
© SPIE 2005. Home: http://www.bookofparagon.com

PERSPEX MACHINE V: COMPILATION OF C PROGRAMS

COPYRIGHT
Copyright 2005 Society of Photo-Optical Instrumentation Engineers. This paper will be
published in Vision Geometry XIV, Longin Jan Lateki, David M. Mount, Angela Y. Wu,
Editors, Proceedings of SPIE Vol. 6066 (2006) and is made available as an electronic copy
with permission of SPIE. One print or electronic copy may be made for personal use only.
Systematic or multiple reproduction, distribution to multiple locations via electronic or
other means, duplication of any material in this paper for a fee or for commercial
purposes, or modifications of the content of the paper are prohibited.

http://www.bookofparagon.com

Perspex Machine V: Compilation of C Programs
Matthew P. Spanner & James A.D.W. Anderson*

Computer Science, The University of Reading, England

Abstract

The perspex machine arose from the unification of the Turing machine with projective geometry. The original,
constructive proof used four special, perspective transformations to implement the Turing machine in projective
geometry. These four transformations are now generalised and applied in a compiler, implemented in Pop11, that converts
a subset of the C programming language into perspexes. This is interesting both from a geometrical and a computational
point of view. Geometrically, it is interesting that program source can be converted automatically to a sequence of
perspective transformations and conditional jumps, though we find that the product of homogeneous transformations with
normalisation can be non-associative. Computationally, it is interesting that program source can be compiled for a
Reduced Instruction Set Computer (RISC), the perspex machine, that is a Single Instruction, Zero Exception (SIZE)
computer.

Keywords: perspex machine, compilation, RISC, SIZE.

1. Introduction

The perspex machine is the ultimate Reduced Instruction Set Computer (RISC). It is a Single Instruction, Zero Exception
(SIZE) computer. This makes it a good target for a compiler and, we suppose, makes it easy to implement in a massively
parallel architecture, though we explore only serial computation here. The machine also derives interesting properties from
its geometrical nature.7 In particular, it can be implemented as a sequence of perspective transformations and conditional
jumps.4 This might lead to fast implementation as an optical computer.4

The perspex machine was introduced4 by unifying the Turing machine with projective geometry. The halting perspex, ,
was later re-specified.5 The perspex machine operates on transreal numbers3,5 that support a total arithmetic. The number
nullity, , is both transrational3 and transreal,5 as is the number infinity, . The transreal numbers are the
union of the strictly transreal numbers, , with the real numbers. Nullity lies off the real-number line and infinity lies
at its positive extreme. The strictly transreal numbers occur as co-ordinates in perspex space4 and, amongst other things,
ensure that the Turing halt is a discontinuous operation, despite continuity over all other Turing operations.6 Various forms
of the perspex are illustrated in,5,10 though we are concerned only with the matrix and computer instruction forms here.

The perspex can be a matrix with successive column vectors , , , and , or it can be a computer instruction:
; . The perspex machine operates in a 4D space, called perspex or program space,4 that contains

perspexes at every point. The machine executes the perspex at a point as an instruction. The machine reads the perspexes
at locations and , multiplies them together and writes the product,4 reduced to canonical form,5 into the location . It
then examines the top left element, , of the product and constructs a relative jump from the current location using the

components of . If it jumps by along the x-axis, otherwise if it jumps by along the y-axis, otherwise

if it jumps by along the z-axis. In every case it jumps by along the axis. Thus, the machine starts at some

point and control jumps from point to point until is encountered.

