by

the academics, who do novel research in the foundations of

computer science, mathematics and engineering. The aca-

demics are the executors of the teaching process while also

being voluntarily engaged in industrial projects to keep track

of the current practices in the field.

The software engineering industry is where the software

production takes place. It mainly contributes to the profession

by producing its own practices. Its most important entity

is the software itself which requires a development process

that must overcome the challenges in realizing an abstract

product. The customer can commission the development of

software via a company that employs software engineers, or

by hiring software engineers as part of its own infrastructure,

or by students who are looking for freelance jobs.

FOSS enables collaborators from all around the world to

develop software that is publicly available [18]. Naturally,

it created novel practices that proved their worth by producing

high quality software. For the students, software engineers,

companies, customers, and all who are involved in software,

FOSS proves to be a useful resource not just by providing

free and open software, but also by providing an opportunity

to get experience in the development processes with minimal

costs.

VOLUME 7, 2019 117529



D. Oguz, K. Oguz: Perspectives on the Gap

TABLE 1. The table lists the causes of the gap from various perspectives. Each line lists the source of the cause, the cause in brief, the solutions, and the
parties that involve the solution. ‘I’ denotes the industry, ‘A’ denotes the academia, ‘S’ denotes SSE, and N/A denotes not available. If the solution has a
reference, then it is an existing solution, otherwise the solution is a proposition by the authors.

The overview of the profession shows us that in such a

connected profession, it is not possible to close the gap by

considering only some of the entities. A change in one of the

entities create a ripple that reach other entities that require

a revision to software processes, skill sets of the software

engineers, new topics in academia, and finally an update

to the profession that will be reflected in SWEBOK. These

ripples are common in the ever vibrant field of software

engineering as exemplified earlier.

III. PERSPECTIVES ON THE GAP

The gap is defined as the differences between software engi-

neering education and the software industry that is reflected

in the associated entities. We have defined these entities in

Section II as the ones that make up the industry and the

academia. We have mentioned that SWEBOK encompasses

and affects all the entities, and is affected by all of them. Also,

we have defined the skills as the abilities of both students and

software engineers.

To analyze the gap from all perspectives, we have catego-

rized these entities into three major groups: SSE, industry

and academia. The first group is labeled as SSE, since it

is made up of the student and software engineer entities.

They are placed in the same group because we perceive them

as the same entity being represented at different points in

time. Additionally, they embody the skills dimension within

themselves. The other two groups are the remaining entities

in industry and academia, respectively, and they are labeled

as such.

The first part of the perspectives include the self analysis of

each group. The second part of the perspectives discusses the

causes of the gap, and how they involve the related groups.

An overview of these causes, their solutions and references

are given in Table 1.

A. SELF ANALYSIS OF GROUPS

The first set of perspectives considers each of these groups on

their own. We have identified the causes that stem from the

117530 VOLUME 7, 2019



D. Oguz, K. Oguz: Perspectives on the Gap

elements in these groups, how they contribute to the gap, and

how they can be mitigated, or if possible, removed.

1) THE INDUSTRY

How does the software industry contribute to the gap? The

software industry explores and conquers new horizons that

appear frequently thanks to the technological advances in

associated fields. In Section I two of these new platforms

were discussed, the mobile platform and the IoT. Another one

is the current state of the JavaScript frameworks [40], their

problems [41], [42], and how to pick one [43].

Such technologies can create a paradigm shift which

challenges all aspects of software. It is self evident that

programming languages, libraries, data types, data storage,

software distribution, software processes and anything related

are subject to change. The new paradigm could take over the

industrial practices while the student is still studying at a soft-

ware engineering program, which typically takes four years

to complete. The software industry widens the gap between

itself and the academia, but it has no choice, because it has

to adopt these new technologies to survive economically. Its

adoption is also essential because it expands our knowledge

and experience in this relatively young discipline.

Alboaouh asserts that while both the industry and academia

contribute to the advances in research, the feedback from the

industry to the educational bodies is missing [7]. Since the

recent graduates are missing practical knowledge, the indus-

try favors graduates with high GPA to reduce their training

time. He also asserts that the industry is not enthusiastic

about reforming the education process because training new

engineers is much cheaper. While his comments are about

the engineering disciplines in general, we believe that the

advances, methodologies, and techniques that are developed

in the software industry emerge too often and they need

time to mature until they can be included in the curriculum.

However, it should also be stated that the industry should be

involved with the education of professionals through insti-

tutions and organizations such as IEEE. As Beckman et al.

have proposed, a board of industrial representatives can help

academia to define common objectives and goals [10].

2) THE ACADEMIA

The academia has two major entities, the software engineer-

ing program, which is typically the undergraduate programs

in the universities, and the academics who both teach and

contribute to the body of knowledge with novel research.

The academia is well aware of the expectations of the

software industry, however, it is not quick enough to make

a course correction at the same speed. It cannot afford trial

and error in education, therefore, it has to take its steps more

carefully and slowly. Nevertheless, there are cases where the

academia makes significant updates to its curriculum to catch

up and to educate and train software engineers with skills that

are relevant in the industry.

Software engineering programs follow SEEK, the guide-

line recommended by the SWEBOK [4]. SEEK contains

guidelines on the design and delivery of a curriculum.

We would like to emphasize the ones that we find relevant

to narrowing the gap before we discuss the existing and new

solutions. The curriculum guidelines put emphasis on both

the basic principles of software engineering and the usage

of current tools, so that the education will not be out of

date. Another guideline states that the curriculum should have

a significant real life basis by incorporating case studies,

project-based activities, a capstone project, practical exer-

cises, and student work experience. These activities help the

students to gain experience by handling larger projects as

a group. The student work experience, which is commonly

executed as an internship, allows the student to experience

real life projects with real stakeholders and users. The guide-

lines also state that the curriculum should consider various

approaches in teaching and learning, such as problem-based

learning (PBL), just-in-time learning, learning by failure, and

technology-enhanced learning. Among them, problem-based

learning is a common approach in many fields and disci-

plines such as computer engineering when integrated with

content-based learning in [44], and software engineering edu-

cation is no exception.

In PBL, the students learn during the process of solving a

problem that is put forward either by the lecturer or the stake-

holders involved, such as real customers. It has been success-

fully applied to software engineering since several studies

report that they have implemented it [21]–[23], while some

point out the limitations, such as the difficulty of starting a

project before learning about the topics in the course [45], or

the cost of setting up a software development system and its

environment [46].

Although not listed in the SEEK guidelines, there are other

approaches that can help the gap to narrow. One of them is

the studio-based learning (SBL) where a group of students

work together to solve a problem in a defined space, such as a

laboratory or a studio, as the lecturer mentors them and gives

lectures only when necessary. While the idea is borrowed

from arts and design departments, software engineering can

make use of it since it is also a creative activity. Nurkkala

and Brandle report that in their case the admission to the

SBL track requires the permission of the instructor who

assesses the prospective students by interviewing them [24].

The students who can perform well without constant over-

sight are more likely to be admitted. The program uses Scrum

in the in-class lab sessions and use team software develop-

ment for projects. Other studies have also reported successful

implementations [25]–[27].

Another example is the holistic approach by Ellis et al.

which discusses the usage and incorporation of FOSS into

the software engineering curriculum [47]. They report that

the students have gained more experience in software engi-

neering knowledge and experience in areas such as gathering

requirements and understanding software quality.

While a major update to the curriculum using a holis-

tic approach is lacking in software engineering depart-

ments, there are studies in electrical and computer

VOLUME 7, 2019 117531



D. Oguz, K. Oguz: Perspectives on the Gap

engineering departments. Rashid and Tasadduq propose a

holistic approach to computer engineering curricula by intro-

ducing the component level courses, and then merging them

into system-level courses using Y-chart methodology [20].

The authors emphasize the forward and backward references

of these courses which helps the students to see the bigger

picture by either forward referencing an important topic in

a future course, or by backward referencing an acquired

knowledge to build on top of it. Maciejewski et al. make

a bold move with the support of a five-year grant and

approach the electrical and computer engineering education

in a holistic fashion by stressing knowledge integration,

collaboration among faculty and students, and making use of

thematic threads [19]. The authors discuss their partial results

which report that the students, while hesitant at first, have

enjoyed the hands-on and collaborative approach. Although

these studies are meant for computer engineering education,

we believe that software engineering has close ties to com-

puter engineering and a software engineering program may

follow the suit.

