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Biochanin A (BCA) is an isoflavone mainly found in red clover with poor solubility and oral 

absorption that is known to have various effects, including anti-inflammatory, estrogen-

like, and glucose and lipid metabolism modulatory activity, as well as cancer preventive, 

neuroprotective, and drug interaction effects. BCA is already commercially available 

and is among the main ingredients in many types of supplements used to alleviate 

postmenopausal symptoms in women. The activity of BCA has not been adequately 

evaluated in humans. However, the results of many in vitro and in vivo studies investigating 

the potential health benefits of BCA are available, and the complex mechanisms by which 

BCA modulates transcription, apoptosis, metabolism, and immune responses have 

been revealed. Many efforts have been exerted to improve the poor bioavailability of 

BCA, and very promising results have been reported. This review focuses on the major 

effects of BCA and its possible molecular targets, potential uses, and limitations in health 

maintenance and treatment.

Keywords: biochanin A, chemopreventive, inflammation, neuroprotective effect, bioavailability

INTRODUCTION

Phytoestrogens are compounds found in plants with a molecular structure and size resembling 
those of estrogens. Plant flavonoid isoflavones are the most popular among the many estrogenic 
compounds (Heinonen et al., 1999). In humans, the main dietary sources of isoflavones are soybean 
and soybean products. When these types of food are consumed, they have multiple effects (Vitale 
et al., 2013). Epidemiological studies have indicated that populations with a high isoflavone intake 
through soy consumption have lower rates of several cancers, such as breast, prostate, bladder, 
gastric, and colon cancer (Kweon et al., 2013; Zhang et al., 2017; Perez-Cornago et al., 2018; Wada 
et al., 2018; You et al., 2018; Grainger et al., 2019). Isoflavones are considered chemoprotective and 
can be used as an alternative therapy for a wide range of hormonal disorders (van Duursen, 2017; 
Křížová et al., 2019).

Biochanin A (5,7-dihydroxy-4’-methoxy-isoflavone, BCA) (Figure 1A) is an isoflavone present 
in red clover, cabbage, alfalfa, and many other herbal products (Cassady et al., 1988). BCA may occur 
as an aglycon and can also be used as a hormone alternative therapy. BCA plays complex roles in 
the regulation of multiple biological functions by binding DNA and some specific proteins or acting 
as a competitive substrate for some enzymes (Roberts et al., 2004; Křížová et al., 2019; Liang et al., 
2019; Luo et al., 2019). BCA is the methylated precursor of the isoflavone genistein (GEN), which is 
another well-studied isoflavone. In the gut, intestinal bacteria convert BCA to its demethylated form 
(Setchell et al., 2001). However, the biological effects of BCA observed in vitro and in vivo are not 
identical to those of GEN. Recently, medical research focusing on BCA has increased because of its 

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2019.00793
https://www.frontiersin.org/journals/pharmacology#editorial-board
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2019.00793&domain=pdf&date_stamp=2019-07-12
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology/
https://creativecommons.org/licenses/by/4.0/
mailto:wyang@jlu.edu.cn 
https://doi.org/10.3389/fphar.2019.00793
https://www.frontiersin.org/article/10.3389/fphar.2019.00793/full
https://www.frontiersin.org/article/10.3389/fphar.2019.00793/full
https://loop.frontiersin.org/people/446140


Roles of Biochanin AYu et al.

2 July 2019 | Volume 10 | Article 793Frontiers in Pharmacology | www.frontiersin.org

various purported biological activities, including its antioxidant, 
anti-inflammatory, anti-infective, and anticarcinogenic effects, 
and BCA has been used for several purposes, such as to treat 
estrogen deficiency and pain and reduce the severity of nerve 
damage (Puli et al., 2006; Medjakovic and Jungbauer, 2008). 
This extract from plants is already commercially available 
because of its potential benefits to human health and because it is 
considered innocuous (Howes et al., 2002; Atkinson et al., 2004; 
Beck et al., 2005; Sklenickova et al., 2010). Most commercial 
products are composed of several isoflavone contents, including 
BCA (Booth et al., 2006; Ahmad et al., 2013). These botanical 
dietary supplements are sold in tablet form in several countries 
and are commonly used to alleviate postmenopausal symptoms 
in women. The use of these products is clearly increasing. 
However, BCA is a Biopharmaceutics Classification System Class 
II drug because of its poor water solubility. Given that studies are 

increasingly focusing on the effects of BCA (Table S1), it is timely 
and appropriate to obtain in-depth knowledge of the effects of 
BCA and critically evaluate the paradoxical observations in the 
published literature.