H

Φ 0 0⁄= ∞ 1 0⁄=
Φ ∞,{ }

4 4× x y z t

xy z→ jump z11 t,()

x y z

z11

t z11 0< t1 z11 0= t2

z11 0> t3 t4 t

H

© SPIE 2005. Home: http://www.bookofparagon.com

* Corresponding author. author@bookofparagon.com, http://www.bookofparagon.com
Computer Science, The University of Reading, Reading, Berkshire, England, RG6 6AY.

http://www.bookofparagon.com

Previous work used hand-written perspex programs executed on a digital computer using a simulation4 of the perspex
machine implemented in the AI language Pop11.1 Here we describe a recursive descent compiler, implemented in Pop11,
that reads C source code and compiles it to perspexes. The perspexes are visualised and executed in approximate
simulations of the perspex machine implemented in both Pop11 5 and C++. 10

The compiler generally lays out perspexes along a straight, spacetime line that changes only in time, . However, the
compiler implements C conditionals by jumping additionally in the spatial dimensions , , or . C loops exploit a
backward jump in time to iterate the loop. This exposes an infelicity in the specification of the perspex machine. Whilst the
perspex machine can support such arbitrary temporal jumps4,5 it cannot copy them directly. It must use additional
geometrical transformations and the access column5 to prevent an arbitrary temporal jump component being reduced to a
normalised jump component5 of 0, 1, , or . This is remedied by the introduction of the universal perspex machine.11

We now list certain standard perspexes and describe how various parts of the C programming language are compiled to
perspexes. We end with a discussion of the merits of the compilation templates used here and with suggestions for future
work.

2. Standard Perspex Matrices

The matrices used by the compiler have at most one variable element with the rest of the matrix fixed. It is, therefore,
generally convenient to write a compiler matrix as where the matrix has all elements fixed, except for the element

that takes on the value . A different interpretation is used for the subscript on the and matrices. The name of the
matrix, , , or whatever, indicates the lay out of the matrix.

Many of the compiler matrices have their middle two rows set to zero. This prevents the introduction of cross-terms in the
perspex multiplication and division functions. Whilst such cross terms are harmless, it is more elegant to prevent their
occurrence by zeroing these two rows. In the following matrix2 the subscript, 9, is the binary code made by the pattern
of zeros and ones read along the major diagonal from the least significant bit at top-left to the most significant bit at bottom-
right. Premultiplication by zeros the middle two rows of a matrix.

. (Eqn 1)

The matrix is taken from4 and a variant of it, , is defined here. These matrices are used, amongst other things, to
subtract terms during the computation of jumps. Note that in (Eqn 10).

. (Eqn 2)

. (Eqn 3)

t
x y z

Φ ∞

Ax A

x J S
A B

J

J9

J9

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

=

S Sa
Sa D 1–=

S

0 0 0 1
0 1 0 0
0 0 1 0
1– 0 0 0

=

Sa

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1–

=

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

The following two matrices are taken from:4

, (Eqn 4)

. (Eqn 5)

The following matrix is taken from:5

. (Eqn 6)

A C program needs representations for variables and numbers so that it can carry out arithmetical operations. The perspex
representations for variables and numbers support all of the compiler templates and C structures used here. These
representations are based on matrices occurring in the original unification.4 represents a variable with value . is

based on in (Eqn 5). In particular, .

. (Eqn 7)

The matrix represents the number . is based on in (Eqn 4). In particular, .

. (Eqn 8)

Observe that the product so that a variable is converted to a number by post multiplication with . Note, too,
that , whence . In other words, a number is converted to a variable by post multiplication with , and
vice versa. It would be interesting to know if all type polymorphisms in a useful computer language can be implemented
by simple geometrical transformations. If so, formal proofs of the completeness of the type system, and of the correctness
of the casting of types, would be simpler than at present. Type systems would then be subject to interpolation and
approximation by filtering methods.6

The matrix is a dilatation by the scale factor . This matrix is used to obtain the arithmetical operation of
multiplication.

C

1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

=

G

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

=

H

Φ Φ Φ Φ
Φ Φ Φ Φ
Φ Φ Φ Φ
Φ Φ Φ Φ

=

Vx x Vx

G V0 G=

Vx

x 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

=

Cx x Cx C C1 C=

Cx

1 0 0 x
0 1 0 0
0 0 1 0
0 0 0 1

=

VxG Cx= G
G 1– G= CxG Vx= G

Mx x
© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

. (Eqn 9)

It would be natural to define a matrix that, as a result of the normalisation step,5 performs the arithmetical operation of
division, but this approach was not taken in the compiler.

