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Abstract

The fields of machining learning and artificial intelligence are rapidly expanding, impacting nearly every technological

aspect of society. Many thousands of published manuscripts report advances over the last 5 years or less. Yet materials

and structures engineering practitioners are slow to engage with these advancements. Perhaps the recent advances that are

driving other technical fields are not sufficiently distinguished from long-known informatics methods for materials, thereby

masking their likely impact to the materials, processes, and structures engineering (MPSE). Alternatively, the diverse nature

and limited availability of relevant materials data pose obstacles to machine-learning implementation. The glimpse captured

in this overview is intended to draw focus to selected distinguishing advances, and to show that there are opportunities for

these new technologies to have transformational impacts on MPSE. Further, there are opportunities for the MPSE fields to

contribute understanding to the emerging machine-learning tools from a physics basis. We suggest that there is an immediate

need to expand the use of these new tools throughout MPSE, and to begin the transformation of engineering education that

is necessary for ongoing adoption of the methods.
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Introduction andMotivation

Since 2012, society has seen drastic improvements in the

fields of automated/autonomous data analysis, informatics,

and deep learning (defined later). The advancements stem

from gains in widespread digital data, computing power,

and algorithms applied to machine-learning (ML) and

artificial intelligence (AI) systems. Here, we distinguish

the term ML as obtaining a computed model of complex

non-linear relationships or complex patterns within data

(usually beyond human capability or established physics

to define), and AI as the framework for making machine-

based decisions and actions using ML tools and analyses.

Both of these are necessary but not sufficient steps for

attaining autonomous systems. Autonomy requires at least

three concurrently operating technologies: (i) perception or

sensing a field of information and making analyses (i.e.,

ML); (ii) predicting or forecasting how the sensed field will

evolve or change over time; and (iii) establishing a policy

or decision basis for a machine (robot) to take unsupervised

action based on (i) and (ii). We note that item (ii) in the
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aforementioned list is not often discussed with respect to

ML since the technical essence of item (ii) resides within

the realm of control theory/control system engineering.

Nonetheless, these control systems are increasingly using

both models and ML/AI for learning the trajectories of the

sensed field evolution and generating the navigation policy,

going beyond ML for interpretation of the sensed field [1–

3] In this context, we also note that making predictions or

forecasts about engineered systems is a core strength of

the materials, processes, and structures engineering (MPSE)

fields of practice. As we discuss later, that core strength will

be essential to leverage for both bringing some aspects of

ML/AI tools into MPSE and for aiding with understanding

the tools themselves. Thus, a natural basis exists for a

marriage between ML or data science and MPSE for

attaining autonomous materials discovery systems.

From another perspective, in engineering and materials,

“Big Data” often refers to data itself and repositories for it.

However, more vexing issues are tied to myriad sources of

data and the often sparse nature of materials data. Within

current MPSE practices, the scale and velocity of acquiring

data, the veracity of data, and even the volatility of the

data are additional challenges for practitioners. These raise

the question of how to analyze and use MPSE data in

a practical manner that supports decisions for developers

and designers. That challenge looms large since the data

sources and their attributes have defied development within

a structured overall ontology, thus leaving MPSE data

“semi-structured” at best. Here too ML/AI technologies

are likely transformational for advancing new solutions to

the long-standing data structure challenge. By embracing

ML/AI tools for dealing with data, one naturally evolves

data structures associated with the use of ML tools, related

both to the input form and the output. Further, when the

tools are employed, one gains insights in the sufficiency of

data for attaining a given level of analysis. Finally, since

the tools for ML and AI are primarily being developed to

treat unstructured data, there may be gains in understanding

the broad MPSE data ontology by employing them within

MPSE.

Materials data have wide-ranging scope and often

relatively little depth. In this context, depth can be

interpreted as the number of independent observations of

the state of a system. The lack of data depth stems from not

only the historically high costs and difficulty of acquiring

materials data, especially experimentally, but also from the

nature of the data itself (i.e., small numbers (<100) of

mechanical tests, micrographs or images, chemical spectra,

etc.). Yet utilizing data to its fullest is a key aspect of

advanced engineering design systems. Consequently, the

emerging ML/AI technologies that support mining and

extracting knowledge from data may form an important

aspect of future data, informatics, and visualization aspects

of engineering design systems, provided that the ML/AI

tools can be evolved for use within more limited data sets.

That evolution must include modeling the means/systems

for acquiring data itself. That is, because the data are so

expensive and typically difficult to acquire, the data must

exist within model frameworks such that models permit

synthesizing data that is related to that which is actually

acquired, or fills gaps in the data to facilitate further analysis

and modeling. Having such structures would permit ML/AI

tools to form rigorous relationships between these types

of data, measured and synthesized. Most likely, MPSE

practitioners will need to evolve methods such that they are

purposefully designed to provide the levels of data needed

for ML/AI within this data–model construct.

The role of ML/AI in the broader context of integrated

computational materials engineering (ICME) is still evolv-

ing. Although materials data has been a topic of interest in

MPSE for some time [4, 5] ML/AI was not called out in

earlier ICME reports and roadmaps [6, 7] or in the Materi-

als Genome Initiative (MGI) that incorporates ICME in the

MPSE workflow [8, 9]. However, it is an obvious compo-

nent of a holistic ICME approach, supporting MGI goals in

data analytics and experimental design as well as materi-

als discovery through integrated research and development

[9]. As detailed in the discussion below, ML/AI is rapidly

being integrated into ICME and MGI efforts, supporting

accelerated materials development, autonomous and high-

throughput experiments, novel simulation methodologies,

advanced data analytics, among others.