BCA HAS CHEMOPREVENTIVE ACTIVITY 
AGAINST VARIOUS CANCERS

Inspired by epidemiological evidence suggesting that a 
relationship exists between the consumption of certain foods 
containing isoflavones and decreased cancer incidence in 
humans, BCA has been evaluated in many studies related to 
cancer treatment. The first study was performed in 1988 in 
hamster embryo cell cultures and found that BCA inhibited 
carcinogen activation (Cassady et al., 1988). Subsequently, 

FIGURE 1 | (A) Molecular structure of biochanin A (BCA). (B) Molecular structure of genistein (GEN). (C) Structures of synthesized esters (1, 3) and carbamate 

esters (2, 4, 5), which are BCA derivatives. (D and E) Molecular structures of carboxyalkyl BCA.
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studies investigating the anticancer activity of BCA were carried 
out in different cancer cell lines, followed by animal models. 
Many types of tumors could be inhibited by BCA, such as lung 
cancer (Lee et al., 1991), prostate cancer (Peterson and Barnes, 
1993; Sun et al., 1998), gastrointestinal tract cancer (Yanagihara 
et al., 1993), pancreatic cancer (Bhardwaj et al., 2014), breast 
cancer (Balabhadrapathruni et al., 2000; Sehdev et al., 2009), 
osteosarcoma (Hsu et al., 2018; Zhao et al., 2018), malignant 
melanoma (Xiao et al., 2017), and tumors of the central nervous 
system (Sehm et al., 2014). However, the ability of BCA to inhibit 
the growth of some types of cancer cells was weaker than that 
of GEN (Peterson and Barnes, 1991), but the anticancer usage 
of BCA might be broader because of its targeting of anticancer 
activity, especially in malignant brain tumors (Sehm et al., 2014). 
BCA is a potent inhibitor of cytochrome P450 (CYP) and, thus, 
may be useful as a chemopreventive agent against hydrocarbon-
induced carcinogenesis, and BCA has an inhibitory effect on the 
metabolism of some carcinogens, such as benzo(a)pyrene, by 
binding DNA (Chae et al., 1991; Lee et al., 1991; Lee et al., 1992). 
BCA significantly reduces the synthesis of prostaglandin E2 and 
thromboxane B2 and the activity of CYP19/aromatase (Almstrup 
et al., 2002; Wang et al., 2008), leading to cyclooxygenase-2 
(COX-2) inhibition (Lam et al., 2004; Lim et al., 2013). The 
chronic activation or overexpression of COX-2 has been shown 
to be correlated with the development of cancer, particularly at 
sites of inflammation. The inhibition of COX-2 has been linked to 
the decreased development of some types of cancer (Dannenberg 
and Subbaramaiah, 2003). BCA provides protection against 
oxidative stress and inhibits the expression and activity of 
invasive enzymes (Ullah et al., 2009; Sehdev et al., 2009). In 
earlier studies, apoptosis was regarded as the major mechanism 
underlying the antitumor activity of BCA (Yanagihara et al., 
1993; Yanagihara et al., 1996; Balabhadrapathruni et al., 2000; 
Puthli et al., 2013). In recent studies, more details regarding 
the antitumor effects of BCA have been discovered, such as the 
signaling pathways and effects on vascular invasion (Xiao et al., 
2017; Lai et al., 2018; Hsu et al., 2018). BCA could effectively 
inhibit the proliferation of lung cancer cells by downregulating 
Ki-67, induce apoptosis by activating the cleavage of caspase-3 
and caspase-9, and suppress cell migration by downregulating 
matrix metallopeptidase-2 (MMP-2) and vascular endothelial 