Luukkainen et al. have worked for three years and updated

their curricula gradually to fine tune it in order to improve

the student’s readiness for the practices in the industry [28].

The resulting curriculum has courses that are linked strongly

together, building on a theme of ideas across them. The

authors state that the success depends largely on a specific

course called Extreme Apprenticeship which improves the

programming skills of students under the guidance of more

experienced programmers.

Curriculum design and delivery is a major undertaking

which is under the regulation of a set of bodies, such as

accreditation agencies, laws on higher level education, and

the regulations of the universities. Therefore it is not pos-

sible to make significant alterations immediately. However,

the courses, their learning outcomes, and their connections

can be improved gradually.

An important cause of the gap is that the software engi-

neering education is made up of courses that are connected

and built on top of each other, but the students fail to see

their connection. It is also common for the academics to

focus on the topics related to the course and overlook other

topics. Students get proficient in each topic, but they never

develop complete applications where every topic is used at

the same time. If the course is a data structures course,

the project evaluation may overlook the graphical user inter-

face, if the course is about human computer interaction,

then the evaluation may overlook the data representation, or

the object oriented principles. We propose a solution that

requires the course project to include topics in the previ-

ous prerequisite courses. This solution may also require an

update to the prerequisite course list of some courses in

the existing curricula. It also requires each project to be

more comprehensive which will create a gradual increase

in difficulty and complexity, so that the transition from

programming to software engineering can be handled more

gracefully.

Craig et al. report that they have found some of the aca-

demics to be out of touch with industry, and list it as one of

the causes of the gap [5]. They propose, as a solution, summer

internships at the industry so that the academics can catch up.

We also would like to add that the academics can get involved

in industrial projects to get back to the reality of the industry.

3) STUDENTS AND SOFTWARE ENGINEERS (SSE)

Students become software engineers after their graduation,

and they are the ones who feel the gap the most. They become

aware of the gap either when they are employed at a company,

or when they first experience the industry environment as a

student, probably during their internship. They are the most

unfortunate of the three major groups because they have

less experience than the entities in both the industry and the

academia, but they are expected to bridge the gap as soon as

possible.

The gap is reflected directly in the skill sets of SSE. They

are the realization or the embodiment of the gap. From this

perspective, they can affect the gap in both directions; they

can narrow and close it, or they can make it wider.

The evaluation of the industry shows us that there will

be new technologies even after the graduation, so the stu-

dent should be always vigilant and ready to learn them.

The evaluation of the academia shows us that students who

are interested in the profession are more likely to succeed.

Falkner et al. have reported the success of their students who

were able to master the self-regulated learning skill, which

lets the students set their goals, and organize their resources

to achieve their goals [29]. The guidelines in SEEK also

emphasize the importance of continued learning and self

learning [4].

These findings point out that the individual SSE has to be

involved in several software projects to improve both their

hard and soft skills, while learning how to learn on their

own, and to find out ways to overcome the problems and

difficulties when they face them. We believe that, just as

the industry has to fill the software void created by the new

associated technologies, SSE has to be ready to embrace new

technologies, quickly adapt to them, and update themselves

with new skills.

While the following suggestions can apply to recent grad-

uates as well, we believe they are more appropriate for the

students. On top of the list, the students should be motivated

to contribute to the projects they are involved in. While this

largely depends on the project and the personal preference of

the student, they should consider the benefits in the long run

where each project brings in more experience. Involvement

in projects also increase the time invested in programming

which is a good sign of gaining experience.

B. CAUSES OF THE GAP

We have identified several causes of the gap which originate

in one or more of the major groups and collected them under

related categories that follow.

117532 VOLUME 7, 2019



D. Oguz, K. Oguz: Perspectives on the Gap

1) THE SOFT SKILLS

Although there are many studies that stress the importance

of soft skills in software engineering [3], [48]–[53], they are

also the most popular cause of the gap since early career soft-

ware engineers report that they do not feel they are prepared

for communication and teamwork, where the soft skills will

be the most useful [5].

The common solution to close the gap for this cause

is to have projects that incorporate teamwork [30]. Capretz

emphasizes that software engineering has human factors in

its processes [54], and with Ahmed they make a call to

promote soft skills in software engineering [31]. We extend

their proposition and make a call to software engineering

programs to advertise software engineering not only as tech-

nical, but also a sociotechnical practice. Software engineering

is most related to computer science and computer program-

ming which has stereotype individuals as being very good

at technical skills but awkward in social situations. Studies

on stereotypes in engineering in general is surprisingly low.

Bailey et al. stress that engineering and computer science

is male dominated [55], while other studies focus on the

introvert stereotype of engineers [56], [57]. Studies show that

people underperform when they are under situations that

cause a stereotype threat and there are ways to reduce it [58].

Therefore, we think that the software engineering programs

should appeal to a wider range of prospective students if

it is promoted as a more sociotechnical practice, turning

the profession into a more social one and overcoming the

perception of introvert male stereotype.

Another proposed solution is also made by Capretz, who

suggests having an entire course on the human aspects of

software engineering [54]. Sedelmaier and Landes propose a

body of skills, SWEBOS, akin to SWEBOK, which describes

the required skills for software engineering [32].

The requirement for soft skills are widely acknowledged

but very rarely emphasized in software engineering programs.

We hypothesize that the academics acquire these skills on

their own, either by their industrial experience, or because of

their research environment which is collaborative by nature.

Therefore, they expect the students to acquire these skills

when an environment for collaboration, such as a team course

project is provided for them. The academics should also be

involved, either directly or indirectly via teaching assistants

or more experience programmers to demonstrate how a team

should operate and help the students gain team experience

and sharpen their social skills.

2) REALISM IN COURSE PROJECTS

The software engineering programs provide practical expe-

rience through laboratory work, course projects, and a final

capstone project in which the students demonstrate all their

skills, as recommended in SEEK [4]. These projects are also

expected to provide the students with the opportunity to gain

and improve their soft skills, as discussed in the previous

cause.

Early career software engineers and students report that

they do not find the course projects as realistic as the real

industrial projects [5], [37]. These projects are usually called

toy projects, because they are smaller in scope compared to

the real projects, their requirements are well defined, and the

academics act as both the customer and the mentor. Simpson

and Storer report that the students find the lecturer acting as

an uncertain customer to be malevolent and implausible [37].

They also state that the teams are made up of all novice engi-

neers, which strips them of the benefits of good leadership

that might be provided by experienced engineers. However,

mentoring all teams does not scale well, the academics cannot

handle large classes because of time constraints.

Realism in course projects is the most studied cause of the

gap because the skills required to handle real life projects are

expected to improve with a hands-on approach, and failing

to provide realism deprives the students of valuable experi-

ence. The most common solution to this cause is to incorpo-

rate FOSS projects [33]–[36]. This approach is successful in

most cases, but it does not remove the problem completely.

Studies report that it is not that easy to find appropriate

projects, students may not be able to get involved in FOSS

communities [35], and the features that will be implemented

for a FOSS project may be considered as toy features by the

student [34].

Simpson and Storer state that they have introduced real

customers for the course project, and have started a leadership

course where senior students acted asmentors for these indus-

trial projects [37]. They report having convincing results for

the students, since they had a realistic experience, the mentor

students got their chance to pass on their experiences, and the

customers were more than happy to get quality software at

very low costs.

Other studies have reported that software maintenance and

quality should be emphasized [38], [39]. Szabo states that

they use a code base for software maintenance that is devel-

oped by students in previous semesters. This brings down the

quality of the code to a level that is appropriate for software

maintenance, which makes it realistic.

The realism of the course projects are illusionary because

they are tailored for the course and the students will be fin-

ishedwith those projects as soon as the course is over. It might

be possible for the lecturers to gain their attention by starting

interesting projects that use recent and up-to-date technolo-

gies. While these would not be a course project, they would

be a project developed within the lecturers supervision. Such

projects would benefit both the lecturer and the students.

The lecturer would stay current with recent developments in

the industry, the students would have the chance to volun-

teer for a real project that is supervised by an experienced

engineer. While the project could be developed in an open

source fashion, it does not necessarily have to be that way.

We believe it could be useful as long as the students could be

involved, have regular meetings, design sessions, and have

the ability and the opportunity to contribute to the source

code.