ML and AI technologies already impact our every-day

lives. However, as practitioners of the physical sciences, we

may ask what has changed, or why should a scientist be

concerned now with ML and AI technologies for MPSE?

Aren’t these technologies simply sophisticated curve fits

or “black box” tools? Is there any physics there? Less

skeptically and more objectively, one might also ask what

are the important achievements from these tools, and how

are those achievements related to familiar physics? Or,

how can one best apply the newest advances in ML and

AI to improve MPSE results? Speculating still further,

why are there no emerging AI-based engineering design

systems that recognize component features, attributes, or

intended performance to make recommendations about

directions for final design, manufacturing processes, and

materials selections or developments? Such systems are

possible over the next 20 years. Indeed, Jordon and Mitchell

suggest that “. . . machine learning is likely to be one of the

most transformative technologies of the 21st century. . . ”

[10] and therefore cannot be neglected in any long-range

development of engineering practices.

The present overview is intended to serve as a selective

introduction to ML and AI methods and applications, as

well as to give perspective on their use in the MPSE fields,
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especially for modeling and simulation. The computer

science and related research communities are producing

in excess of 2000 papers per year over the last 3 years

(more than 15,000 in the last decade) on new algorithms

and applications of ML technologies.1 One cannot hope

to offer a comprehensive review and discussion of these

in a readable introductory review. As such, we examined

perhaps 10% of recent literature and chose to highlight

a small fraction of the papers examined. These reveal

selected aspects of the field (perhaps some of which are

lesser known) that we believe should capture the attention

of MPSE practitioners, knowing that the review will be

outdated upon publication.

Selected Context fromOutside of MPSE

Readers may already be familiar with applications of

ML- and AI-based commercial technologies, e.g., music

identification via real-time signal processing on commodity

smartphone hardware; cameras having automatic facial

recognition; and recommendation systems for consumers

that inform users about movies, news stories, or products

[11, 12]. Further, AI technologies are used to monitor

agricultural fields for insect types and populations, to

manage power usage in computer server centers exceeding

human performance, and are now being deployed in driver-

assisted and driverless vehicles [13–16].

Just since 2016, a data-driven, real-time, computer vision

and AI system has been deployed to identify weeds

individually in agricultural fields and to locally apply

herbicides, as a substitute for broadcast spraying [17].

Google switched its old “rules-based” language translation

system to a deep-learning neural network-based system,

realizing step-function improvements in the quality of

translations, and they continue to grow that effort and

many others around deep learning, abandoning rules-

based systems [18, 19]. The games of “Go,” “Chess,”

and “Poker” have been mastered by machines to a level

that exceeds the play of the best human players [20–

23]. Perhaps more important to MPSE, the new power of

deep-learning networks was vividly shown in 2012, when

researchers not only made step-function improvements in

image recognition and classification but also surprisingly

discovered that deep networks could teach themselves in

an unsupervised fashion [24, 25]. Most recently, a self-

taught unsupervised gaming machine exceeded the playing

capability of the prior “Go” champion, also a machine

that was developed with human supervised learning [26].

For selected instances, the machines can now even self-

teach tasks better than the best-skilled human experts! The

1As gleaned from Google Scholar Internet searches by year.

powers and applications of ML/AI tools are expanding so

rapidly that it is hard to envisage any aspect of MPSE or

multiscale modeling and simulation, or engineering overall,

that will not be impacted over the next decade. Our primary

challenge is to discern how such capabilities can be best

integrated into MPSE practices as standard methods, and for

implementing them in appropriate ways as soon as possible.

Background and Selected Terms

To better understand aspects of the current ML/AI

revolution, it is useful to consider selected background

and terms from literature about the field. AI as a field of

study has been around since the middle 1950s; however,

it is the recent growth in data availability, algorithms, and

computing power that have brought a resurgence to the field,

especially for ML based on deep-learning neural networks

(DLNN) [25, 27]. In practice, it has become important

to distinguish the term “AI,” that is now most commonly

associated with having machines achieve specific tasks

within a narrow domain or discipline, from the term

“artificial general intelligence” (AGI) that embodies the

original and futuristic goal of having machines behave as

humans do. The former is in the present while the latter is

likely beyond foreseeable horizons.

ML has long been used for non-linear regression, to find

patterns in data, and served as one approach for achieving

AI goals [28, 29]. Three types of learning are commonly

recognized as “supervised” where the system learns from

known data; “unsupervised” where the unassisted system

finds patterns in data; and, “reinforcement” learning where

the system is programmed to make guesses at solutions

and is “rewarded” in some way for correct answers, but

is offered no guidance about incorrect answers. All three

modes are used at today’s frontiers.

For the purposes of this overview, “data science” is

a general term that implies systematic acquisition and

analysis, hypothesis testing, and prediction around data.

The field thereby encompasses wide-ranging aspects of

the information technologies employed in data acquisition,

fusion, mining, forecasting, and decision-making [30]. For

example, all aspects of data science would be employed for

autonomous systems. Alternatively, materials “informatics”

is focused on analysis of materials data to modify its form

and to find the most effective use of the information; i.e.

materials informatics is a subset of materials data science.