growth factor (VEGF) (Lai et al., 2018; Hsu et al., 2018). BCA 
inhibited cell migration and invasion in a dose-dependent 
manner and upregulated the expression of key proteins in the 
NF-κB and mitogen-activated protein kinase (MAPK) signaling 
pathways (Xiao et al., 2017). BCA acts as a remarkable pro-
oxidant factor, significantly enhancing radiotoxicity in colon 
cancer cells in vitro (Puthli et al., 2013). The anticancer effects 
of BCA are presented in Figure 2. BCA also enhances the effects 
of some anticarcinogens and relieves their side effects. The most 
important point is that BCA showed no such effects on normal 
tissues and cells at the moderate dose at which it inhibited cancer 
cells (Sehdev et al., 2009; Sehm et al., 2014; Hsu et al., 2018). BCA 
is considered a potent chemopreventive and/or therapeutic agent 
against cancer.

BCA MAY PLAY A THERAPEUTIC ROLE  
IN METABOLIC DISORDERS

BCA is metabolized in the gut to GEN or formononetin, which 
is converted to daidzein and then to equol (Knight and Eden, 
1996). BCA is an estrogen receptor (ER) α and ERβ agonist 
that promotes transcriptional repression and activation at 
physiological levels. BCA may act as a natural selective ER 
modulator that elicits distinct clinical effects from estrogens used 
for hormone replacement by selectively recruiting coregulatory 
proteins to ERβ to trigger transcriptional pathways. As a 
promising alternative estrogen therapy, BCA might be used for 
the management of the renal and cutaneous changes observed 
in postmenopausal women while preventing bone loss (An 
et al., 2001; Beck et al., 2003; Hellström and Muntzing, 2012; 
Elsherbini et al., 2017; Galal et al., 2018). BCA is well known 
for its regulation of blood glucose and has significant effects 
in type 2 diabetes mellitus in vivo by affecting mechanisms 
that influence autophagy, differentiation, inflammation, and 
metabolism (Mehrabadi et al., 2018; Nikolic et al., 2018; Oza and 
Kulkarni, 2018). BCA exerts lipid-lowering effects by increasing 
the cholesterol efflux and preventing cholesterol ester transport 
(Xue et al., 2017). BCA also has a gastroprotective effect through 
the enhancement of cellular metabolic cycles, as evidenced by 
increases in superoxide dismutase (SOD) and nitric oxide (NO) 

FIGURE 2 | Schematic of the anticancer effect of BCA. →, direct stimulation; ⊥, direct inhibition.
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activity, decreases in the malondialdehyde (MDA) and Bax 
levels, and increases in Hsp70 expression (Hajrezaie et al., 2015). 
Ovariectomy results in a marked increase in body weight and a 
decrease in femoral bone mineral density and trabecular bone, 
which are common findings after 17β-estradiol (E2) treatment. 
BCA treatment can effectively prevent the ovariectomy-
induced increases in bone loss and bone turnover possibly by 
increasing osteoblast activity and decreasing osteoclast activity. 
All stages of bone formation, including osteoblast proliferation, 
differentiation, and mineralization, are influenced by BCA (Su 
et al., 2013a; Kaczmarczyk-Sedlak et al., 2015; Mohamed et 
al., 2018). BCA has been reported to stimulate endothelial NO 
synthase (eNOS) and the release of NO, which is vasodilatory and 
vasoprotective. BCA has been shown to attenuate hypertension 
in ovariectomized rats by decreasing the systolic, diastolic, and 
mean arterial blood pressures; decreasing oxidative stress and 
the tumor necrosis factor-α (TNF-α) levels; and increasing the 
NO levels in an eNOS-dependent manner (Sachdeva et al., 2016). 
BCA regulates bone formation by preventing adipogenesis and 
enhancing osteoblast differentiation in mesenchymal stem cells 
and has beneficial regulatory effects on bone formation. BCA may 
be a useful agent in the treatment and prevention of osteoarthritis 
(Su et al., 2013b; Wu et al., 2014). BCA is well known for its 
antidiabetic and hypolipidemic effects. Its hypolipidemic effect in 
diabetes is achieved at least partially by the activation of hepatic 
peroxisome proliferator-activated receptor α (PPARα) (Qiu et al., 
2012). BCA increases the circulating insulin levels and improves 
insulin sensitivity, leading to body weight control, an increase in 
liver glycogen, and a decrease in plasma glucose (Harini et al., 
2012; Oza and Kulkarni, 2018). BCA also has protective effects 
on β cells in diabetic rats (Azizi et al., 2014). BCA ameliorates 
hepatic steatosis and insulin resistance by modulating lipid and 
glucose metabolism in obese rats (Park et al., 2016). Moreover, 
BCA helps prevent diabetic complications because it is an 
excellent inhibitor of insulin and hemoglobin glycosylation and 
has anti-inflammatory activity (Asgary et al., 2002; Chundi et al., 
2016; Patil et al., 2016; Mehrabadi et al., 2018). BCA inhibits fatty 
acid amide hydrolase and may be used as a novel analgesic agent 
(Thors et al., 2010). BCA has been shown to inhibit melanogenesis 
in vitro and in vivo because of its tyrosinase inhibitory effect and 
could be a promising candidate as a skin-whitening agent for 
the treatment of skin hyperpigmentation disorders (Lin et al., 
2011). Therefore, BCA may have wide application prospects in 
the treatment of metabolic diseases.