VOLUME 7, 2019 117533



D. Oguz, K. Oguz: Perspectives on the Gap

3) INDUSTRIAL TRAINING

Since the gap exists, the software companies have to find a

way to deal with the reality that new software engineering

graduates have gaps in their skill sets. In order to over-

come this problem and improve the skills of their employees,

they consider either pre-employment or post-employment

training.

The pre-employment training is detailed in the study of

Tuzun et al. where they identify key knowledge areas which

their candidate employees are lacking in skill [16]. They

create a ‘‘summer school’’ and train the graduates in these

knowledge areas using the curricula presented at the univer-

sities, whose curriculum are guided by SEEK. They hired

several of the candidates according to their performance. The

candidates reported back that they found the summer school

useful, even if they are not hired, because they have improved

their skills.

The post-employment training was done at least once at

Microsoft [15]. Brechner reports that Microsoft stopped all

development on Windows for months to train over eight

thousand employees on writing secure code.

With several new software engineers being trained every

year, we believe that companies will require more scrutinized

interviews when hiring, or will make use of trial periods

before they will hire new talents.

IV. INTERVIEWS, QUESTIONNAIRES, SURVEYS

We have gathered insights, comments, and data from

the major bodies we have defined earlier using various

approaches to compare them to the existing research dis-

cussed in Section III.

The first set of data comes from an online questionnaire

that is sent to several students and recent graduates of at most

two years from three different universities using personal

contacts and word of mouth. For the second set of data,

we have used our personal contacts to interview students and

recent graduates either face-to-face or online. For the set of

data that involves the views of academics, we again used face-

to-face and online interviews. The final set of data comes

from the current job advertisement on software engineering.

We have compiled a list of skills that are sought for software

engineering positions in these advertisements.

A. THE QUESTIONNAIRE

The questionnaire has reached 78 students and recent grad-

uates. It is made up of ten questions that are either multiple

choice, multiple answers, or open ended. The questions are

thematically about the self evaluation of their soft and hard

skills.

The questions and the replies provided are detailed

in Tables 3 and 4.

The first question, ‘‘What is your year of study in the

software engineering education program?’’, helps us to

differentiate current students and graduates. The answer is

given in a multiple choice list, years ‘‘1’’ to ‘‘4,’’ with ‘‘4+,’’

and ‘‘graduate’’ being the final choices. The years corre-

sponds to freshman, sophomore, junior and senior years in

other countries. The questionnaire is only sent to at least third

year students, but we have kept the options for the first two

years just in case the word of mouth reaches them. The 4+

students are those who still study after four years of standard

curriculum because they still have to complete the courses or

internship.

The replies were divided evenly among the students

and the graduates. Having the same number of two types

helped us to see if there are any differences between recent

graduates and students without being biased against one

type.

The second question is ‘‘How competent do you feel

in programming?’’ and wants to find out how they evalu-

ate themselves about the most important and needed tech-

nical skill [6]. The answers are a list of multiple choices:

‘‘Not competent at all,’’ ‘‘a little competent,’’ ‘‘average,’’

‘‘good,’’ and ‘‘very good’’. The most chosen answers are

‘‘average’’ and ‘‘good’’ with 31 and 27 replies, respectively.

Only 7 replies say that they are ‘‘very good,’’ and 10 of them

find themselves ‘‘a little competent’’. The final option was

chosen by 3 students, who find themselves ‘‘not competent

at all.’’ This answer shows that most students believe that

they have acquired this skill, either during education, or with

hands-on experience.

The next question is ‘‘How many software projects have

you developed?’’ which is expected to correlate with the

previous question. The answers are multiple choice, with

answers 0, ‘‘1 to 3,’’ ‘‘4 to 6,’’ ‘‘7 or more’’. The most

common answers are ‘‘1 to 3’’ and ‘‘4 to 6’’ with 30 answers

each. There are 15 replies for ‘‘7 or more,’’ and 3 replies

for zero projects. The replies to ‘‘1 to 3’’ and ‘‘4 to 6’’ are

in good correlation with the number of replies to ‘‘average’’

and ‘‘good’’ of the previous question. The answers indicate

that the more projects they complete, the more they feel

competent at programming.

The fourth questionwants to find out the hardest challenges

they faced in a list of technical tasks and soft skills when

the students have moved on from small projects to relatively

larger ones. We have provided the following set of skills

with the challenge level changing from 0: no experience, 1:

easiest, up to 5: hardest. The list of tasks and skills, and their

responses are

• Requirements analysis; most found it challenging at

level 2 with 21 replies,

• Software Design; most found it challenging at level 4

with 21 replies,

• Software Development; most did not find it very chal-

lenging at level 2 with 26 replies,

• Software Tests; the replies are almost evenly distributed,

however the most found it a challenge at level 2 with

18 replies,

• Project Management; most found it challenging at

level 3 with 18 replies, with considerable number of

replies to ‘‘No experience’’ with 16 replies,

117534 VOLUME 7, 2019



D. Oguz, K. Oguz: Perspectives on the Gap

• Personal Time Management; most found it challenging

at level 2 with 21 replies,

• Communication with teammembers; most members did

not find it challenging at all, with 30 replies at challenge

level 1,

• Use of Project Tools (such as version control systems);

most found it challenging at level 1 with 20 replies,
From another point of view, the hardest challenge was

software tests, with 12 replies. The easiest challenge is found

to be the communication with teammembers, with 30 replies.

The results are interesting; communication is surprisingly

at a low challenge level, while software design is as challeng-

ing as it is expected to be. The results are further analyzed

by grouping the student answers and graduate answers, and

conducting a Mann-Whitney U test to determine if any of

the skills are statistically significant between these groups.

The tests are run by filtering out the replies for the ‘‘No

Experience’’ choice, since its numeric value can alter the

results, and without experience their contribution should be

removed. As the results in Table 2 show, the replies to the

‘‘Communication’’ by the students and the graduates are

significantly different. When the replies are analyzed group-

wise, 19 graduates found communication with teammembers

easy, while only 11 students had the same evaluation. Stu-

dents have found it more challenging on levels 3, 4 and 5,

with 8, 6, and 4 number of replies, respectively, while all these

levels have 3 replies for the graduates. This also shows that,

as the experience increases, communication soft skill also

feels much easier.

TABLE 2. Results of the Mann-Whitney U test of the difference of replies
to the fourth question between students and graduates. The results are
acquired after removing the ‘‘No Experience’’ choice which is set to 0.

These results indicate that the new software engineers are

still on their path to be different from students. From the

students point of view, it is possible that the projects they

consider as larger may still be relatively non-challenging

compared to the industry standards, and they feel that they

can handle these tasks.

The next questions asks ‘‘In which of the following did

you acquire more of your project development skills other

than programming?’’ with replies being ‘‘with engineer-

ing education,’’ and ‘‘without engineering education’’. The

replies are 66.7% for learning them outside engineering edu-

cation. The follow up multiple answer question asks how

they acquired these skills if they were acquired during their

engineering education. We have provided two answers along

with an optional input for customized answers. The answers

provided are ‘‘in theoretical courses’’ and ‘‘in practical

courses, or in courses with projects.’’ The replies are over-

whelmingly with the second option with 93.3%, as expected.

The other follow up question is the same question for the

answers who picked the ‘‘without engineering education.’’

We have provided multiple answers as ‘‘by working with

experienced engineers,’’ ‘‘by using resources (such as books,

videos) on project management and software development,’’

and ‘‘by my personal effort.’’ Most selected answer was the

‘‘personal effort’’ with 48 replies. The second one was ‘‘using

resources’’ with 35 replies, and the ‘‘experienced engineers’’

is the third with only 19 replies. Another follow up question

for those who have acquired their skills outside education

was the kind of projects they have developed. The multiple

answers and their replies are ‘‘personal projects’’ with 44,

‘‘part-time or full-time job’’ with 31, ‘‘FOSS’’ with 23, and

‘‘freelance projects’’ with 20 replies.

This part analyzes how the students and graduates acquire

their skills and how much of it comes from education. It is

not surprising to find out that personal efforts and projects

have come on top. Alongside personal projects, the next most

common way to acquire these skills are is to be involved in a

part-time or full-time job.

The next question directly relates to the second question:

‘‘How competent do you feel as a software engineer?’’

with the same answers. More than half of the replies, 40 to

be exact, have replied with the ‘‘average’’ option. Almost

a quarter of the replies have chosen the ‘‘good’’ option.

