Perturb and Simplify: Multi-level Boolean Network Optimizer

Shih-Chieh Chang and Malgorzata Marek-Sadowska
Electrical and Computer Engineering Department,
University of California Santa Barbara, CA 93106

Abstract trolling value if it determines the output of the gate regardless of the

In this paper, we discuss the problem of optimizing a multi-lev%fher inputs. The inverse of the controlling value is calledracon-

logic combinational Boolean network. Our techniques apply olling value A gate is in thdransitive fanin (fanoutpf a wire, if
sequence of local perturbations and modifications of the netwo kere |s.a path from the gate t? the wire (from the w'|re t_o the gate).
which are guided by the automatic test pattern generation ATPG Consider the absolute dominators of a WieThe side inputsof
based reasoning. In particular, we propose several new ways tie al:_)solute dominators are their inputs not in the transitive fanout of
which one or more redundant gates or wires can be added to a nite WireW. A test pattern for a stuck-at fault on wikemust set all
work. We show how to identify gates which are good candidates {he side inputs of the absolute dominator¥\bfo their non-control-
local functionality change. Furthermore, we discuss the problem BRg values.

adding and removing two wires, none of which alone is redundant,Mandatory assignmentare the unique values which must be
but when jointly added/removed they do not affect functionality of tieesent at certain nodes for a test to exist. For a given stuck-dt fault
network. We also address the problem of efficient redundancy comfhe set of mandatory assignments, denoted as SMA(f), can be com-
tation which allows to eliminate many unnecessary redundancy teggted using the 9 value implication approach [10] [13]. If the manda-
We have performed experiments on MCNC benchmarks and cdary assignments implied by a stuck-at fault on a wire can not be
pared the results to those of misli[4] and RAMBOI6]. Experimentatonsistently justifiecthe stuck-at fault iantestableand therefore the
results are very encouraging. wire isredundant

1 Introduction 3 Redundancy addition and removal

In this paper, we discuss the problem of multi-level logic optimiza- In this section, we discuss how to make a wire redundant by add-
tion for a combinational network. Previous multi-level optimizationing to the network anotheedundantwire or gate.
approaches can be categorized into two classes. The first class locglly \wire substitution procedure
collapses and optimizes a circuit using techniques like factorization,
decomposition, kernel extraction, cube extraction, etc. (e.g.:Suppose the objective is to remove a wirdorm a network. We
misli[4]). The second class introduces a perturbation, usually inaitempt to add a redundant wire(gatg)such that the originally irre-
form adding wires, to a network which results in potential removal glundant wirew, becomes redundant. Sineg is irredundant, the
some redundant gates or wires (e.g.: [2],[12], and RAMBO [8]). OdMA(w; stuck-at fault) is consistent. If the SM#(stuck-at fault) is

proposed approach falls into the second class. inconsistent under the change (addiRy the stuck-at fault becomes
Among the second class, RAMBO [6], [8] proposed an efficie ntestable and we can conclugeis redundant. In the following, we
automatic test pattern generation(ATPG) based approach to opti w the wire substitution procedure: adding a redundant wire(gate)

a network. The idea was that the perturbation-simplification proceé&smake an irredundant wire redundant.

of network optimization can be viewed as redundancy addition andFirst the SMA of the target wire; stuck-at fault is calculated.
removal, which can be efficiently computed using ATPG techniquddien, a set of candidate connections is identified. Each candidate
[10] [13]. In RAMBO, a heuristic of adding one redundant wire at gonnection when added to the circuit causes inconsistency of the
time and removing redundant wires caused by such a perturbat®MA(W; stuck-at fault) and thus makes the stuck-at fault untestable.
was proposed. In [5] we applied the ideas of ATPG guided wire addiowever, adding such a candidate connection may change the cir-
tions and removals to alleviate FPGA routing. cuit's behavior. Therefore, a redundancy check is needed to verify