BCA AFFECTS PROINFLAMMATORY 
RESPONSES

Numerous studies have indicated the anti-inflammatory effects 
of BCA, which were first demonstrated in microglia in 2007, 
when BCA was shown to inhibit lipopolysaccharide (LPS)-
induced activation of microglia (Chen et al., 2007). The anti-
inflammatory effect of BCA has been demonstrated in many 
other types of cells, including macrophages, various cancer cells, 
and endothelial cells, in numerous in vivo experiments (Lee and 
Choi, 2005; Park et al., 2006; Kole et al., 2011; Ming et al., 2015). 

BCA inhibits the production of inflammatory mediators, such 
as TNF-α, interleukin-1β (IL-1β), IL-6, iNOS, COX-2, MMP-9, 
and NO, in various inflammatory responses and tissue injury by 
attenuating the ERK-MAPK/MSK1 cascade, inhibiting the TLR/
TIRAP/MyD88 pathway, inhibiting IκB kinase (IKK) activity, and 
activating PPARα as an estrogen at low concentrations or PPARγ 
by binding PPARγ at high concentrations, leading to the NF-κB-
driven inhibition of gene transcription and decreased expression 
of TNF-α, IL-1β, IL-6, iNOS, COX-2, and MMP-9 (Figure 3) (Lee 
and Choi, 2005; Vanden Berghe et al., 2006; Mueller et al., 2010; 
Kole et al., 2011; Qiu et al., 2012; Breikaa et al., 2013a; Wang et al., 
2015c; Zhang and Chen, 2015; Wu et al., 2018). A study claimed 
that BCA upregulated the production of IL-4 via the activation 
of the PKC/p38/AP-1 and PI3K/PKC/NF-AT pathways (Park et 
al., 2006). However, some recent studies drew completely different 
conclusions, namely, BCA did not increase the production of IL-4 
and rather suppressed its increase upon stimulation (Ko et al., 
2011; Chung et al., 2013). BCA also inhibits AKT/MAPK (ERK, 
JNK, and p38)/mTOR activation (Chung et al., 2013; Bhardwaj et 
al., 2014; Jain et al., 2015); this pathway is involved in the regulation 
of NF-κB and other transcription factors (such as MSK1 and 
AP1). Reactive oxygen species (ROS) and COX-2 are important 
proinflammatory factors that can stimulate transcription factors 
to increase inflammatory mediator expression. BCA scavenges 
ROS and increases SOD activity (Xue et al., 2017; Zhao et al., 
2018). BCA significantly reduces the synthesis of prostaglandin 
E2 and/or thromboxane B2 by inhibiting COX-2 expression 
(Lam et al., 2004; Lim et al., 2013). Several BCA targets exert 
anti-inflammatory effects on the pathways triggered by different 
inducers in various types of cells (Figure 3). In animal models 
of acute and chronic inflammation, BCA protects against organ 
injury by exerting robust anti-inflammatory and antioxidant 
effects (Ko et al., 2011; Breikaa et al., 2013b; Oh et al., 2016).

BCA could influence many types of diseases associated with 
inflammation because of its effects on several inflammatory 
signaling pathways. Further research is needed to obtain an 
in-depth understanding of its impact on these diseases.