A relatively smaller percentage of 19.2% have chosen ‘‘a

little competent’’. Two replies found themselves to be ‘‘very

good’’ while three replies felt ‘‘not competent at all’’. When

compared with the second question, which enquires about the

self-evaluation of their programming skills, they feel more

‘‘average’’ as engineers, while they feel ‘‘good’’ for being

competent in programming.

Another Mann-Whitney U test has been conducted to

determine if there were differences in the graduates and

students about their self-evaluation of their competence in

programming and software engineering. The test show that,

there is no significant difference between these groups for

the programming competence (U = 915.5, p = 0.102),

however, there is a statistically significant difference for their

self-evaluation of competence in software engineering with a

score of U = 946, p = 0.044.

The final question required an open ended answer for any

remarks they wanted to make and only eight of them did

so. The general highlights, as translated to English, are as

follows;

• The projects at the university are way different from the

projects in real life. Also, the projects are not complete

because everyone in the team are novice and they try to

manage the project and develop it at the same time.

• The project teams are not evenly balanced and an experi-

enced student might take away the experience that could

be gained by others by trying to do everything on their

own.

VOLUME 7, 2019 117535



D. Oguz, K. Oguz: Perspectives on the Gap

TABLE 3. The questions and the number of replies to multiple choices and answers, except the third question.

TABLE 4. The number of replies given for every choice in the question
‘‘How challenging were the following when you have moved from
simple projects to relatively larger ones?’’ The answer represent
challenge levels, 1 being the easiest and 5 the most challenging. Level 0
represents no experience.

The second item brings a lot to the table; team projects have

their pros and cons. The comment refers to the cons; how can

we provide an environment where the students can improve

their soft skills such as teamwork and communication? There

are a lot of factors, such as balancing the team members

abilities and grading individual effort. There are studies on

increasing team work efficiency, but it requires a longitudinal

study to extract their effect on the gap.

The results of the questionnaire are in alignment with

existing literature. The study by Falkner et al. reports that

self-regulated learning skill help students to achieve their

goals [29], just as the students have reported to have picked

up their skills by personal effort. For the students and recent

graduates who have completed the questionnaire, the com-

munication skill has been found to be significantly dif-

ferent, which is an evidence that recent graduates have

found themselves lacking in soft skills, similar to existing

studies [48], [51]. Several solutions are suggested in Table 1.

B. INTERVIEWS WITH STUDENTS AND

RECENT GRADUATES

We have interviewed thirteen students and recent graduates.

The interviews are mostly conducted via e-mail with the

following questions in the first part, and a set of follow-up

117536 VOLUME 7, 2019



D. Oguz, K. Oguz: Perspectives on the Gap

questions in the second part. Face-to-face interviews took

around 30 minutes to 90 minutes, depending on the answers

of the respondent.

The first set of questions warm up the respondent by letting

them consider their own personal process first and track it to

team projects and soft skills.
1) What is your personal software development process?

2) If the problem at hand is a large software project, how

does it change your personal process?

3) Even though the project is developed with a team and

a software development process, you will be doing

the development on your own; how does your process

change then?

4) If you are given the chance to pick your software devel-

opment team for a software project in a course, what

would be your selection criteria?

5) Software development requires skills alongside pro-

gramming, such as teamwork and communication.

How do you think you acquired these skills?
The personal process is mostly not necessary for our pur-

poses, however, contrasting it with the second question helps

us identify how their process changes when they move on to

a relatively larger project. The answers point out that they

mostly spend more time on design, requirements, or both to

handle the project. In one interview, the respondent remarked

that he wasn’t always involvedwith individual projects before

he gained experience in large projects, and his large-scale

development experience was reflected on his personal soft-

ware development process, and he didn’t feel any overhead.

The team selection question is asked to check if the stu-

dents value soft skills. Not surprisingly, almost all respon-

dents emphasized that the team members should have good

communication skills, should be a team player and that they

should be motivated and be willing to contribute. Some have

asked for technical skills, reasoning that these skills matter

for the success of the project.

Acquiring and improving skills is a skill within itself and

the respondents have acquired or improved their skills in

various ways. Some remarked that they have improved their

soft skills after being employed professionally, some empha-

sized self learning, and some mentioned that the university

has provided them with great opportunities to develop these

skills.

After these sets of questions, we have directed these

follow-up questions to the respondent who either have grad-

uated or have experience in developing real life projects.

1) When you were a student, how hard was it for you to

design and implement relatively larger programs? Do

you remember the challenges you have faced, and how

you overcome those challenges?

2) When you were a student, were the practical courses

enough? How much time did you invest in your own

self study?

3) Do you think that the projects you were assigned were

similar to real life projects? In what aspects were they

different?

4) Did your experiences in course team projects help you

to develop your soft skills?

5) Did you have any problems when you got your first

job? If yes, what were they? If no, why do you think

you did not have any problems?

The first question directly asks what the second ques-

tion in the first set of questions wants to ask. The most

common answer is the difficulty of the design process of

the software. One interviewee remembers that she didn’t

know where to start, and that designing and putting every-

thing together was the most challenging of all. She over-

came the problem by researching on her own, and remarked

that practical courses helped in this regard. Another chal-

lenge emphasized by respondents is collaboration, since no

one in the team had experience of running a project as a

team.

The answers to the second question agree that while the

course hours are adequate, they still had to invest a lot of time

in their personal development because the projects are either

not interesting or small in scale. All the answers to the third

question stated that the course projects were not like real life

projects, because they were small in scale and were very well

defined in a controlled environment.

The respondents felt very differently for the course team

projects. Some have remarked that they have not acquired any

skill because the group was focused on the grades, rather than

the project. Some have learned important life lessons, such as

bad things could happen in a real life project, too. Some say

that they have improved their soft skills. One student claimed

that their project team had acquired the software development

process so well that he was able to point out the mistakes in

the process in his job. Consequently, the projects were full of

hits and misses.

The most important question is the one that asks if they

have faced any problems when they got their first job. More

experienced graduates expressed that they did not have any

problems. Others noted that they did not have any experience

in working on large projects so they had problems with the

configuration tools of the system, and figuring out the tasks

the software should perform on different components of the

system.

Several points made by the students are also reflected

in existing literature. The students, at least for the course

projects, are aware of the importance and value of the

soft skills, as in studies [48], [51]. These projects are also

evaluated on their realism, which is a common source of

the gap, as discussed in [5], [37]. Also, self-learning has

been mentioned once again, which provided the students

a good opportunity to sharpen their skills [29]. Proposed

solutions are discussed in Section III-B2, as well as listed

in Table 1.

Overall, we have come to the conclusion that having expe-

rience during education clearly helps the student to narrow

or close the gap. It is also beneficial to the students if they

figure out how to learn on their own while they are studying

to earn their degree.

VOLUME 7, 2019 117537



D. Oguz, K. Oguz: Perspectives on the Gap

C. INTERVIEWS WITH ACADEMICS

It is a regular task for the academics to review their courses at

the end of each semester, and the curricula at the end of each

academic year. Therefore, they are already aware of several

problems that are associated with the gap. We have inter-

viewed six academics from four different universities to find

out their views on the following questions. The interviews

weremostly done online. Face-to-face interviews took around

half an hour to one hour. We have compiled their replies to

the following questions to provide a list of their suggestions

and observations. While it would be generous to generalize

these replies, we believe that they have correlations with the

limited existing literature on the perspective of the professors,

one being the study by Pinto et al. [35].

1) What are the problems that you face in the projects and

homework you assign to your students?

2) Can you think of anything that could be done to better

prepare the student for the industry?

3) Do you think the students get their competency in the

profession during the courses, or in the projects they

involve in outside of courses? How competent do you

think they are when they graduate?

One common theme the academics see in the projects

and homework assignments in reply to question 1 is the

inability of the students to articulate their work in their

reports. Communication is an essential soft skill, and its two

basic forms, written and spoken communication, is severely

lacking. Another problem is that the students are not inter-

ested in programming; many times, a professor remarks, even

though it will bring them extra points, they refrain from

implementing the bonus section of an assignment that adds

an improvement to the program. It should be noted that one

student also complained about this, however, from their point

of view, the student stated that most of the projects were not

interesting at all, and like him, most of his friends did not feel

like working on it anymore.