Aspects of these concepts are shown schematically in Fig. 1.

Data sciences, informatics, and some ML technologies are

related to each other, and selectively were used in research

and engineering for over half a century. However, until

the last decade, their impact was minimal on materials

and processes development, structures engineering, or
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Fig. 1 Data science may be considered as the technologies associated

with acquiring data, forming and testing hypotheses about it, and

making predictions by learning from the data. Five domains of activity

are evident: (1) data acquisition technologies; (2) processing the data

and making analyses of it; (3) building models and making forecasts

from the data; (4) decision-making and policies driven from the data;

and (5) visualizing and presenting the data and results. “Informatics”

has primarily been involved with items 2 and 3 and has expanded

slightly into items 1 and 5. ML principally encompasses items 1–3

and 5. AI usually encompasses items 1–4, while placing emphasis on

item 4

the experimental methods used for parameterizing and

verifying models. The challenges in MPSE are simply

too complex and data was too limited and expensive to

obtain. Now, studies do show that the ML technologies can

find relationships, occasionally discover physical laws, and

suggest functional forms that may otherwise be hidden to

ordinary scientific study, but these are few [29, 31].

Historical efforts in ML attempted uses of “artificial

neural networks” (ANN or NN) to mimic the neural

connections and information processing understood to take

place in human brains (biological neural networks or

BNN). In a fashion that loosely mimics the human brain,

these networks consist of mathematical frameworks that

define complex, non-linear relationships between input

information and outputs. Generally, for all network learning

methods, the ANN contains layers of nodes (matrices) that

hold processed data that was transformed by the functional

relationship that connects the nodes. A given node receives

weighted inputs from a previous layer, performs an

operation to adjust a net weight, and passes the result to

the next layer. This is done by forming large matrices

of repeatedly applied mathematical functions/transforms

connecting nodes, and expansion of features at each node.

To use the network, one employs “training data” of known

relationship to the desired outputs, to “teach” the networks

about the relationships between known inputs and favorable

outputs (the weights). By iteration of the training data, the

networks “learn” to assign appropriate weighting factors

to the mathematical operations (linear, sigmoidal, etc.) that

make the connections, and to find both strong and weak

relationships within data.

Importantly, the early networks typically had only

one-to-three hidden layers between the input and output

layers, and a limited number of connections between

“neurons;” thus, they were not so useful for AI-based

decision-making. Until recently, computers did not have

the capacity and algorithms were underdeveloped to permit

any deeper networks or significant progress on large-

scale challenges [28, 32–34]. The techniques fell short

of today’s deep-learning tools connected to AI decision-

making. Consequently, with few exceptions, the historical

technical approaches for achieving AI, even within specific

applications, have been arduously tied to “rules,” requiring

human experts to delineate and update the rules for ever-

expanding use cases and learned instances—that is until

now.

Generally speaking, today’s ANN have changed com-

pletely. The availability of vast amounts of digital data for

training; improvements to algorithms that permit new net-

work architectures, ready training, and even self-teaching;

and parallel processing and growth in computing power

including graphics processor unit (GPU) and tensor process-

ing unit (TPU) architectures have all led to deep-learning

neural networks DLNN or “deep learning” (DL). Such

DLNN often contain tens-to-thousands of hidden layers,

rather than the historical one-to-three layers (thus the term

“deep learning”). These advanced networks can contain a

billion nodes or more, and many more connections between

nodes [19, 25]. Placing this into perspective, the human

brain is estimated to contain on the order of 100-to-1000

trillion connections (synapses) between less than 100 bil-

lion neurons. By comparison, today’s best deep networks

are still 4–5 orders of magnitude smaller than a human

brain. However, BNN still serve as models for the architec-

tures being explored, and being only 4–5 orders of magni-

tude smaller than a human BNN still provides tremendous,

unprecedented capabilities.

Within DL technologies, there are several use-case-

dependent architectures and implementations that provide

powerful approaches to different AI domains. Those
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based on DLNN typically require extensive data sets

for training (tens of thousands to millions of annotated

instances for training). As mentioned previously, this

presents a major challenge for their use in MPSE that

most likely will have to be mitigated using simulated

data in symbiosis with experimentally acquired data.

“Convolutional and de-convolutional or more appropriately

transposed convolutional neural networks” (CNN and

TCNN, respectively) and their variations have three

important network architecture attributes including 3D

volumes of node arrays and deep layers of these arrays, local

connectivity such that only a few 10s of nodes communicate

with each other at a time, and shared weights for each

unit of connected nodes. These attributes radically speed up

training, permitting the all-important greater depths. During

use, the mathematical convolution (transposed convolution)

operation allows concurrent learning and use of information

from all of the locally narrow but deep array elements.

Architecturally, the networks roughly mimic the BNN of the

human eye, and have proven their effectiveness in image

recognition and classification tasks, now routinely beating

human performance in several tasks [34–37].

Several even more advanced DLNN architectures

emerged recently including “Recurrent” (RNN) that have

taken on renewed utility in their use for unsupervised lan-

guage translation [38], “Regional” (R-CNN) used for image

object detection, [39] and “Generative Adversarial Net-

works” (GAN) [40] for unsupervised learning and training-

data reduction, to name but a few (for overviews and

reviews, see work by Li and by Schmidhuber [41–43]). Each

of these architectures adapts DL to different task domains.