. (Eqn 10)

3. Storage of Numerical Types

The compiler identifies storage for standard perspexes in the hyperplane of the compiled program. Conventionally,
the hyperplane is reserved for the internal structure of a perspex machine. Entering the machine in this hyperplane
allows the machine to initialise itself before control passes to hyperplanes with . The universal perspex machine11

conveniently supports backward jumps in time, so the hyperplane may also be used for post-processing prior to a
halt in that machine. The current machine stores C’s main function in the hyperplane, data in the hyperplane,
and subfunctions in the hyperplane. Thus, it maintains separate data and instruction spaces.

The layout of the standard perspexes is shown in Figure 1:. The figure shows a left-handed, co-ordinate frame with axes
labelled , , and . This is for display purposes only. Perspex space is conventionally indexed as a right handed space.
The matrix is stored at , shown as in Figure 1:. The matrix is stored at and is shown as .
The matrix is stored at and is shown as . The compiler stores matrices in a column of matrices called
the Numerical Constant Column. A matrix is stored at . The compiler always generates and stores , ,
and for use in jump calculations. It also stores a for each distinct, literal number that it finds in the C source. In a
continuous perspex machine would be generated and stored for all transreal , thereby creating an analogue of the
augmented real-number line. The identity matrix is shown as .

Figure 1: Standard perspexes in the hyperplane.

Mx

x 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

=

Dx

Dx

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 x

=

t 1=
t 0=

t 0>
t 0=

t 0= t 1=
t 2=

X Y Z
S 3 0 0 1, , ,() s Sa 3 1 0 1, , ,() sa
G 1 0 0 1, , ,() g Cx

Cx 2 x 0 1, , ,() C 1– C0
C1 Cx x

Cx x
I J15 C0= = i

t 1=
© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

The Variable Column, shown as , contains all of the global and local variables in the order the compiler finds them in
the C source. The nth variable found is stored as at location . Locations , with greater than the
largest value of , are used as a stack of temporary variables for use in evaluating sub-expressions. The compiler does not
support recursive functions. In future, one might consider whether to store variables local to recursive functions in a stack,
or whether to store them in columns running orthogonally to the Variable Column.

Three temporary variables are used as a scratch space, roughly analogous to an accumulator in a standard Central
Processing Unit (CPU). The scratch locations are , , and . They are shown as Temp vars.

The Multiplier Column, , is similar to the Variable Column. It stores matrices at locations . These
matrices are used to effect multiplication and division by literal numbers. As before, the compiler generates matrices
only for the multiplications and divisions found in the C source, whereas a continuous perspex machine would generate
and store all matrices . The matrices and are not permutations of each other so there is no simple matrix that
carries the one into the other. This prevents a simple implementation of the multiplication of a variable by a variable, or
the division of a number or variable by a variable. These cases are handled by compiling multiplication and division
functions from C source that performs multiplication and division iteratively. These functions operates to finite precision.

The Function Output Column, , holds one perspex for each function. The nth function found in the C source uses the
location . This location is used to hold the return value of its corresponding function.

The Function Jumper Column, , holds number perspexes, , that are used to compute return jumps from a function
call. The xth lexical call to the nth function in the C source puts into the location .

4. Jumps, Conditionals, and Loops

The jump part, , of the perspex instruction examines the sign of then jumps in the time axis and at most
one spatial axis. If a jump along more than one spatial axis is wanted then successive jumps must be taken. The default
jump for every instruction has the column set to . This forces a jump of along the t-axis. The t-columns

, , force a jump of , respectively, along the x-, y-, and z-axis. The compiler can compile
jumps with arbitrary values of , but the value is used by default. A perspex whose only function is to cause a jump
is called a jumper. The read/write parts of a jumper, that is the x-, y-, and z-columns of a perspex, can be set to identity if
the conventional allocation of the identity perspex machine is maintained.4

The compiler handles C conditionals of the form: if (a relop b) c else d. See Figure 2:. Here a and b are expressions that
result in a number, relop is one of C’s relational operators, and c and d are, possibly bracketed, expressions. The clause
else d is optional. The conditional, a relop b, is evaluated by forming the subtraction a - b using the perspexes and ,
compare with,4 and performing a . If the C relop evaluates to True then a jump is taken in the time axis and the
appropriate spatial axis as given by . Alternatively, if the C relop evaluates to False then the jump is taken in
time with a zero component in the spatial axes. If the relop has two satisfying conditions, such as in >= or <=, then the
appropriate code is laid out in the equality, =, branch. The other branch jumps to it so that the code is not duplicated.