In this paper we carry further the idea of perturbing-simplifying whether a candidate connection is redundant or not. If a candidate
circuit applying ATPG techniques. In particular, we propose severgphnection is redundant, it can be added to remove the target,wire
new ways in which one or more redundant gates or wires can béconsider the circuit in Fig. 1 [8]. Leg->g, be the target wire to
added to the circuit. We also show how to identify gates which agg removed. SMA(g>g, s-a-1) = £=1, g;=0, g5=0, g,=0, f=1}.
good candidates for local functionality change. In addition, we didlote thatgs is outside transitive fanout @f->g, and has a manda-
cuss the problem of adding and removing two wires, none of whit®ry assignment 0. Singg is an absolute dominator gf->g,, if we
alone is redundant, but when jointly added/removed they do rAnnects to gy (the dotted wire in Fig. 135 must have a mandatory
affect the functionality of a network. We also address the problem @$signment of 1 fog;->g, s-a-1 fault. This is inconsistent with the
efficient redundancy computation which allows us to eliminate maryiginal gs=0, and therefore, the presenceggf>gy makesg;->g4
unnecessary wire redundancy tests. redundant. We then choogg£>gq as a candidate connection. Finally,
we check ifgs->gg is redundant by examining the SMR{>gq s-a-

1). The SMA@s->ggq S-a-1) is inconsistent. Therefore, we can add the

In a combinational circuit, a wire is redundant if and only if thavire gs->gg and remove the wirgy->g,.
corresponding stuck-at fault is untestable. We review an approachlhe above example shows that a good candidate connection can be
[13] of identifying redundant wires using the concept mandatoy wire between a gate with a mandatory assignnggnt@) and a
assignments. dominator §g). We generalize this observation as follows.

Theabsolute dominatorgdominators) [10] of a wirVis a set of 3.2 Only two among all transformations are necessary
gatesG such that all paths from the wit® to any primary output

have to pass through all the gate§inAn input to a gate hascan- We define a wiren; as afault propagating wireif there is a path
from the target wiray, under stuck-at fault test to the wing The

2 Redundancy identification procedure

Permission to copy without fee all or part of this material is granted,
provided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice isgiven that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires afee and/or specific permission. 0 1994 ACM 0-89791-690-5/94/0011/0002 $3.50

patterns of all possible logic transformations that we consider in t{$,0,1,0,0,1) is applied, we haug(ds)=0, by(gs)=1, by(dg)=0, b
section are: (1) the source ggiés in SMAw, stuck-at fault) but not (gg)=1, by(9g)=0, andby (go)=1.

in the transitive fanout of, (2) the destination gat is a domina- Theorem 2 Letw, be an irredundant wire in the network. Con-
tor of the target wirey; (for simplicity, only consider whegy is a 2- sjder the transformations of Type 0 and Type 1 applied to the network
input AND/OR gate), and (3) the 2-input gggs replaced by a cer- to makew, stuck-at fault untestable. Lgj be a dominator ofy,. For

tain 3-input gate, whose inputs ajg g,, andg;s (the dotted box in w, stuck-at fault, if there exists a test vectpwhich causes that
Fig. 5). Since our goal is to remove the target wirewe term a bg(9)=1 andb (gg)=0, then, the candidate connection suggested by
logic transformatloradequatelf,_after the transformatlon,_SMM the Type O transformation is irredundant. When test vegtauss
stuck-at fault) becomes inconsistent. For example, consider the T)t%@gd):o andby (gg)=1, then the candidate connection suggested by
1 transformation in Fig. 7. Leg be the fault propagating wire aggd the Type 1 transformation is irredundant.