The academia has always been aware of the gap. They

have put forward several methods, as mentioned previously,

to incorporate industrial experience into their courses in reply

to question 2. Our respondents have come up with the follow-

ing suggestions to prepare the students for the industry.

The most obvious answer, as expected, is to have collabo-

rations with the industry. A professor put forward the idea of

extending the internship: starting in summer and continuing

through the following semester as a part-time job. The job

should be part of a course that provides credits towards the

graduation of the student. One pointed out that the com-

panies that offer internships should also provide financial

compensation. Another proposition was that a guest from the

industry should be invited to project presentations to get their

comments on the code and the project. The academics did also

mention that the students should have experience working on

an existing code base.

On the final question, the academics see eye to eye that the

students should improve their skills more by involvement in

real life projects. Students are more motivated to complete

these projects because they are either compensated finan-

cially, or because they volunteer for the task.

As a conclusion, the academics agree that industry must

be represented more than just the internship, the students

should be involved in real life projects, and the academics

should choose the projects in their courses not for only the

comprehension of the topic, but also as an interesting real life

problem.

D. INDUSTRY REQUIREMENTS

We have interviewed the students, recent graduates, and the

academics. In order to get an idea of what the industry wants,

we considered the current job applications available online.

A search in a popular employment website in Turkey for

the position of ‘‘software engineer’’ returns 144 results. Out

of the 144 results, we have randomly reviewed fifty up-to-

date advertisements. Table 5 and Table 6 show the desired

technical and soft skills, respectively.

TABLE 5. The number of occurrences of hard skills sought by the
companies from the list of 50 randomly selected software engineering
advertisements out of 144.

TABLE 6. The number of occurrences of soft skills sought by companies
from the list of 50 randomly selected software engineering
advertisements out of 144.

As the list for the number of occurrences of hard skills

show, all of the positions require at least a B.S. degree in

software engineering or related disciplines, such as computer

engineering. All advertisements require proficiency in a pro-

gramming language; the list aggregates them all under ‘‘Pro-

gramming.’’ A large portion of the advertisements require

comprehension of software engineering concepts, such as the

software processes. Another important item in the list is that

15 of them look for at least 1 or 2 years of experience.

117538 VOLUME 7, 2019



D. Oguz, K. Oguz: Perspectives on the Gap

On the table for the number of occurrences of soft

skills, proficiency in the English language is almost always

required. The advertisements emphasize this requirement for

the candidate to be able to stay up-to-date with the current

technologies. The runner-up is Team Work, since more than

half of the advertisements list this skill as required. The other

skills that are listed alongside team work are problem solving

and analytical thinking which are required to overcome sev-

eral unforeseen problems. Self learning and communication

are also required by the advertisements.

There are studies that analyze the needs of the industry

either by reviewing advertisements [59] or by surveying the

practitioners in the industry [60]. Lethbridge has surveyed

200 software developers and managers on about 75 educa-

tional topics and wanted to find out how important each

topic is to their career. The results show that the partici-

pants believe the programming related topics are the most

important. Lethbridge states that this might be because of

the developers tendency to start implementation immedi-

ately without extensive requirements analysis or design, or

because they spend most of their time in development and

other tasks are distributed to various members of the team.

Soft skills are also high on the list as the developers indi-

cate the importance of technical writing and giving presen-

tations. Radermacher et al. have interviewed 23 personnel

from software companies to find out the areas in which the

recent graduates struggle the most [61]. The participants have

reported that the recent graduates lack project experience,

which is also reflected in their usage of software tools. The

new employees have reported that they have not either not

used the software tool at all, or did not use it in a production

environment. They also report that the graduates find it hard

to communicate with their colleagues and customers.

While our own survey brings out the results in Turkey,

it has apparent correlations with the findings reported in

existing literature. These statistics and the related work in the

literature show that the industry value the software engineer-

ing degree, because it gives the candidate a set of technical

skills that make them desirable in the employment market.

The industry clearly wants to stay up-to-date with the cur-

rent technologies, thus makes English a top priority in the

advertisements. The other soft skills are in alignment with

the data we gathered from the existing studies; team work,

communication and self learning make it to the list with large

shares in the requirements.

The results also show that the academia and the students

should focus on the soft skill set. While a degree in soft-

ware engineering and comprehension of related concepts

are achievable by graduating from the program, the soft

skills might still require additional effort for acquisition and

improvement.

V. MIND THE GAP

We have analyzed the gap from various perspectives along

with the views from the industry, academia and the software

engineers. When all related entities are studied together, it is

possible to see that the causes of the gap are distributed

among all of them. In the current state of the profession,

the gap is inevitable and it depends on all of the entities

involved.

By considering all entities, our study provides a unique

opportunity to access all so that each can find out what they

can do to acknowledge and narrow the gap.

A. THE SOFTWARE INDUSTRY

From the perspective of the industry, the recent graduates are

not competent enough to do well in the real life projects. They

lack in the usage of current tools, they have poor soft skills,

and they struggle at the beginning of their career. Therefore,

the industry favors the students with high GPA, so that they

can quickly train them, or the students who have experience

because they have been involved in several projects, commer-

cial or open source.

While they are right to look for competent engineers, they

should also be aware that the software industry, unlike any

other industry, is relatively young and agile. As new tech-

nologies arrive, new platforms are created that require new

methodologies, programming languages, software distribu-

tion channels, and so on. The industry, therefore, has the

following options.
• Favor recent graduates with high GPA so that they

can be trained before or after they are employed, or

graduates with experience in commercial or FOSS

projects, and graduates that have the motivation and

the self-learning skill. This will require a thoroughly

scrutinized interview process. More details are provided

in Section III-A1 and in Section III-B3.

• Get involved in the education of professionals via orga-

nizations such as IEEE, or via the advisory boards of

universities, to set the software engineering program

outcomes. This was proposed by Beckman et al. in [10]

and is detailed in Section I.

• Invest or get involved in course projects so that they can

be developed by students who need real life experience.

Similar propositions were made by the professors we

have interviewed in Section IV-C, as well as in studies

such as [37].

• Maintain ties with the academia by accepting students

via internship, and help train students with current tools.

• Be aware that with the current speed of advancements,

some methodologies and techniques require time to

reach the academic curriculum. Publish and share the

experiences gained, so that it would be easier to gain the

attention of the academia.
We believe that the industry is the main driving force in

creating the gap, and the academia and the students are trying

to catch up with them in the practicalities of the profession.

They should also be aware that while the academia aims

to deliver students that have strong understanding of the

underlying and enduring principles of software engineering,

they rely on the continued learning skills of students for new

technologies that come up.

VOLUME 7, 2019 117539



D. Oguz, K. Oguz: Perspectives on the Gap

B. THE ACADEMIA

The academic perspective has a lot of challenges; the most

apparent one is to balance the curricula with courses that

can improve both the hard and soft skills of students. The

academia has recognized the gap early on and tried to adapt

to close or narrow it. While it has been successful in some

aspects, the constant advances in the profession has kept the

gap open for three decades. The academia may consider the

following options to keep an eye on the gap and do its own

share to narrow and close it.
• The curricula of software engineering programs

should consider different approaches in teaching and

learning, such as problem-based learning. Several

cases are reported in [21]–[23], [46] as discussed in

Section III-A2.

• The courses in the curriculum can have strong links

between them, such as backward and forward refer-

ences, so that the students can see the larger picture, and

recognize their connection. Such holistic approaches

are discussed in Section III-A2, and in studies such

as [19], [20], [47].

• The academics should be involved in industrial projects

to keep upwith the newmethodologies in the profession.

• Industrial contacts can be invited to project exhi-

bitions and presentations. Similar suggestions were

made by professors in our interviews, as discussed in

Section IV-C.

• The realism in course projects can be provided by

inviting real customers, collaborating with the indus-

try, or by getting involved in FOSS projects. Involving

FOSS is a common approach and is applied in several

cases [33]–[36] as discussed in Section III-B2 along

with other approaches.

• The academics should come up with interesting projects

to attract students so that they would be motivated to

work on them. This option has two sides to it; the stu-

dent’s point of view is discussed in Section IV-B, and the

academics point of view is discussed in Section IV-C.

• The academia should promote the program as technical

and sociotechnical practice. This is discussed in detail in

Section III-B1.