Figure 2: If-Else conditional statement.

Varx
Vx 0 n 0 1, , ,() 0 k 0 1, , ,() k

n

4 0 0 1, , ,() 4 1 0 1, , ,() 4 2 0 1, , ,()

Mx Mx 2 x 1 1, , ,()
Mx

Mx Mx Vx

F Vx
5 0 1 n, , ,()

Fj Cx
Cx 5 n 0 1, , ,()

jump z11 t,() z11

t 0 0 0 k
T

k
k 0 0 0

T
0 k 0 0

T
0 0 k 0

T
k

k k 1=

S Sa
jump z11 t,()

jump z11 t,()
© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

The compiler handles C’s while statement by evaluating a conditional and branching spatially if the condition is True. One
spatial branch holds the code to be executed and the others, if any, hold jumps to this code. Alternatively, if the condition
is False a jump is made only along the time axis, thereby leaving the loop. The compiler handles C’s for loop in a similar
manner.

Figure 3: While loop.

5. Function Call and Return

In the C source, the xth lexical call to the nth function with arguments is computed in a series of steps. Firstly, the
arguments, , are evaluated and stored as variables, , in the Variable Column. See Figure 1:. As only serial, non-
recursive functions are supported, there is a one-to-one correspondence between the formal arguments of a function, ,
and the during the life of the call. Secondly, is written into the Function Jumper Column. The number is used
during the function return to compute a jump back to the end of the xth lexical call of the function. Thirdly, a jump is made
to the function. Fourthly, the function is evaluated and the return value is written into the Function Output Column for
later use. Fifthly, a return to the xth lexical call of the function is computed as follows. The number, , in the Function
Jumper Column, is decremented by one. If the result is non-zero then a jump is made along the z-axis and the process of
decrementing and jumping is repeated. Thus, control jumps units along the z-axis. At this position has been
decremented to zero and a jump of one unit is made in the y-axis. This arrives at the first of a chain of jumpers that returns
control to the end of the xth lexical call to the function. Thus, a single block of code implements all of the calls to, and
returns from, a serial, non-recursive function.

Figure 4: Various returns from function 1.

C’s main function is stored in the hyperplane and successive function bodies are laid out along the x-axis of the
 hyperplane. Hence, the return jumps in the y- and z-axes cannot accidentally jump into a function body arranged

along the x-axis. Instead, control returns via a chain of jumpers to the correct caller. This illustrates an important principle

ai
ai Vai

ai
Vai

Cx x

Cx

Cx x Cx

t = 0 t = 2

t 0=
t 2=
© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

in the design of perspex programs and compilers. The different axes of perspex space can be used locally to support
different kinds of operation, giving rise to a local, spatiotemporal modularity in the operation of the machine which
precludes accidental operations. This might lead one to consider whether interpolation6 within the perspex machine
should be arranged in an anisotropic way so that interpolation occurs separately in the different axes of perspex space,
thereby preserving the different uses of the axes. The question of whether the interpolation should be local or global along
an axis would remain open, though the cellular structure of the universal perspex machine11 would militate in favour of
local interpolation.

6. Arrays

Figure 5: shows the layout of a 1D array, nominally indexed by x. The array is stored in the hyperplane. The figure
shows the entry point of the array at the origin of a local co-ordinate-frame with x-, y-, and z-axes. A column of numbers,

, lies on the negative z-axis and runs in the vertical, y, direction. Running vertically from , the numbers are the
jump return value, an Input/Output (I/O) selector flag, the I/O datum, and the x index. On the positive z-axis there are five
layers of perspexes. The middle layer is the data layer which holds the array’s data. The two layers above and below the
data layer are mirror images of each other. The upper two layers are for data output, the lower two layers are for data
input. The perspexes at the z-extreme are jumpers that return control to just after the kth lexical call of the array access.