be a wire with mandatory assignment 0 outside the transitive fanoutorollary 1: Suppose that all test vectors foy stuck-at fault

of Wi Becausegy IS a dqmlna_tor _ofN,, the added gate, Is also a causeby(gy)=0 andby (gg)=1, then only the Type 0 transformation
dominator ofw,. Sincegs is a side input to the dominatgy, gsmust o\ 014 %e tried. Ib (0)=1 and by (gg)=0, then, only the Type 1
be assigned a non-controlling value 1, which causes a conflict W{ansformation shogld be tried. If some test vectors caylgg)=0
the original mandatory assignment of 0. Therefore, this Type 1 trang;y by (g9=1 and others causg(gg)=1 andby (g)=0, then both
formation is an adequate logic transformation. Type 0 a%d Type 1 should not be attempted. /=

We can view all possible Iogi_c trqnsformations as replagjiy a _ For example, after performing a s-a-0 test on the giregg in
3-input gate fed by, g; andgy (in Fig. 5). We enumerated all possi- i 1 e have SMA=};=0, ¢=0,}. Sincegs is a dominator and
ble 256 3-input functions, only sixteen of them are adequate Iogdc(gg)’:l andby (gg)=0. Tlher;eforel, frém the corollary 1, we conclude
transformations, which have the desired property of making 8MA(tﬁat the Type O transformation gf->ge, c->gs are irredundant and

stuck-at fault) become inconsistent. In Fig. 6,7. we list two of theggoy ot he tested. Same situation can be derived for the Type 0
sixteen 3-input functions, which we term Type 0 and Type 1 transfqy;

- .) ansformation 0§;->g-, c->g5.
mations. In the subsequent discussion, we show that the other four-, . " behind th i foll Th o
teen adequate transformations are unnecessary when Type 0 and!'® intuition behind theorem 2 is as follows. The test vedfprs
Type 1 transformations are performed. For simplicity, in Fig. 8, \A@éwf stuck-at fault are the input vectors that can distinguish between
list another possible adequate transformation, which we term Typé |g°°dh Circuit ar;]d thfj(j?“'ty Cr:rcullé. Ifla W“k')ed cgluld indeed
transformation, and prove that it is not necessary to consider it ind&P acEt g, wirey, then a |r(1jgva Sd ould at least he able :jo coglpﬁn-
pendently. We omit the similar discussion wiggris an OR gate, or Sate the discrepancies produced \gybetween the good and the

wheng, has a mandatory assignment 1, and the cases of the remEﬁH-lty networks. The above theorem says that if a transformation can
ing thir%een adequate logic transformatiéns not correct discrepancies for one test vector, then it must be irredun-

The transformations in Fig. 6-8 guarantee only that an addition %?nt.)) .) o
the new wire (dotted wire there) will cause inconsistency in thé Multiple-wire addition and gate function substitution
SMA(w, stuck-at fault) and therefore make the target wjreedun-
dant. Still, it is essential to verify if the added wire itself is redundan Innfh:ts. SIZCtI'(r)gé \éveateex;)e nl(rj1 t{?g d'.?g?] (}L??&"gv‘r"rgggea;?r;%%dqr; a
The following theorem guarantees that if the added wire/gate in tw're \ljvelpalsvc\)”allovx? ateé to charlll e iheir fun(?tlijoﬁalit ving
Type 1 transformation are irredundant, then the added wire/gate ' in ™’) ; 9 . g Y-
the Type 2 transformation, when applied to the sggandgy, are 4.1 Multiple-wire addition

also irredundant. Therefore, the Type 2 transformation is unnecessary, 5 goolean network. there exist wires which when deleted may