• The academia should accept a diverse range of prospec-

tive students to remedy the technical male stereotype of

software engineers, as discussed in Section III-B1.
We agree with Craige et al. in their view that the aim of

academia should not be vocational training, but a middle

ground can be found to balance the fundamental principles

with the practicalities of the profession [5]. As will be dis-

cussed, the middle ground can only be found with the help of

all entities.

C. THE STUDENTS AND RECENT GRADUATES

The perspective of the students and recent graduates is the

most important, since they are the entities most affected by

the gap. The case for students is more challenging because it

is possible that they will not be aware of the gap until they

start their internship at a company. Therefore, we believe that

our study would benefit the students the most. It provides an

overview of the profession and a detailed analysis of the gap

which would give them a heads up before their graduation.

Recent graduates will be well aware of the gap once

they are employed. Depending on their career, they will

need to keep their skills sharp by continuously learning new

technologies.

Both the students and recent graduates have the following

options to keep the gap at a minimum.
• Be aware of the gap and invest in developing their skills

by getting involved in commercial or FOSS projects

to improve hard and soft skills. This option has been

analyzed in Section III-A3.

• Acquire the self-learning skill and appreciate the impor-

tance of continued learning, while having a strong

knowledge in the basic principles of software engineer-

ing. Self learning has been emphasized in SEEK [4],

as discussed in Section III-A3. The interviews with stu-

dents also bring out its importance in Section IV-B.

• Be motivated to contribute to projects and realize that

students and graduates will benefit in the long run.
Although this list looks brief compared to other entities,

their work requires the most effort. The students are not as

experienced as the entities in the industry or the academia,

and they need to invest a lot of time and effort to become

proficient in software engineering. To their advantage, it is

relatively easier than other engineering disciplines to gain

experience during their education.We believe that gaining the

self-learning skills early on would be greatly advantageous

in the long run, since the profession constantly faces new

advances.

D. MINDING THE GAP

It can be noticed that it is a challenge to talk about the

gap without considering other entities involved. Therefore,

we would like to express how these entities relate and can

work together to handle the gap.

The industry, being aware of the gap, should improve its

involvement with the academia, passing as much information

as possible about the latest methodologies. The market incli-

nations are vital in the determination of technologies that gain

popularity and the industry can help itself and the academia

to be proactive in this regard. On the other hand, the academia

can strengthen its ties to the industry by academic collabora-

tion of projects and therefore creating an environment for real

life experience for its students. This will balance the fine line

between fundamental principles and the practicalities of the

profession.

The academia has immediate access to students and grad-

uates. The academics can come up with interesting projects

that make use of current platforms and methodologies that

would attract the attention of students, while the students can

motive themselves to complete the projects even though they

know that they are toy projects, investing for a time in the near

future to reap the benefits. The academia can be the binding

117540 VOLUME 7, 2019



D. Oguz, K. Oguz: Perspectives on the Gap

agent between the students and the industry if and when they

have stronger connections to it.

Engineering is a social activity and software engineering is

no exception. The academia should also promote the software

engineering program as a sociotechnical profession and try to

appeal to a wider range of prospective students to change the

introvert male stereotype of engineers. This promotion can

also help existing students to be more social so that they can

compete with their rivals for job positions.

The students can turn their disadvantage of lack of experi-

ence into an advantage if they are aware of the current status

of the profession and the gap. Acknowledging the gap, their

first priority should be gaining experience to improve their

hard and soft skills, so that they can apply for an industrial

software engineering position upon their graduation. During

their education, they have several options to be involved in

real life projects, such as FOSS, and learn the latest tools and

platforms while improving their knowledge in basic software

engineering principles. The students will be observing the

requirements of the industry, the sociotechnical promotion

of the profession, how the hard and soft skills are used in a

team project, and the constant need of self-learning as new

technologies emerge. We believe that these will change their

perception of the profession and will help the most essential

entity of the gap, students and recent graduates, to take action

to close it as much as possible until their graduation. Never-

theless, this requires the efforts of other entities as well, and

we believe that it will not be possible for all students to be

able to achieve it.

VI. CONCLUSION

In this study, we have analyzed the gap from the point of view

of three major groups, the industry, the academia, and SSE.

We have considered the gap from their own perspectives, and

also listed the causes that we have observed and that were also

reported in the literature.

A questionnaire is conducted with the students and the

recent graduates to find out the magnitude of challenges

they have faced when they have moved to relatively larger

projects. We have reported and analyzed its results and

found out that although there is no difference between the

two groups statistically, there is a difference that is statis-

tically significant to their replies of the challenge of com-

munication, and of how competent they feel as software

engineers.

We have interviewed students and recent graduates either

online or face-to-face to extract more information about these

challenges. This resulted in the conclusion that experience

is the best cure to narrow the gap. They have reported that

even though they had some challenges when they moved to

relatively larger projects, they have overcome them as they

had more experience. The interview with the academics was

also very fruitful because they have provided novel ideas for

narrowing the gap, such as improving industrial collaboration

and providing more engaging projects for the students to

develop.

The job advertisement survey shows us that the companies

look for candidates who can keep up with the current state

of the profession, and therefore require proficiency in the

English language and the ability to learn on their own. They

are also looking for engineers who can work as a member of

the team and solve the problems they face on their own. The

technical skills are not much different; a degree in software

engineering and programming is always required. Proficiency

in software engineering concepts are also a sought skill.

Finally we have considered all entities on their own, as well

as together, as to how they can acknowledge and close the

gap, and propose a list of suggestions for all.

We conclude that the gap is not going to close any time

soon, at least for some of the recent graduates. The indus-

try will innovate new practicalities and the academia needs

to balance the hard and soft skills with realistic projects.

It requires constant attention and hard work for all of the

entities involved. Therefore, we extend the suggestions for

the students to all of the entities in the field: we all should be

aware of the gap, and to keep it at a minimum we should be

on alert for new technologies, learn to embrace that change,

adapt to it, and be successful as the technological advances

take us to new platforms.

ACKNOWLEDGMENT

We would like to thank the professors, graduates, and stu-

dents who have shared their sincere opinions and views

on the matter. Our wholehearted thanks go to Lecturer

Ilker Korkmaz for pointing out structural improvements, to

Prof. Dr. A. Sermet Anagun for his guidance on the statisti-

cal tests, and to Lecturer Ralph John Berney for his exten-

sive proofreading and language editing. We are also greatly

indebted to the anonymous reviewers for their valuable com-

ments and feedback which have improved the manuscript

significantly.

REFERENCES

[1] P. Kruchten, ‘‘Putting the ‘engineering’ into ‘software engineering,’’’ in

Proc. Austral. Softw. Eng. Conf., Apr. 2004, pp. 2–8.

[2] S. Yu and S. Zhou, ‘‘A survey on metric of software complexity,’’ in Proc.

2nd IEEE Int. Conf. Inf. Manage. Eng., Apr. 2010, pp. 352–356.

[3] G. Matturro, F. Raschetti, and C. Fontán, ‘‘Soft skills in software devel-

opment teams: A survey of the points of view of team leaders and team

members,’’ in Proc. IEEE/ACM 8th Int. Workshop Cooperat. Hum. Aspects

Softw. Eng., May 2015, pp. 101–104.

[4] Curriculum Guidelines for Undergraduate Degree Programs in Software

Engineering, Joint Task Force Comput. Curricula, New York, NY, USA,

2015.

[5] M. Craig, P. Conrad, D. Lynch, N. Lee, and L. Anthony, ‘‘Listening

to early career software developers,’’ J. Comput. Sci. Colleges, vol. 33,

pp. 138–149, Apr. 2018.

[6] C. S. Miller and L. Dettori, ‘‘Employers’ perspectives on it learning

outcomes,’’ in Proc. 9th ACM SIGITE Conf. Inf. Technol. Educ. (SIGITE),

Cincinnati, OH, USA, 2008, pp. 213–218.

[7] K. Alboaouh, ‘‘The gap between engineering schools and industry:

A strategic initiative,’’ in Proc. IEEE Frontiers Educ. Conf. (FIE),

Oct. 2018, pp. 1–6.

[8] E. Goold, ‘‘Engineering students’ perceptions of their preparation for

engineering practice,’’ in Proc. 6th Res. Eng. Educ. Symp., Dublin, Ireland,

2015, pp. 1–9.