For example, language translation and speech recognition

benefit by adding a form of memory for time series analysis

(RNN). GAN include simulated-plus-unsupervised training,

or S + U learning, for which simulated data is “corrected”

using unlabeled real data, as shown in Fig. 2. Reinforce-

ment learning technology, of which GAN are a subset, was

used for the self-taught machine that mastered “Go” and has

been used for the most recent language translation methods

[26, 44]. Further, in a task that has similarities to aspects

of MPSE, S + U training was used to correct facial recog-

nition systems for the effects of pose changes, purely from

simulated data [45, 46]. Given the widely expanding appli-

cations of DL, there is a high likelihood that architectures,

algorithms, and methods for training will continue to evolve

rapidly over the next 3–5 years.

Perhaps the most challenging goal for ML/AI methods

is to continue the expansion of autonomous systems, espe-

cially for MPSE research and development [47–52]. Slowly,

these systems are making their way into life sciences, drug

discovery, and the search for new functional materials [47,

52, 53]. ML enabled progress in materials composition

discovery does not of-and-to-itself imply mastery of the

Fig. 2 One may envisage producing materials microstructure models

using S + U learning. In the schematic, numerous unlabeled real

images are fed into a “discriminator” CNN that learns from both

real and refined synthetic images, and classifies images from the

refiner as real or fake. The “refiner” is a CNN that operates on

simulated microstructure images, enhancing them toward the realism

of measured micrographs. The simulations may be used to sample

more microstructure spaces, or nuances of microstructure, that are

difficult or expensive to measure experimentally, while the measured

micrographs enhance the simulated images adding realism. Adapted

from [45]

processing and microstructure design space. For these lat-

ter design challenges, new autonomous tools are needed,

largely based on imaging sciences being better coupled to

high-throughput experimentation. Most recently, Zhang et.

al. took steps toward autonomy for materials characteriza-

tion by using ML for dynamic sampling of microstructure,

while Kraus et. al. demonstrated the power of automatic

classifiers for biological images [54, 55]. Further, given

the advances in deep learning and crowd sourcing used for

annotating image and video data [56–58], perhaps the seeds

have been sewn for long-range development of systems

to autonomously map ontologies for materials data, while

keeping them continuously updated. One may envisage

that when combined with DL for computer vision, long-

range developments should permit autonomous materials

characterization, and ultimately to the mastery of mate-

rials hierarchical microstructure for new materials design

through autonomous microstructure search.

Selected Applications and Achievements
in Materials and Structures

For the case of multiscale materials and structures, we

consider applications of ML/AI techniques in two main

areas. First, selected examples illuminate accomplishments

for materials discovery and design. While not necessarily

noted in the works, these tie directly to MGI and IMCE

goals. These are followed by some examples applying

ML/AI methods in structures analysis. Here again, the MGI

goal of accelerating materials development, deployment,
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and life-cycle sustainment directly ties to the structures

analysis aspect of ML/AI.

Materials Discovery

For about the last two decades, ML for materials structure-

property relationships has used comparatively mature

informatics methods. For example, principal component

analysis (PCA) operating upon human-based materials

descriptors can lend insights into data. For PCA, the

descriptor space is transformed using mathematics to

maximize data variance in the descriptor dependencies,

yielding a new representation for finding relationships.

The new representation usually involves a dimensionality

reduction to the data resulting in a loss of more nuanced

aspects of the data. Past efforts used microstructure

descriptors (in a mean-field sense), such as average grain

size, constituent phase fractions or dimensions, or material

texture, and sought to relate these to mean-field properties,

such as elastic modulus or yield stress [59, 60]. In

the absence of high-throughput computational tools for

obtaining materials kinetics information, structure-property

relationships, and extreme-value microstructure influences,

other studies resorted to experimental data to establish or to

narrow the search domains for new materials [61–70].

Our expectation is that these approaches will also become

more efficient, reliable, and prevalent in the coming decade

or more, particularly since open data, open-source com-

puting methods, and technology businesses are becoming

available to support the methods and approaches [71–74].

Further, advancements in materials characterization capabil-

ities, process monitoring and sensing methods, and software

tools that have taken place over the previous 20 years

[75] are giving unprecedented access to 3- and 4D mate-

rials microstructure data, and huge data sets pertaining to

factory-floor materials processing. Such advancements sug-

gest that the time is ripe for bringing ML/DL/AI tools into

the materials and processes domain.

Mechanics, Mechanical Properties, and Structures
Analysis

Historically, multiscale modeling, structures analysis, and

structures engineering have all benefited from ML/AI tools.

Largely because of their general ability to represent non-

linear behaviors, different forms of ANN architectures have

been used since the 1990s to model materials constitutive

equations of various types [76, 77], optimize composites

architectures [78], and to represent hysteresis curves or non-

linear behavior in various applications (such as fatigue) [79–

81]. The closely related field of non-destructive evaluation

also benefited from standard ANN techniques [82], though

this field is not treated herein. Further, these methods were

used for more than two decades in applications such as

active structures control [83–85], and even for present-day

flight control of drones [86]. Today, DL is bringing entirely

new capabilities to structures and mechanics analysis.