BCA INFLUENCES PATHOGEN INFECTION

BCA was found to have an antiviral potential in 1996; BCA 
inhibited human herpesvirus 6 antigen expression by suppressing 
the phosphorylation of protein tyrosine kinases (Cirone et al., 
1996). BCA also inhibited influenza A nucleoprotein production, 
reduced virus-induced caspase 3 cleavage and the nuclear 
export of viral RNP complexes, and enhanced the effects of the 
neuraminidase inhibitor zanamivir in influenza H5N1 virus-
infected lung epithelial cells by affecting signaling pathways to 
ultimately reduce the virus-induced activation of AKT, ERK½, 
and NF-κB. BCA also inhibits the virus-induced production of 
cytokines, such as IL-6, IL-8, TNF-α, and IP-10 (Sithisarn et al., 
2013). BCA enhances H5N1-induced ROS formation, whereas 
antioxidant use suppresses BCA-induced ROS formation and 
strongly increases its anti-H5N1 activity in H5N1-infected 
human alveolar basal epithelial cells (Michaelis et al., 2014). 
However, BCA does not have broad-spectrum antiviral activity, 
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and it has been demonstrated that BCA does not exhibit anti-
enterovirus 71 activity (Li et al., 2017).

Some researchers have studied BCA in the context of 
antibacterial treatment, but most results of treatment with BCA 
alone have been negative. However, a previous study found that 
BCA had selective antibacterial action; BCA inhibited all clostridia, 
which may be responsible for severe intestinal infections, but not 
bifidobacteria, which are regarded as probiotic microorganisms 
(Sklenickova et al., 2010). Another study found that BCA has an 
inhibitory effect on intracellular bacteria belonging to the genus 
Chlamydia and is a potent inhibitor of Chlamydia spp. (Hanski 
et  al., 2014). A recent study demonstrated that BCA induced 
AMPK/ULK1/mTOR-mediated autophagy and macrophage 
extracellular traps (METs), which enhanced defense against 
Salmonella infection in vitro and in vivo. In addition, BCA inhibits 
both inflammatory and anti-inflammatory responses when the 
body is infected by bacteria. These findings provide basic data 
regarding the control of infections by enhancing the host immune 
defense and indicate a potential new strategy to overcoming the 
desperate scarcity of new therapeutic approaches.

NEUROPROTECTIVE EFFECTS OF BCA

Microglia, which are the resident immune cells in the brain, 
play a role in immune surveillance and host defense against 

infectious agents under normal conditions. Activated microglia 
produce a variety of proinflammatory factors, including 
cytokines, such as TNF-α, and the free radicals NO and 
superoxide. The accumulation of these factors is deleterious 
to neurons (Huang et al., 2005). The abnormal activation of 
microglia is closely associated with some neurodegenerative 
diseases, such as Parkinson’s disease (PD), Alzheimer’s disease 
(AD), and frontotemporal dementia (FTD) (Bachiller et al., 
2018). Accumulating evidence suggests that estrogen inhibits 
the LPS-induced inflammatory response in microglia and has 
a neuroprotective effect (Suuronen et al., 2005; Pozzi et al., 
2006; Vegeto et al., 2006). As a promising phytoestrogen, many 
studies have focused on the effect of BCA on neurodegenerative 
diseases, especially PD and AD (Figure 4).

BCA has been shown to protect dopaminergic neurons 
against LPS-induced damage by inhibiting the activation of 
microglia; the generation of proinflammatory factors, such as 
TNF-α, IL-1β, NO, and superoxide (Chen et al., 2007); and 
MAPK signaling pathways in microglia (Wu et al., 2015; Wang 
et al., 2016). BCA inhibits nicotinamide adenine dinucleotide 
phosphate oxidase (NADPH oxidase) activation and 
malondialdehyde (MDA) production, thereby increasing SOD 
and glutathione peroxidase (GPx) activity in the brain. The 
neuroprotective effect of BCA is partially associated with its 
antioxidant activity and ability to maintain a redox imbalance 
(Occhiuto et al., 2009; Wang et al., 2015b; Yu et al., 2017).  