when the Type 1 transformation is performed. trigger a sequence of other reductions. For example, wken-
_Theorem 1 Consider the transformation of Type 1 and Type 2 ifotted in Fig. 2 is removed, the 3-input ga¢eean be also removed.
Fig. 6,7 applied to the sarggandgy. If a new wire added to the net- This in turn leaves the gagp with a single input, therefore a direct
work as suggested by the Type 1 transformation is irredundant, thefhnectiong, ->gg is possible and}, can be deleted. If deleting a
so is the wire added by the Type 2 transformation. wire can result in the removal of more tHawires or gates from the
3.3 Further exclusion of unnecessary redundancy checks network, we refer to such a wire asagge_redunctiorwire. When
.) o optimizing a circuit, we give higher priority to removing
_ To make a target wire, redundant, the discussion in the last seGyrge redunction wires. In case that adding one redundant wire(gate)
tion tells us that we only need to consider the Type 0 and Typ€cdn not remove a large_redunction wire, we may add more than one
transformations. In the following, we show that, depending on th@ies (gates) to delete the wire in question. For example, in Fig. 2,
mandatory assignment of the dominator ggtehe added wire/gate \we add a 2-input gatey,, and a wireg,->gy to remove the
of either Type O or Type 1 transformations is always i”edunda%rge_redunction wiregg->g; However, arbitrarily adding many
Therefore we can prune the space of redundancy checks on thegg s as in [5] to remove a large_redunction wire is computationally
priori known irredundant transformations. expensive. We have developed an efficient approach that limits the
Letw, be a wire under stuck-at 0(1) testfalilty circuit is the cir- search space and that still has much more power in comparison to the
cuit in whichw, is replaced by a constant 0(1). As we noted earlier,@ghe-wire addition.

wire is irrec_iundant if t_he corr_esponding stucl_<-at fault i_s testa}ble.our basic philosophy of adding multiple wires is to cause an origi-
Therefore, if we can find an input vector which can differentiatfa|ly irredundant candidate connection to become redundant. Sup-
between the faulty and the good networks, the corresponding stucksge e wish to remove a large_reduction wire, and all the one-wire
fault is testable and the wire is irredundant. If no such a test vectQgidate connections are irredundant. Then, we consider a possibil-
exists, then the.W|re under stuck-at fault test is redundant. We defm;eof adding multiple wires. The procedure is as follows. We com-
by(g)) to be a binary value at the output of ggtén thegoodnet- te and store the SM stuck-at fault). Then, we pick a candidate
work, andbf(gi_) b_e the value & in the faulty r_letwork, both under connection ds1, Og type) and compute the SMA(candidate wire
the same excitation vector applied to the primary infieds exam- gy,ck-at fault). After that, we look for another gate, cadiif such

ple, considering;->g, s-a-1 in Fig. 1, when a vecta,b,c,d.ef= that it is in both the SMA¥, stuck-at fault) and the SMA{->gy

candidate wire stuck-at fault) but has different mandatory assigiaults propagate through the same XOR(XNOR) gate, they cancel out
ments. In the example of Fig. 2, the gai@ primary input) appears at the output of XOR(XNOR) gate.

with the assignmertin the SMAQg->g7 s-a-1) and with assignment The scenario in which the two simultaneously redundant wires
1in the SMAQs->gg s-a-1) so the gate is ourgs, Finally, after transform is used, is best explained using example in Fig. 4. Apply-
finding the gat@s, we add a gatgy, and a wirey,->gy wheregyis ing the transformation of two simultaneously redundant wires, we
the dominator of the candidate connection, using the following rulgan replace the wirgs ->g; by another wir@s ->g,. As a result the
The gategr, is an OR(AND) gate, if the gatg is an AND(OR) gate. 2.input gategg can be removed. The following shows a stuck-at fault
In our exampleé;m 'Sl}?ln ORl%i)t‘? aé%,l&/vgs an(ii(gsz ?d- IT)he quts test that can verify if two wires are simultaneously redundant.

10 gpy aregdsy andgsp. I ggy = In r Stuck-at fault) andy, Is. Theorem 5 Letg, be a fanin of XOR(XNOR) gatg, and letg, be

an QR(AND) gate, we invert the input @ to gy, 'I_'he same rule is another gate. Ifd, ’gr) =(0,1) and ¢, g;) =(1,0) ar?(don’t ca?es in
applied togs, In our example, botli=0 andgs=0 in the SMAQe- 1,4 network, we can replage->g, by g,->,.