In more recent work, ML methods are being used

to address challenging problems in non-linear materials

and dynamical systems and to evolve established ANN

and informatics methods [87–90]. Further, newer deep

learning and other powerful data methods are beginning

to be employed. For example, Versino et. al. showed

that symbolic regression ML is effective for constructing

constitutive flow models that span over 16 orders of

magnitude in strain rate [91]. Symbolic regression methods

involve fitting arbitrarily complex functional forms to data,

but doing so under constraints that penalize total function

complexity, thus resulting in the simplest sufficient function

to adequately fit the data [92]. Integrated frameworks are

also beginning to appear [93]. These suggest a promising

future that we consider more fully in what follows.

A Perspective on the Unfolding Future

Looking forward, it is appropriate to consider the question,

what has changed in ML/AI technologies, and what has

fostered the explosive growth of this field? Also, how might

these advancements impact MPSE? This section considers

these questions and provides selected insights into the

prospects for ML/DL/AI and their associated technologies.

The perspective focuses on examples of using these tools

for materials characterization, model development, and

materials discovery, rather than a complete assessment of

ML, DL, AI, and data science or informatics. Further, the

emphasis is on achievements from 2015 to the present, with

many examples from the last year or so.

Imaging and Quantitative Understanding

Most recently, computer vision tools, specifically CNN/DL

methods, were applied to microstructure classification, thus

forming initial building blocks for objective microstruc-

ture methods and opening a pathway to advanced AI-based

materials discovery [63, 94–98]. By adopting CNN tools

developed for other ML applications outside of engineering,

these researchers were able to objectively define microstruc-

ture classes and automate micrograph classification [95,

97, 98]. Figure 3 shows an example of the methods being

applied to correlate visual appearance to processing condi-

tions for ultrahigh carbon steel microstructures. Today, even

while they remain in their infancy, such methods are demon-

strated to have about a 94% accuracy in classifying types of

microstructure, and they rival human capabilities for these

challenges [94, 97].
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Fig. 3 A t-SNE map (see L. van der Maaten and G. Hinton, Visual-

izing data using t-SNE, Jrnl. Mach. Learn. Res., 9 (2008), p. 2579.)

of 900 ultrahigh carbon steel microstructures in the database by Hecht

[99] showing a reduced-dimensionality representation of multi-scale

CNN representation of these microstructures [94]. Images are grouped

by visual similarity. The inset at the bottom right shows the annealing

conditions for each image: annealing temperature is indicated by the

color map and annealing time is indicated by the relative marker size.

The map is computed in an unsupervised fashion from the structural

information obtained from the CNN; microstructures having similar

structural features tend to have similar processing conditions. This is

especially evident tracing the high-temperature micrographs from the

bottom of the figure to the top right: as the annealing time increases,

the pearlite particles also tend to coarsen. Note—the Widmanstatten

structures at the left resulting from similar annealing conditions were

formed during a slow in-furnace cooling process, as opposed to the

quench cooling for most of the other samples

These early materials image classifiers are also showing

promise for improved monitoring of manufacturing pro-

cesses, such as powder feed material selection for additive

manufacturing processes [100, 101]. Over the next 20 years,

autonomous image classification will be common, with the

classifiers themselves being trained in an unsupervised fash-

ion, choosing the image classes without human intervention,

thereby opening entire new dimensions to the MGI/ICME

paradigms [34]. This means that materials and process

engineers are likely to have machine companions monitor-

ing all visual- and image-based aspects of their discipline,

in order to provide guidance to their decision-making,

if not making the decisions autonomously. In the com-

ing decades, machine-based methods may have aggregated

sufficient knowledge to autonomously inform engineers

without having any prior knowledge of the image data col-

lection context. They will likely operate autonomously to

identify outliers in production systems or other data. Thus,

one should expect radical changes to materials engineering

practices, especially those based upon image data.

Further, current work by DeCost, Holm, and others

is beginning to address the challenge of materials image

segmentation. While the use of DL and CNN methods has

recently made great strides for segmenting and classifying

pathologies in biological and medical imaging [35, 102,

103], the methods are completely new in their application

to materials and structures analysis. Figure 4 shows an

example metal alloy microstructure image segmentation
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Fig. 4 CNN (PixelNet architecture, A. Bansal et. al., Pixelnet: Rep-

resentation of the Pixels, By the Pixels, and for the Pixels, CoRR

(2017). arXiv:1702.06506 [cs.CV]). trained to segment ultrahigh car-

bon steel micrographs. This schematic diagram shows the interme-

diate representations of an ultrahigh carbon steel micrograph [99]

being segmented by the CNN into high-level regions: carbide net-

work (cyan), particle matrix (yellow), denuded zone (blue), and

Widmansttten cementite (green). Such a CNN can support novel auto-

mated workflows in microstructure analysis, such as high-throughput

quantitative measurements of the denuded zone width distribution.

The PixelNet architecture uses the standard convolution and pool-

ing architecture to compute multiscale image features (Conv1–5),

which are up-sampled and concatenated to obtain multiscale high-

dimensional features for each pixel in the input image. A multilayer

perceptron (MLP) classifier operating on these features produces the

final predicted label for each pixel; the entire architecture is trained

end-to-end with no post processing of the prediction maps. Source for

figure: [107]

using a CNN tool. Note how the CNN learns features

with increasing depth (layers) of the network, going from

left-to-right in the image. Given that image segmentation

and quantification (materials analytics) is among the

major obstacles to bringing 3D (and 4D) materials

science tools into materials engineering, the ML methods

represent nascent capabilities that will result in dramatic

advances in 5 years and beyond. Further, current computer

science and methods research is focusing on understanding

the transference capabilities of CNN/DL tools [104].