VOLUME 7, 2019 117541



D. Oguz, K. Oguz: Perspectives on the Gap

[9] G. A. Ford and N. E. Gibbs, ‘‘Amaster of software engineering curriculum:

Recommendations from the software engineering Institute,’’ Computer,

vol. 22, no. 9, pp. 59–71, Sep. 1989.

[10] H. Beckman, N. Coulter, S. Khajenoori, and N. R. Mead, ‘‘Collaborations:

Closing the industry-academia gap,’’ IEEE Softw., vol. 14, no. 6, pp. 49–57,

Nov. 1997.

[11] M. Shaw, ‘‘Software engineering education: A roadmap,’’ in Proc. Conf.

Future Softw. Eng. (ICSE), 2000, pp. 371–380.

[12] D. L. Parnas, ‘‘Software engineering programs are not computer science

programs,’’ IEEE Softw., vol. 16, no. 6, pp. 19–30, Nov. 1999.

[13] A. Begel and B. Simon, ‘‘Struggles of new college graduates in their first

software development job,’’ in Proc. 39th SIGCSE Tech. Symp. Comput.

Sci. Educ. (SIGCSE), 2008, pp. 226–230.

[14] P. Bourque and R. E. Fairley, Guide to the Software Engineering Body of

Knowledge (SWEBOK (R)): Version 3.0, 3rd ed. Los Alamitos, CA, USA:

IEEE Computer Society Press, 2014.

[15] E. Brechner, ‘‘Things they would not teach me of in college: What

microsoft developers learn later,’’ in Proc. Companion 18th Annu. ACM

SIGPLANConf. Object-Oriented Program., Syst., Lang., Appl. (OOPSLA),

2003, pp. 134–136.

[16] E. Tuzun, H. Erdogmus, and I. G. Ozbilgin, ‘‘Are computer science and

engineering graduates ready for the software industry?: Experiences from

an industrial student training program,’’ inProc. 40th Int. Conf. Softw. Eng.,

Softw. Eng. Educ. Training (ICSE-SEET), 2018, pp. 68–77.

[17] G. Samarthyam, G. Suryanarayana, A. K. Gupta, and R. Nambiar, ‘‘Focus:

An adaptation of a swebok-based curriculum for industry requirements,’’

in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012, pp. 1215–1224.

[18] J. Yang and J. Wang, ‘‘Review on free and open source software,’’ in

Proc. IEEE Int. Conf. Service Oper. Logistics, Inform., vol. 1, Oct. 2008,

pp. 1044–1049.

[19] A. A. Maciejewski, T. W. Chen, Z. S. Byrne, M. A. De Miranda,

L. B. S. Mcmeeking, B. M. Notaros, A. Pezeshki, S. Roy, A. M. Leland,

M. D. Reese, A. H. Rosales, T. J. Siller, R. F. Toftness, and O. Notaros,

‘‘A holistic approach to transforming undergraduate electrical engineering

education,’’ IEEE Access, vol. 5, pp. 8148–8161, Mar. 2017.

[20] M. Rashid and I. A. Tasadduq, ‘‘Holistic development of computer engi-

neering curricula using y-chart methodology,’’ IEEE Trans. Educ., vol. 57,

no. 3, pp. 193–200, Aug. 2014.

[21] M. M. Silva, S. R. G. dos Santos, J. C. R. da Silva, L. A. V. Dias,

and A. M. da Cunha, ‘‘Problem based learning a practical approach for

software engineering interdisciplinary teaching,’’ in Proc. 8th Int. Conf.

Inf. Technol., New Gener., Apr. 2011, pp. 1046–1047.

[22] Y. R. Pena, J. R. H. Hernández, and M. L. Vazquez, ‘‘Problem-based

learning. An experience on the inclusion of quality problems in educational

software engineering,’’ in Proc. World Eng. Educ. Forum-Global Eng.

Deans Council (WEEF-GEDC), Nov. 2018, pp. 1–6.

[23] I. Richardson and Y. Delaney, ‘‘Problem based learning in the software

engineering classroom,’’ in Proc. 22nd Conf. Softw. Eng. Educ. Training,

Feb. 2009, pp. 174–181.

[24] T. Nurkkala and S. Brandle, ‘‘Software studio: Teaching professional

software engineering,’’ in Proc. 42nd ACMTech. Symp. Comput. Sci. Educ.

(SIGCSE), 2011, pp. 153–158.

[25] C. N. Bull, J. Whittle, and L. Cruickshank, ‘‘Studios in software engineer-

ing education: Towards an evaluable model,’’ in Proc. 35th Int. Conf. Softw.

Eng. (ICSE), May 2013, pp. 1063–1072.

[26] D. Rosca, ‘‘Acquiring professional software engineering skills through

studio-based learning,’’ in Proc. 17th Int. Conf. Inf. Technol. Based Higher

Edu. Training (ITHET), Apr. 2018, pp. 1–6.

[27] C. N. Bull and J. Whittle, ‘‘Supporting reflective practice in software

engineering education through a studio-based approach,’’ IEEE Softw.,

vol. 31, no. 4, pp. 44–50, Jul. 2014.

[28] M. Luukkainen, A. Vihavainen, and T. Vikberg, ‘‘Three years of design-

based research to reform a software engineering curriculum,’’ in Proc. 13th

Annu. Conf. Inf. Technol. Educ. (SIGITE), 2012, pp. 209–214.

[29] K. Falkner, R. Vivian, and N. J. Falkner, ‘‘Identifying computer science

self-regulated learning strategies,’’ in Proc. Conf. Innov. Technol. Comput.

Sci. Educ. (ITiCSE), 2014, pp. 291–296.

[30] M. Marques and S. F. Ochoa, ‘‘Improving teamwork in students software

projects,’’ in Proc. IEEE 27th Conf. Softw. Eng. Educ. Training (CSEE T),

Apr. 2014, pp. 99–108.

[31] L. F. Capretz and F. Ahmed, ‘‘A call to promote soft skills in software

engineering,’’ Psychol. Cogn. Sci. J., vol. 4, pp. e1–e3, Aug. 2018.

[32] Y. Sedelmaier and D. Landes, ‘‘SWEBOS—The software engineering

body of skills,’’ Int. J. Eng. Pedagogy, vol. 5, pp. 20–26, Feb. 2015.

[33] D. M. C. Nascimento, C. F. G. Chavez, and R. A. Bittencourt,

‘‘The adoption of open source projects in engineering education:

A real software development experience,’’ in Proc. IEEE Frontiers Educ.

Conf. (FIE), Oct. 2018, pp. 1–9.

[34] Z. Hu, Y. Song, and E. F. Gehringer, ‘‘Open-source software in class:

Students’ common mistakes,’’ in Proc. 40th Int. Conf. Softw. Eng., Softw.

Eng. Educ. Training (ICSE-SEET), 2018, pp. 40–48.

[35] G. H. L. Pinto, F. F. Filho, I. Steinmacher, and M. A. Gerosa, ‘‘Training

software engineers using open-source software: The professors’ perspec-

tive,’’ in Proc. IEEE 30th Conf. Softw. Eng. Educ. Training (CSEE T),

Nov. 2017, pp. 117–121.

[36] T. M. Smith, R. McCartney, S. S. Gokhale, and L. C. Kaczmarczyk,

‘‘Selecting open source software projects to teach software engineering,’’

in Proc. 45th ACM Tech. Symp. Comput. Sci. Educ. (SIGCSE), 2014,

pp. 397–402.

[37] R. Simpson and T. Storer, ‘‘Experimenting with realism in software engi-

neering team projects: An experience report,’’ in Proc. IEEE 30th Conf.

Softw. Eng. Educ. Training (CSEE T), Nov. 2017, pp. 87–96.

[38] C. Szabo, ‘‘Student projects are not throwaways: Teaching practical soft-

ware maintenance in a software engineering course,’’ in Proc. 45th ACM

Tech. Symp. Comput. Sci. Educ. (SIGCSE), 2014, pp. 55–60.

[39] I. Richardson, L. Reid, S. B. Seidman, B. Pattinson, and Y. Delaney,

‘‘Educating software engineers of the future: Software quality research

through problem-based learning,’’ inProc. 24th IEEE-CSConf. Softw. Eng.

Educ. Training (CSEE T), May 2011, pp. 91–100.