Figure 5: 1D array.

An array access is rather like a function call and return. Firstly, the I/O Flag is set to for input or for output. If the
flag is set for input then the input datum, , is written into the Input/Output location, otherwise this location is left
unchanged until it is overwritten by the output. The array index, , is written into the x-value, and the jump return value,

, is written into the Return Value. Secondly, control is passed to the Entry Point of the array. The Entry Point is a
perspex that makes the I/O selection. It multiplies the I/O Flag by and then jumps along the z-axis for input or the y-axis

t 1=

Cj y 0=

C1 C0
Ci

Cx
Ck

I

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

for output, where another jumper moves control to the start of the Input X Select Layer or the Output X Select Layer, as
appropriate. The two layers work in the same way, just like a function return. Control passes units along the selection
layer until the x-value is decremented to zero. At this point control jumps into the Data In Layer or the Data Out Layer.
The Data In Layer takes the Input/Output parameter, multiplies it by , and writes the result into the location immediately
above it in the Data Layer. The result of the multiplication is, of course, , with element , which causes a jump in
the z-axis. The size of the jump is determined by the Data In Layer perspex. It passes control directly to the start of the
return jumpers which use the Return Value to compute a return to the kth lexical call of the array access. The Output X
Select Layer and the Data Out Layer work similarly. Two dimensional arrays are implemented similarly.

There are several important things to note about this arrangement of perspexes. Firstly, the compiler leaves a margin of
uninstantiated perspexes around the array. These default to the halting perspex . Thus, any access beyond the array
bounds causes the perspex machine to halt. This behaviour is compatible with C, but is more secure than most C
compilers. It is impossible, for example, to execute buffer-overflow viruses for a system compiled using such a perspex C
compiler. Secondly, Figure 5: looks rather like a wiring diagram for an array. This is no accident. Physical devices cannot
implement a specific computation in arbitrary ways. The geometry of the universe constrains the possible
implementations of a computation. The geometry of the perspex machine also constrains the implementation of
computations. There is sufficient similarity between the geometry of wire tracks and the motion of electric charge, and the
position and motion of perspexes, for similar solutions to appeal to the mind of a human designer. In this way the perspex
machine links together the physical and computational aspects of computer design. Therefore, we should expect
Computer Aided Design (CAD) tools to be useful in the design of perspex programs.7 Thirdly, the Data In Layer and
Data Out Layer are constrained to pass control, from whatever position they are at, to the beginning of the return jumpers.
This enforces an analogue structure on the jumps so that, self evidently, the length of the jump is proportional to the
distance from the destination. Thus, analogue structure emerges naturally in the implementation of a perspex computation.
This is important, because the prospects for useful interpolation properties6 is enhanced wherever perspexes have an
analogue interpretation.

7. Arithmetic

Basic C arithmetic is implemented as a product of homogeneous transformations as shown in Table 1. The first column,
headed “Operation,” shows the kind of arithmetic operation that is being implemented. The second column, headed
“Types,” shows the types of the arguments to the arithmetic operation. Here, means that is a variable and