Transference refers to understanding and building network

architectures that are trained for one type of image class or

data set, and then using the same trained network to classify

completely different types of images/features on separate

data, without re-training.

As the methods mature, there is a high likelihood that the

definitional descriptors for materials hierarchical structure

(microstructure) will also evolve and be defined by the

computational machines, more so than by humans. Those

in turn will need to be integrated with modeling and

simulation methodologies to have the most meaningful

outcomes. That is, since the ML/AI methods are devised

to operate on high-dimensional, multi-modal data, they also

bring new, unfamiliar parameter sets to the MPSE modeling

and simulation communities that define the output from

the analyses. These may bring challenges for engineering

design systems as they seek to establish meaningful data

and informatics frameworks for futuristic designs. For

addressing this nascent challenge, ICME paradigms must

evolve to be better coupled to engineering design.

The DL-based image analysis tools are already being

made available to users via web-based application environ-

ments and open-source repositories that help to lower the

barrier to entry into this new and dynamic field [105, 106].

Recently, at least one company, Citrine Informatics [71],

has formed with the intended purpose of using informatics

and data science tools, together with modern ML tools, to

enhance materials discovery. One may also expect that the

high driving force for having such tools available for med-

ical imaging analysis, and their use for other aspects of

computer vision, will keep these types of tools emerging

at a rapid pace. This implies that materials and structures

practitioners might be well advised to keep abreast of the

advancements taking place outside of the materials and

structures community, and to assure that the progress is

transferred into the MPSE domain.

Materials and Processes Discovery

Computational materials discovery and design, as well as

high-throughput experimental search and data mining, have

been a visible domain of MGI-related research and develop-

ment. These practices too are seeing significant benefit from

current ML/AI tools. Some of these advancements were

recently summarized [108–117]. However, the possibili-

ties for materials compositions, microstructure, and archi-

tectures are vast—beyond human capacity alone to com-

prehensively search, discover, or design. Thus, machine-

assisted and autonomous capabilities are needed to perform

comprehensive search. More recently, much attention has

been given to ML for discovering functional compounds

[49, 53, 108, 118–121]. Some research efforts computed

ground states, selected ground-state phase diagrams, and

physical properties for comparatively simple (up to quater-

nary) classes of inorganic compounds, while other efforts

computed chemical reactivity and functional response for

organic materials [108, 118, 122–124]. Notable studies

demonstrate that machine learning applied to appropriate

experimental data is more reliable or convenient than DFT-

based simulations [125–128]. Nevertheless, exploring the

http://arxiv.org/abs/1702.06506
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complexity of materials and processes for finite temper-

atures, extending into kinetics-driven materials states or

realizing hierarchical materials structures and responses,

requires so far unachieved search capability over many more

spatiotemporal parameters. One needs to be able to effi-

ciently acquire information and then to perform search and

classification, over vast portions of multiscale materials

chemistry and kinetics (transport), structure (crystallogra-

phy and morphology), response (properties) space. The next

essential building block for widespread materials discovery

is linking the tools for composition search to synthesis, pro-

cessing, and materials response [50]. In these respects, the

MGI is only in its infancy.

What is needed for achieving those linkages in an objec-

tive fashion is to build them upon spatiotemporal hierar-

chical microstructure (from electrons and atoms to mate-

rial zones/features and engineering designs). Most likely,

ML/DL/AI tools will play a pivotal role in establishing

these complex relationships. However, the MPSE commu-

nity remains limited by the relatively small databases of

microstructure (spatiotemporal) information in comparison

to the requirements that appear to be necessary for an

ML/AI-driven approach. One clear pathway for circum-

venting that formidable barrier is to take advantage of the

considerable capabilities for materials modeling and simu-

lation that are now well established within MPSE. Methods

such as the S +U GAN technique discussed previously and

shown in Fig. 2 must be generalized to make full use of

both simulation and experimental data, beyond microstruc-

ture data. This implies that a long-range theme in MPSE

practices (also within the MGI) needs to be centered around

building models for the methods by which data are pro-

duced, thus allowing for the symbiosis between real and

synthetic data that is so powerful in an ML/AI environment.

Having these tools will be a major advantage for complet-

ing the reciprocity relationships between microstructure–

properties–models that are a foundation for MPSE design.

Further, there is a high likelihood that over the next 20 years,

the growth in computer vision and decision-making systems

will make great strides in achieving larger amounts of data

through computational, high-throughput, and autonomous

AI-based systems [51, 53, 129, 130].

As more curated and public databases for materials

information lead to increasing data availability, the methods

and benefits of ML/AI are likely to grow rapidly [131–

138]. Notable are two recent actions that make relevant

materials data more openly available. First is a private

sector entry into the domain of publicly accessible large-

scale materials databases, including an effort to simplify use

of informatics/ML tools. Citrine Informatics has adopted a

business model that supports open-access use of the ML

tools they have deployed, provided that the user data being

analyzed is contributed to the Citrine database. (Citrine’s

tools are also available for proprietary use on a fee basis.)