[40] D. Graziotin and P. Abrahamsson, ‘‘Making sense out of a jungle of

JavaScript frameworks,’’ in Product-Focused Software Process Improve-

ment (Lecture Notes in Computer Science), J. Heidrich, M. Oivo,

A. Jedlitschka, and M. T. Baldassarre, Eds. Berlin, Germany: Springer,

2013, pp. 334–337.

[41] F. S. Ocariza, K. Pattabiraman, and A.Mesbah, ‘‘Detecting Inconsistencies

in JavaScriptMVC applications,’’ inProc. IEEE/ACM37th IEEE Int. Conf.

Softw. Eng., vol. 1, May 2015, pp. 325–335.

[42] K. Peguero, N. Zhang, and X. Cheng, ‘‘An empirical study of the frame-

work impact on the security of JavaScript Web applications,’’ in Proc. Int.

World Wide Web Conf. Steering Committee, Companion Web Conf., Lyon,

France, 2018, pp. 753–758.

[43] A. Pano, D. Graziotin, and P. Abrahamsson, ‘‘Factors and actors leading to

the adoption of a JavaScript framework,’’ Empirical Softw. Eng., vol. 23,

pp. 3503–3534, Dec. 2018.

[44] M. Rashid, ‘‘System level approach for computer engineering education,’’

Int. J. Eng. Educ., vol. 31, no. 1, pp. 141–153, 2015.

[45] M. Rashid, ‘‘A methodology for the development of competencies

required by industry,’’ Int. J. Adv. Res. Comput. Commun. Eng., vol. 3,

pp. 7851–7856, Sep. 2014.

[46] V. Ribaud and P. Saliou, ‘‘The cost of problem-based learning:

An example in information systems engineering,’’ in Proc. 26th Int. Conf.

Softw. Eng. Educ. Training (CSEE T), May 2013, pp. 259–263.

[47] H. J. C. Ellis, R. A. Morelli, T. R. D. Lanerolle, and G. W. Hislop,

‘‘Holistic software engineering education based on a humanitarian open

source project,’’ in Proc. 20th Conf. Softw. Eng. Educ. Training (CSEE T),

Jul. 2007, pp. 327–335.

[48] F. Ahmed, L. F. Capretz, S. Bouktif, and P. Campbell, ‘‘Soft skills

and software development: A reflection from the software indus-

try,’’ Jul. 2015, arXiv:1507.06873. [Online]. Available: https://arxiv.

org/abs/1507.06873

[49] C. Turhan and I. Akman, ‘‘Employability of IT graduates from the indus-

try’s perspective: A case study in Turkey,’’ Asia Pacific Educ. Rev., vol. 14,

pp. 523–536, Dec. 2013.

[50] R. Baldwin, D. J. Finch, M. Zehner, and L. K. Hamilton, ‘‘An exploratory

study of factors affecting undergraduate employability,’’ Educ. Training,

vol. 55, pp. 681–704, Sep. 2013.

[51] A. Radermacher and G. Walia, ‘‘Gaps between industry expectations and

the abilities of graduates,’’ in Proc. 44th ACM Tech. Symp. Comput. Sci.

Educ. (SIGCSE), 2013, pp. 525–530.

[52] A. M. Moreno, M. I. Sanchez-Segura, F. Medina-Dominguez, and

L. Carvajal, ‘‘Balancing software engineering education and industrial

needs,’’ J. Syst. Softw., vol. 85, no. 7, pp. 1607–1620, Jul. 2012.

[53] D. Joseph, S. Ang, R. H. L. Chang, and S. A. Slaughter, ‘‘Practical

intelligence in IT: Assessing soft skills of IT professionals,’’ Commun.

ACM, vol. 53, pp. 149–154, Feb. 2010.

[54] L. F. Capretz, ‘‘Bringing the human factor to software engineering,’’ IEEE

Softw., vol. 31, no. 2, p. 104, Mar. 2014.

117542 VOLUME 7, 2019



D. Oguz, K. Oguz: Perspectives on the Gap

[55] M. Bailey, C. Baillie, J. Impagliazzo, D. M. Riley, and G. D. Catalano,

‘‘Special session-not many women in engineering—So why should i care?

Bridging gender gaps and stereotypes,’’ inProc. 36th Annu. Conf. Frontiers

Educ., Oct. 2006, p. 1.

[56] B. Benedict, D. Verdin, R. Baker, A. Godwin, and A. Thielmeyer,

‘‘I don’t FIT the stereotype, but i see myself as an engineer:

First-year engineering students’ attitudes and beliefs about their engineer-

ing identities,’’ in Proc. IEEE Frontiers Educ. Conf. (FIE), Oct. 2018,

pp. 1–7.

[57] R. McCord, ‘‘Bazinga! You’re an engineer. . . you’re_! A qualitative study

on the media and perceptions of engineers,’’ in Proc. ASEE Annu. Conf.

Expo., 2013, pp. 1–20.

[58] E. A. Eschenbach, M. Virnoche, E. M. Cashman, S. M. Lord, and

M. M. Camacho, ‘‘Proven practices that can reduce stereotype threat in

engineering education: A literature review,’’ in Proc. IEEE Frontiers Educ.

Conf. (FIE), Oct. 2014, pp. 1–9.

[59] F. Gurcan and C. Kose, ‘‘Analysis of software engineering industry needs

and trends: Implications for education,’’ Int. J. Eng. Educ., vol. 33, no. 4,

pp. 1361–1368, Feb. 2017.

[60] T. C. Lethbridge, ‘‘Priorities for the education and training of software

engineers,’’ J. Syst. Softw., vol. 53, no. 1, pp. 53–71, 2000.

[61] A. Radermacher, G. Walia, and D. Knudson, ‘‘Investigating the skill gap

between graduating students and industry expectations,’’ in Proc. Compan-

ion 36th Int. Conf. Softw. Eng. (ICSE), 2014, pp. 291–300.

DAMLA OGUZ received the B.S. degrees in soft-

ware engineering and industrial systems engineer-

ing and the M.S. degree in computer engineering

from the Izmir University of Economics, in 2008,

2009, and 2012, respectively, and the Ph.D. degree

from joint Paul Sabatier University, France, and

Ege University, Turkey, in 2017.

She was a Research Assistant with the Depart-

ment of Computer Engineering, Izmir Institute of

Technology, from 2009 to 2017. Since 2017, she

has been an Assistant Professor with the Department of Software Engineer-

ing, Yasar University, Turkey. Her research interests include query optimiza-

tion in large-scale distributed environments, software engineering education,

and data mining.

KAYA OGUZ (M’10) received the B.S. degree in

software engineering from the Izmir University

of Economics, Izmir, Turkey, in 2007, the M.S.

degree in computer games technology from the

University of Abertay Dundee, Scotland, U.K.,

in 2009 (for which he received the scholarship

from the Izmir University of Economics), and the

Ph.D. degree in information technologies from

Ege University, Izmir, Turkey, in 2016.

He was a Research Assistant with the Izmir

University of Economics, from 2009 to 2011. He was a Lecturer with Ege

University. He has taught several courses with the Software and Computer

EngineeringDepartment as a Guest Lecturer, Izmir University of Economics.

In 2017, he has joined the Department of Computer Engineering, Izmir

University of Economics, as an Assistant Professor. His research interests

include graph theory, procedural content generation for computer games,

software engineering education, and medical imaging analysis.

Dr. Oguz has been a member of ACM, since 2010.

VOLUME 7, 2019 117543


	INTRODUCTION
	AN OVERVIEW OF SOFTWARE ENGINEERING
	PERSPECTIVES ON THE GAP
	SELF ANALYSIS OF GROUPS
	THE INDUSTRY
	THE ACADEMIA
	STUDENTS AND SOFTWARE ENGINEERS (SSE)

	CAUSES OF THE GAP
	THE SOFT SKILLS
	REALISM IN COURSE PROJECTS
	INDUSTRIAL TRAINING


	INTERVIEWS, QUESTIONNAIRES, SURVEYS
	THE QUESTIONNAIRE
	INTERVIEWS WITH STUDENTS AND RECENT GRADUATES
	INTERVIEWS WITH ACADEMICS
	INDUSTRY REQUIREMENTS

	MIND THE GAP
	THE SOFTWARE INDUSTRY
	THE ACADEMIA
	THE STUDENTS AND RECENT GRADUATES
	MINDING THE GAP

	CONCLUSION
	REFERENCES
	Biographies
	DAMLA OGUZ
	KAYA OGUZ