FIGURE 3 | Schematic of the BCA targets (proteins and genes) in key inflammation-associated signaling pathways. →, direct stimulation; ⊥, direct inhibition.
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BCA also exerts a neuroprotective effect against L-glutamate-
induced cytotoxicity, which plays a crucial role in neuronal 
cell death in various neurodegenerative diseases and reduces 
glutathione levels (Tan et al., 2013; Biradar et al., 2014). BCA 
is a potent, reversible, and selective oxidase-B (MAO-B) 
inhibitor because of the hydrophobic interactions between 
BCA and MAO-B, and MAO-B inhibitors are widely used in 
the treatment of PD and have potential in the future treatment 
of AD (Zarmouh et al., 2017). BCA effectively inhibits the 
activity of beta-site amyloid precursor protein cleaving 
enzyme 1 (BACE1) not only via a mitochondria-dependent 
apoptosis pathway but also by binding the allosteric site 
of BACE1; BACE1 accumulation is among the major 
histological hallmarks of AD (Youn et al., 2016). BCA may 
be used as a preventative and/or therapeutic agent for AD by 
binding the preformed fibril structure of β-amyloid25–35 and 
inhibiting β-amyloid25–35-induced apoptosis by suppressing 
caspase activity (Ghobeh et al., 2014; Tan and Kim, 2016). 
Furthermore, BCA has been shown to have neuroprotective 
effects in cerebral ischemia/reperfusion and subarachnoid 
hemorrhage based on the inhibition of inflammatory injury 
and neuronal apoptosis and the induction of glutamate 
oxaloacetate transaminase-mediated glutamate metabolism 
(Wang et al., 2015c; Khanna et al., 2017; Wu et al., 2018).

BCA PLAYS COMPLEX ROLES 
IN PARADOXICAL DRUG–DRUG 
INTERACTIONS

Multidrug resistance (MDR) is a major obstacle to the success 
of cancer chemotherapy and is a complex and multifactorial 
phenomenon. One important classical mechanism of MDR 
is the overexpression of drug efflux transporters, such as 
P-glycoprotein (P-gp). P-gp confers resistance by actively 
pumping cytotoxic drugs out of cancer cells (Savas et al., 
1992). As a multidrug transporter, P-gp also influences the 
distribution of many other types of drugs (Singh et al., 2012; 
Stępień et al., 2012). However, BCA can inhibit P-gp-mediated 
cellular efflux by modulating P-gp ATPase activity without 
changing the cellular P-gp level (Zhang and Morris, 2003; 
Zhang et al., 2010; Chung et al., 2005; Dash and Konkimalla, 
2017). Interestingly, BCA has been found to stimulate P-gp in 
some studies (An and Morris, 2010). Therefore, the effect of 
BCA on P-gp may be substrate dependent. BCA differentially 
affects the oral bioavailability of some P-gp substrates (Peng 
et al., 2006; An and Morris, 2010; Singh et al., 2012; Li et al., 
2016). BCA can also inhibit non-P-gp-mediated pathways in 
MDR (Versantvoort et al., 1993), such as MDR-associated 
protein 1 (MRP1)-mediated drug transport (Versantvoort et 