Second, the Air Force Research Laboratory has posted data

pertaining to additive manufacturing, along with a data-use

challenge, analogous to the Kaggle competitions established

more than a decade ago for data science practitioners [139,

140].

Recent progress using large-scale accessible databases

also shows success in searching for new functional mate-

rials [130, 141–143]. These searches involve computing

compound or molecular structures and screening them for

selected functional properties. Given these successes, it is

hard to imagine functional material development continuing

to be performed in a heuristic manner after the passing of

the next decade.

Far more challenging are searches for (i) synthesis and

process conditions; (ii) materials transformation kinetics;

and (iii) microstructures with responses that satisfy design

requirements. In these areas too, progress is rapid using

data-driven methods and ML techniques. Machine-learning

tools are being applied today to guide chemical synthe-

sis/processing tasks (see next section). However, analogous

frameworks for metals or composites processing are barely

emerging. Ling et. al. demonstrated that process pathways

can be optimally sought using real-time ML methods to

guide experiments [144]. The models not only indicate

what experiment is the next-most-useful one but they also

permit bounding error on the model to indicate how use-

ful an experiment will be. Similar methods were already

developed for optimally sampling microstructure when col-

lecting time-consuming and expensive data, such as electron

backscatter diffraction (EBSD) scans in 3D [54, 145, 146].

From these and other developments, it is neither too difficult

to imagine ways to implement such tools for enhanced high-

throughput data acquisition and learning nor too difficult

to conjecture that the ML-based, high-throughput methods

will markedly expand over the next 10 years. One may

expect that the advancements will lead to both new materi-

als and materials concepts and to more robust bounding of

manufacturing processes for existing materials.

One additional area that is ripe for development is the

connection of ML/DL/AI tools to applications in ICME

and the larger MGI that involve “inverse design.” A cen-

tral theme in ICME is the replacement of expensive (both

in terms of time and resources) experimentation with sim-

ulation, especially for materials development. In effect,

ICME seeks to replace the composition and process search,

or statistical confidence obtained through repeated physi-

cal testing, with those developed through simulation. This

requires that (i) model calibration, (ii) model verification

and validation, and (iii) model uncertainty quantification

(UQ) be carried out in a more complete and systematic

manner than is common within the materials community.

Additionally, ICME applications extend into inverse design
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problems in that the objective is to establish a material

and processing route that optimize a set of properties and

performance criteria (including cost), while most mate-

rial models are material→properties. The design problem

of interest requires inverting the model typically through

numerical optimization. The additional uncertainty quan-

tification requirements and design optimization mean that

the models will be exercised for a large number of times.

For even simple models, this can be very expensive in

terms of computational resources and rapidly becomes com-

putationally intractable for 3D spatio/temporally resolved

simulations. ML can relieve this computational bottleneck

by serving as “reduced order” or “fast acting” models. Once

trained, ML models can be exercised very quickly and mul-

tiple instantiations can be exercised in parallel on typical

computer systems. More importantly, the inverse model

properties→materials can be trained in parallel with the

forward model speeding up the design process. The crit-

ical open-research question for the community becomes

“How do we train ML models for ICME applications

with limited experimental data and how do we ensure

proper UQ?”

Computational Chemistry Methods

The early impacts of ML/DL/AI methods are being

realized today in the fields of computational chemistry,

chemical synthesis, and drug discovery [147–150]. One

compelling demonstration is the power of using machine-

based pre-planning for chemical synthesis [149, 151]. These

applications use ML in a data-mining-like mode to learn the

complex relationships involved in molecular synthesis from

known past experience. Analogous applications are well

underway to search for inorganic materials using computed

large-scale databases and applying ML/AI for learning

complex non-linear relationships between variables [152,

153].

In yet a different mode, the ML methods are also having

an impact on computational quantum chemistry calculations

themselves that are used to predict molecular stability,

reactivity, and other properties. Historically, both quantum

chemistry and density functional theory (DFT) codes are

widely known to be limited by poor computational scaling

(O(N6) and O(N3), respectively) that constrains accessible

system sizes [154]. However, recent work is revealing that

ML/AI methods can learn the many-body wave functions

and force fields, thereby mitigating the need for some

computationally intensive investigations [155–160]. These

methods have just been demonstrated in the past year, and

are some of the many promising frontiers in ML. Clearly,

as these methods are brought in to widespread practice, the

landscape for multiscale materials and structures simulation

will be drastically improved.

Multiscale Mechanics and Properties of Materials
and Structures

Recently, Geers and Yvonnet offered perspectives on the

future of multiscale materials and structures modeling

[161], and McDowell and LeSar did the same for materials

informatics for microstructure-property relationships [162].

Both perspectives pointed out the considerable challenges

remaining in the field. Note however that these authors

did not address the possible role of ML/AI in pushing

the frontier forward, in part because there appears to be

much slower progress in applying ML/AI in these fields.

At the smallest scales, one major emerging application is

the invention of “machine-learning potentials” for atomistic

simulations [163, 164]. These have good prospects for

speeding the development of interatomic potential functions

while improving their reliability and accuracy, especially for

systems that include covalent and ionic bonding.

At coarser scales, there are limited advances emerging

for developing constitutive models [87, 88, 91], modeling

hysteretic response [89], improving reduced order models

[165, 166], and even for optimizing numerical methods

[167]. At still coarser scales, there is research to understand

and model complex dynamical systems and to use ML

methods for dimensionality reduction [168, 169].