 means that is a number. Note that every operation returns a variable. This simplifies the compiler by making it
possible to hold intermediate values in variables, rather than having to maintain trees of literal numbers covering every
execution path. Unfortunately, this slows down execution of the compiled code where a number is the natural result, say in
the more natural . However, the priority in this, the first C to perspex, compiler is to achieve
compilation regardless of the efficiency of the compiled code. The third column, headed “Implementation” shows a
product of homogeneous transformations being assigned to a location, , in space. This implements the arithmetic
operation. These transformations are defined earlier in this paper. They are all premultyplying, active transformations of
co-ordinates. This means that they are, conventionally, evaluated from left to right. If a right to left evaluation is wanted
this can be had, as usual, by writing the transpose of the matrices in the opposite order. The final column, headed
“Condition,” shows a boundary condition, if there is one. In the case of multiplication, failure to observe the boundary
condition does correctly compute a zero product, but too much of the matrix is zeroed and this destroys the type
information within it. In the case of division by zero the product computes a result, but not one that is compatible with C
arithmetic. In these cases it would be possible to trap the breaking of the boundary condition and jump to either a different
sequence of perspexes that computes the desired result, or else to a sequence of perspexes that sets an error flag and halts.
Thus, the perspex machine, which has no exception states, could emulate the exact behaviour of C, including its
arithmetical, or logical, exceptions.

x

I
Ci z11 1=

H

Var a() a
Num a() a

Num x() Num y()+ Num z()→

z

© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

Table 1 Perspex implementation of arithmetic with perspex products evaluated from left to right.

No product of perspexes has been found that preserves variables and performs the multiplication of two variables, or
performs the division of a number or a variable by a variable. These cases are handled by iterative C functions, shown in
Table 2. These function compute the result to a precision fixed by the number of iterations, here five. The functions are
known to compile into the basic arithmetical operations that are supported by products of matrices. Thus, the compiler has
reached the stage at which it is beginning to bootstrap its own development.

In contrast to the perspex machine being used here, which has a linear instruction, the universal perspex machine11 has a
general linear instruction. This allows it to access arbitrary elements of a matrix so it can construct natural matrix products
for all arithmetical operations.

It is interesting to note that the normalisation step in the perspex instruction4,5 can cause the product of homogeneous
transformations to be non-associative. This occurs only where a division by a number other than unity is involved. For
example, the fragment, , of the division implementation, computes a reciprocal of y, but does not. We
have, writing the matrices without their middle two, identity, rows and columns:

. (Eqn 11)

But:

Operation Types Implementation Condition

Assignment

Addition

Subtraction

Multiplication

Division

Var x() Var z()→ VxI z→

Num x() Var z()→ CxG z→

Var x() Num y()+ Var z()→ CyVx z→

Num x() Var y()+ Var z()→ CxVy z→

Var x() Var y()+ Var z()→ VxGVy z→

Num x() Num y()+ Var z()→ CxCyG z→

Var x() Num y()– Var z()→ VxSCyGSa z→

Num x() Var y()– Var z()→ CxGSVySa z→

Var x() Var y()– Var z()→ VxSVySa z→

Num x() Num y()– Var z()→ CxGSCyGSa z→

Var x() Num y()× Var z()→ MyVxMyGG z→ y 0≠

Num x() Var y()× Var z()→ MxVyMxGG z→ x 0≠

Num x() Num y()× Var z()→ MxCyGMxGG z→ x 0≠

Var x() Num y()⁄ Var z()→ GMyGVxGMyG z→ y 0≠

Num x() Num y()⁄ Var z()→ GMyGCxGGMyG z→ y 0≠

GMyGG GMy GG()

GMyGG 0 1
1 0

y 0
0 1

GG 0 1
y 0

0 1
1 0

G 1 0
0 y

G 1 y⁄ 0
0 1

0 1
1 0

0 1 y⁄
1 0

= = = = =
© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

. (Eqn 12)

Projective geometry is associative. Indeed with , as required by associativity. But the affine
fixing of projective geometry obtained by the perspex normalisation step is non-associative. This non-associative model is
used in computer graphics, yet graphics pipelines are assumed to be associative.9 A fuller analysis of associativity might
justify the practice of applying normalisation only once at the end of a pipeline. Alternatively, it might open up new, non-
associative algorithms, perhaps for calculating radiosity form-factors via the hemisphere method and its variants.8

Table 2 C code to perform multiplication and division – bootstrapped into the compiler.