FIGURE 4 | Schematic of the neuroprotective effects of BCA. →, direct stimulation; ⊥, direct inhibition.
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al., 1993; Nguyen et al., 2003) and breast cancer resistance 
protein (BCRP)-mediated cellular efflux, because BCA sulfate 
is a substrate of BCRP (An and Morris, 2010). Oatp3 is a highly 
expressed influx/efflux transporter in the rat small intestine 
that plays an important role in limiting the absorption and, 
therefore, bioavailability of its substrates. BCA has been shown 
to inhibit Oatp3, causing a decrease in drug bioavailability 
(Peng et al., 2006). BCA synergizes with quinolones to inhibit 
Staphylococcus aureus by increasing the accumulation of 
ciprofloxacin and suppressing the bacterial expression of the 
norA protein and the efflux system [adenosine triphosphate 
(ATP)-binding ABC transporters] but has no inhibitory effect 
on the bacteria alone (Liu et al., 2011; Zou et al., 2014). Synergy 
between quinolones and BCA has also been observed in the 
treatment of pathogenic mycoplasma and Mycobacterium 
avium (Jin et al., 2017; Cannalire et al., 2017). The most 
common mechanism underlying these drug–drug interactions 
is the inhibition of the CYP system, which is responsible for 
the metabolism of nearly 90% of drugs in humans. BCA exerts 
minimal effects on CYP isoforms other than CYP1A2 and 
CYP3A4. The consumption of BCA along with other drugs 
is assumed to be safe with a minimal possibility of alterations 
in the pharmacokinetics of the coadministered drugs (Arora 
et al., 2015; Kopečná-Zapletalová et al., 2017). However, 
BCA was found to enhance the distribution and cytotoxicity 
of some drugs in vivo and cause unwanted pharmacokinetic 
interactions (Zhang and Morris, 2003; An and Morris, 2010; 
Li et al., 2016). BCA ameliorated the adverse effects of some 
anticarcinogens by increasing their cellular uptake and efficacy 
to reverse drug resistance, significantly improving serum 
oxidant/antioxidant activity or modulating the proliferation 
and apoptosis of cancer cells (Youssef et al., 2016; Galal et al., 
2018). BCA acts as a nephroprotective agent in the presence 
of certain chemotherapeutics, such as cisplatin, because of its 
anti-inflammatory and antiapoptotic activities (Suliman et al., 
2018) and protects heart tissue and the kidney against arsenic 
toxicity because of its antioxidant characteristics (Jalaludeen 
et al., 2015, Jalaludeen et al., 2016). The complex roles of BCA 
in paradoxical drug–drug interactions are summarized in 
Table S2.

It is possible that BCA could be used alone or in combination 
with other drugs to reverse MDR. However, the probability of 
pharmacokinetic interactions must be carefully considered 
before the coadministration of BCA with other drugs.

BIOAVAILABILITY OF BCA

Because of its potential benefits, BCA has been studied in many 
in vitro and in vivo experiments. However, BCA is a poorly 
soluble bioflavonoid, and this characteristic prevents its oral 
absorption. BCA has a high clearance and a large apparent 
volume of distribution, and its bioavailability is poor. BCA 
(Figure 1A) has been reported to undergo extensive metabolism 
in vivo; GEN (Figure 1B) and sulfate and glucuronide conjugates 
are the major metabolites in the blood of humans. Significant 

levels of BCA and GEN conjugates were detected in plasma and 
bile in vivo (Moon et al., 2006). These metabolites may contribute 
to the chemopreventive effects of BCA and might have longer 
exposure periods depending on enterohepatic recycling. The 
administration of multiple flavonoids, including BCA, leads 
to increased flavonoid bioavailability and decreased clearance 
potentially caused by increased enterohepatic cycling (Moon and 
Morris, 2007).

However, the low biological availability and poor aqueous 
solubility of BCA limit its usefulness as a chemotherapeutic 
agent. Various attempts have been made to improve the 
solubility and bioavailability of BCA, including the use of 
liposomes (Hendrich et al., 2002), dispersion agents (Han 
et al., 2011), silver nanoparticles (Sekine et al., 2011), different 
film formulations for buccal delivery (Hanski et al., 2014), 
nanostructured lipid carriers (Wang et al., 2013), nanostructured 
lipid carriers modified with polyethylene glycol (PEG) (Wang 
et al., 2015a), enteric-coated microparticles (Sachdeva et al., 
2016), micelles (Wu et al., 2017), and inclusion complexes with 
cyclodextrins (Nikolic et al., 2018). Ester and carbamate ester 
derivatives of BCA (Figure 1C) and several carboxy–BCA 
compounds (Figures 1D, E) have been synthesized. These 
derivatives maintain estrogenic and cancer chemopreventive 
activities, and some have better metabolic stability than BCA 
in cells (Somjen et al., 2005; Kohen et al., 2007; Somjen et al., 
2011; Fokialakis et al., 2012). These efforts have enhanced the 
solubility and bioavailability of BCA while maintaining its 
efficacy and activity. These findings provide excellent prospects 
for the application of BCA in the treatment of various diseases.

CONCLUSION

BCA has shown many potential benefits in numerous in vitro and 
in vivo studies. However, the safety of supplements containing 
BCA is unknown, and actual evidence from patients is limited; 
therefore, more research needs to be performed in this field.
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