Multiscale materials and structures modeling also

includes advanced experimental methods that will benefit

from ML/AI implementations, but the field is in its infancy.

For example, the digital image correlation (DIC) method

has been developed over the last decade to the point that

it is now successfully used to learn constitutive parame-

ters for materials [91, 170, 171]. However, using discrete

dislocations dynamics simulations as a test bed, Papaniko-

laou et. al. recently demonstrated that ML tools can extract

much more information from DIC measurements, suggest-

ing new ways for using the experimental DIC data, espe-

cially in lock-step with simulation [172, 173]. As the ML/AI

methods are better understood by the MPSE community,

one may expect across-the-board advances in experimental

methods, especially for model development, validation, and

uncertainty quantification.

Noteworthy Limitations: Relationships
to Physics, Software, and Education

As this overview suggests, the prospects for ML/AI methods

to bring significant advances to the domain of materials and

structures modeling and simulation are exceptionally high.

Indeed, the field is advancing so rapidly that it is difficult

to estimate how radical the advances may be, and over what

time-frame. More generally, some even suggest that the

prospect of true AGI is on the horizon within the next 10
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years [174], implying that the technology space for MPSE

will simply be unrecognizable by today’s measures more

quickly than anticipated. Another assessment was provided

by Grace et. al. suggesting a longer time horizon for AGI

but nonetheless predicting significant general impacts over

the coming few decades [175] .

In the face of such a radical change and technical

revolution, it is prudent to maintain caution and to be wary

of shortcomings. For example, there remains considerable

debate in the AI community regarding interpretability of

the DL methods and models [176–179]. To many, the DL

methods appear as “black boxes” and in some respects

function as such. While black boxes may be valid solutions

for some applications (e.g., performing repetitive tasks),

they may be unacceptable for others, particularly where the

cost of a wrong answer is high (e.g., flight qualifying an

aerospace component).

Other work points to the questions of reproducibility,

reusability, and robustness of ML/DL/AI methods, espe-

cially in the broad domain of reinforcement learning [180–

182]. Fortunately, having these important issues raised is

beginning to lead to recommendations of best practices

for ML, and to software platforms to facilitate those prac-

tices [183–186]. Knowing the existence of such issues again

suggests a need for caution when deploying ML/DL/AI

methods in MPSE practices.

For high consequence applications, engineers must insist

upon ML/DL/AI methods that make decisions based on

underlying scientific principles. One research frontier in

computer sciences is exactly this pursuit of an understand-

ing of how such technologies work and their relationships

to physical science [176–179, 187–189]. For this chal-

lenge, the MPSE community may be uniquely positioned

in several respects. First, the complexity of the MPSE

fields together with the high-value-added products and sys-

tems to which they lead provides strong driving forces

and widespread application domains for advancements via

ML/DL/AI tools. Second and perhaps more important,

the physical sciences have long been engaged with not

only retrospective modeling for explanation of the phys-

ical world but also “forward” or “system” modeling to

provide a manifold for efficient data collection and con-

straints on predictive tools. Most recently, the methods are

adding powerful capabilities in materials characterization,

for example [54, 190]. The power of these modeling frame-

works relative to the ML/DL/AI understanding challenges

is that the models can provide an ever-expanding source

of “phantom instances” for materials and processes that

are completely known virtual test beds to use within the

ML/DL/AI tools.

Finally, while there are laudable efforts to introduce the

ML/DL/AI tools into widely accessible and somewhat user-

friendly software libraries and codes [106, 191–194], it is

not clear that the educational systems, both formal and

informal, are keeping pace with the developments or provid-

ing ML/DL/AI models and systems to MPSE practice. This

suggests real risks of models and systems being developed,

perhaps from outside of MPSE, without enough under-

standing of their limits, or consequences of their failures.

Naturally, a strategy for educating MPSE practitioners in the

use of these advanced tools is needed in the very near term.

Perhaps much of this could be achieved through appropri-

ately structured teaming around ML/DL/AI development

for specific MPSE challenges.

Summary and Conclusions

The fields of machining learning, deep learning, and

artificial intelligence are rapidly expanding and are likely to

continue to do so for the foreseeable future. There are many

driving forces for this, as briefly captured in this overview.

In some cases, the progress has been obviously dramatic,

opening new approaches to long-standing technology

challenges, such as advances in computer vision and

image analysis. Those capabilities alone are opening new

pathways and applications in the ICME/MGI domain. In

other instances, the tools have only provided evolutionary

progress so far, such as in most aspects of computational

mechanics and mechanical behavior of materials. Generally

speaking, the fields of materials and processes science and

engineering, as well as structural mechanics and design, are

lagging other technical disciplines in embracing ML/DL/AI

tools and exploring how they may benefit from them.

Nor are these fields using their formidable foundations in

physics and deep understanding of their data to contribute to

the ML/DL/AI fields. Nonetheless, technology leaders and

those associated with MPSE should expect unforeseeable

and revolutionary impacts across nearly the entire domain of

materials and structures, processes, and multiscale modeling

and simulation over the next two decades. In this respect,

the future is now, and it is appropriate to make immediate

investments in bringing these tools into the MPSE fields and

their educational processes.
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