Multiplication Division

double mult(double a,b) {
double iter, crment, total, modd, m;

iter = 5;
crment = a;
total = 0;

if (b<0){
 modd = -1;
}
else {

 modd = 1;
}

while (iter>0){
 total = total + crment;
 b = b - modd;
 m = 0;
 if (modd < 0){
 if (b>modd)
 m = 1;
 }
 else {
 if (b<modd)
 m = 1;
 }

if (b = 0) {
 iter = 0;
 }
 else if (m = 1) {
 modd = modd * 1_/10;
 crment = crment * 1_/10;
 iter = iter - 1;

}
}

return total;
}

double div(double a,b) {
double iter, crment, total, modd, sign;

iter = 5;
crment = b;
total = 0;
sign = 1;
modd = 1;

if (a<0) {
 a = a * -1;
 sign = sign * -1;
}

if (b<0) {
 b = b * -1;
 sign = sign * -1;
}

while (iter>0) {
 if (a = 0) {
 iter = 0;
 }
 else if (a>crment) {
 total = total + modd;
 a = a - crment;
 }
 else {
 modd = modd * 1_/10;
 crment = crment * 1_/10;
 iter = iter - 1;
 }
}

if (sign = -1) {
 total = total * -1;
}

return total;
}

GMy GG() 0 1
1 0

y 0
0 1

0 1
1 0

0 1
1 0⎝ ⎠

⎜ ⎟
⎛ ⎞ 0 1

y 0
1 0
0 1⎝ ⎠

⎜ ⎟
⎛ ⎞ 0 1

y 0
= = =

GMyGG λ GMy GG()()≡ λ 0≠
© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

8. Conclusion

The compiler compiles part of the C language to perspexes. It can handle arithmetic, while and for loops, if-then-else
conditionals, one and two dimensional arrays of numbers, and non-recursive function call and return. In principle the
compiler can be extended to handle the whole of the C language or, indeed, the whole of any Turing computable language.
C was chosen as the source language for this first, perspex, compiler because there are cross-compiler pathways to C from
many computer languages. Thus, one can envisage compiling many, if not all, existing scientifically and commercially
significant programs into perspexes.

The development of the compiler has exposed some interesting design principles. Firstly, if an array, or other data
structure, is stored in an otherwise empty hyperplane then accessing it outside of its bounds involves a jump into an
uninstantiated location of the hyperplane and this halts the machine, because every uninstantiated point in space contains
the halting instruction by default. Therefore, it is impossible to execute buffer-overflow viruses in a program complied on
such a perspex compiler. More generally, this highlights the importance of the geometrical arrangement of data structures.

Secondly, the compiler generates matrices that carry type information within them. Thus, in at least assignment, addition,
and subtraction, an object carries its type information at all times. Furthermore, a cast from one type to another is simply a
matrix transformation. We expect that this will make it easier to prove the correctness and completeness of type
polymorphisms. It also raises an interesting, theoretical, possibility. Perspex operations, except the perspex halt, are
continuous.6 Therefore one can construct matrices that lie mid-way between types. One could, for example, construct a
spectrum of objects, by linear blending, that passes from a variable at one end of the spectrum to a number at the other.
This might be useful in constraint satisfaction systems where a variable becomes constrained to a constant number during
the satisfaction process.

Thirdly, the perspex machine has no exception states, but it can emulate exceptions in a standard, computer language by
setting a flag and halting. However, if it is allowed to operate without emulating exceptions then there are no bottle necks
on setting status words or error flags. The machine can be made massively parallel. As the perspex machine has a single
instruction it would seem to be particularly well suited to parallel implementation, though one might prefer to implement
the machine in terms of the general-linear, perspex instruction,11 rather than the linear instruction used here. This is
because the general-linear instruction can access arbitrary elements of a perspex, leading to natural implementations of all
standard, computer operations. The perspex machine is a Single Instruction, Zero Exception (SIZE) machine.

It is interesting that arbitrary, computer operations can be laid out geometrically4 and that this can be done by a compiler.
As all of the operations in the current perspex machine are perspective transformations and jumps, this raises the
possibility of implementing programs on an optical computer. By contrast, the universal perspex machine is better suited
to approximate simulation on a digital computer.

It is, perhaps, surprising that the product of homogeneous transformations, involving normalisation, can be non-
associative. As computer graphics uses such a model of projective geometry, it is open to question how much of a
graphics pipeline can be optimised by pre-compiling it. Non-associativity might prevent some optimisations. However, as
all contemporary pipelines apply normalisation only once, at the end of the pipeline, this has no impact on the
contemporary practice in computer graphics. One might hope, however, that an analysis of non-associativity would either
give a formal basis for the current practice, or else open up new graphical methods where perspective projections are
carried out several times during a pipeline. For example, the computation, or approximation, of form factors8 in radiosity
might benefit from this approach.

In conclusion, we have demonstrated the compilation of C programs into perspexes and have identified new, geometrical
principles of language design, as well as identifying an area of potential research on non-associative graphics pipelines.
We finish by observing that the perspex machine is the ultimate Reduced Instruction Set Computer (RISC), it is a Single
Instruction, Zero Exception (SIZE) machine. This might make it particularly well suited to implementation as a parallel
machine.
© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com

References

1 J.A.D.W. Anderson, ed, POP-11 Comes of Age: the advancement of an AI programming language Ellis-Horwood
(1989).

2 J.A.D.W. Anderson, “Representing Geometrical Knowledge” Phil. Trans. R. Soc. Lond. B. 352, 1129 - 1140 (1997).
3 J.A.D.W. Anderson, “Exact Numerical Computation of the Rational General Linear Transformations” in Vision

Geometry XI Longin Jan Latecki, David M. Mount, Angela Y. Wu, Editors, Proceedings of the SPIE Vol. 4794, 22-28
(2002).

4 J.A.D.W. Anderson, “Perspex Machine” in Vision Geometry XI Longin Jan Latecki, David M. Mount, Angela Y. Wu,
Editors, Proceedings of the SPIE Vol. 4794, 10-21 (2002).

5 J.A.D.W. Anderson, “Perspex Machine II: Visualisation” in Vision Geometry XIII Longin Jan Latecki, David M.
Mount, Angela Y. Wu, Editors, Proceedings of the SPIE Vol. 5675, 100-111 (2005).

6 J.A.D.W. Anderson, “Perspex Machine III: Continuity Over the Turing Operations” in Vision Geometry XIII Longin
Jan Latecki, David M. Mount, Angela Y. Wu, Editors, Proceedings of the SPIE Vol. 5675, 112-123 (2005).

7 James Anderson, Matthew Spanner & Christopher Kershaw “Perspex Machine IV: Spatial Properties of Computation”
in AISB Quarterly Issue 121, Summer (2005).

8 M.F. Cohen & J.R. Wallace, Radiosity and Realistic Image Synthesis, Academic Press (1993).
9 J.D. Foley, A. van Dam, S.K. Feiner, J.F. Hughes, Computer Graphics Principles and Practice, 2nd edition, Addison-

Wesley (1990).
10 C.J.A. Kershaw & J.A.D.W. Anderson, “Perspex Machine VI: A Graphical User Interface to the Perspex Machine” in

Vision Geometry XIV Longin Jan Latecki, David M. Mount, Angela Y. Wu, Editors, Proceedings of the SPIE Vol. 6066
(2006).

11 J.A.D.W. Anderson, “Perspex Machine VII: The Universal Perspex Machine” in Vision Geometry XIV Longin Jan
Latecki, David M. Mount, Angela Y. Wu, Editors, Proceedings of the SPIE Vol. 6066 (2006).
© SPIE 2005. Home: http://www.bookofparagon.com

http://www.bookofparagon.com
http://www.bookofparagon.com/Mathematics/SPIE.2002.Exact.pdf
http://www.bookofparagon.com/Mathematics/SPIE.2002.Perspex.pdf
http://www.bookofparagon.com/Mathematics/PerspexMachineII.pdf
http://www.bookofparagon.com/Mathematics/PerspexMachineIII.pdf
http://www.bookofparagon.com/Mathematics/PerspexMachineVI.pdf
http://www.bookofparagon.com/Mathematics/PerspexMachineVI.pdf