>g7 s-a-1) Sowe do notinvert the input phaseifandgs 0 g, Note that when a dominatgy is an XOR(XNOR) gate, the net-
Theorem 3 If in _the_abqve pr_ocgdure, a gglgcan be found then work transformations in Fig. 6-8 are no longer valid and can not be

the network modification is valid, i.e can be deleted and the func- ;e 1 remove a particular wire. It is because some test vectors cause

tionality of the network does not change. ga to haveby/by = 1/0, and others cauggto haveby/b =0/1. Accord-

4.2 Changing the gate’s functionality ing to the Corollary 1, none of the transformations should be applied.

erefore, the redundancy addition and removal technique can not be

In this section, we discuss how to change a gate’s function lé:plied when a dominator is an XOR(XNOR) gate.

remove a particular wire. For example, we can change theggate .
(highlighted in Fig. 3) from an AND to an XNOR without changingé The algorithm

the circuit functionality. After changings to an XNOR gate, the
wire gg->g; becomes redundant. Two issues need to be addressedVe have implemented the transformations described in the previ-

namely, how to check if a given gate can change its functionality, aﬁ\%é sections. The overall algorithm is shown in Fig 9. The subroutine

: : d_one_gate_to_remove_other_wiresf)hich besides adding a
which ggte should be changed to mgke a target wire redundant. wire also adds gates, is an extended algorithm of RAMBO [6]. For
Consider an AND gatg,(gj1, g») with two inputsg;; and g,. If

. . -) each gat@y in the circuit, we try to apply the transformations in Fig.
the output o, is a don't care whe(g, G2)=(0, 0),_the function of 6,7 to remove wires that are dominatedypyThe second subroutine
0,(9i1, go) can change from AND to XNOR. We first show a proce

dures i~ wheth is a don't int ; h Remove_large_reduction_wires()identifies the large_reduction
ure to verify whethen, v;,...,\y) is a don't care minterm for a gate \ireq ang attempts to remove them using more expensive techniques
0x(Gi1, Go.---» On)- The procedure is based on checking consistency

: e adding multiple gates and changing gate’s functionality. Finally,
a certain SMA. _ . . the last subroutinePerturb_circuit_more() perturbs the circuit to
The procedure to verify whether a minteng, (»,...,\p) is adon't jump out of a locally minimal solution before the next iteration. In
care t0Qy(Gi1, Go.--n Gn) first setsgiy=vy, gip=Vy,...., Gin=Vy @nd Pperturb_circuit_more()for each wiraw, in the circuit, we attempt to
includes this assignment in a SMA. Then, we treat the outgytas® replace it with another wire or gate.
stuck-at the value produced by that minterm and compute the app_;o- .
priate SMA. In the following theorem, we show that if the SRiAs Experimental results

inconsistent, the minterm is a don't care. In this section, we present experimental results for combinational
Theorem 4 Consider the SMA induced by setting the gate’yenchmark circuits. We implemented the algorithm in Fig. 9 and we
inputs to a minterm in question and treating the gate’s output @lsoose k_iteration to be 2. In our experiments, the optimization
stuck-at the value produced by the minterm. If this SMA cannot lgbjective is to reduce the number of two-input gates. We compare
consistently justified, then the mintefg, g»...., gn) is a don’t care our results with misll [4] and RAMBO[6]. Note that when our opera-

of thegy(di1, G2,---» 9n) €mbedded in the network. tion involvesadding a wireto an AND (OR) gate, we actuatiylded
Theorem 4 suggests how to verify quickly if a gate can switch ign extra AND(OR) gatto the circuit.
functionality without affecting the network’s behavior. TABLE 1 shows the results for some of the MCNC combinational

The SMA computed to justify particular conditions in the networkenchmark circuits. misll results were obtained as follows. We use
depend on gates’ functionality. We may change some gates’ functi@eript.booleanprovided by misll (for consistency, we don't use
ality to achieve SMAs inconsistency, and therefore achieve reduseript.rugged because some examples can not be run due to space/
dancy. In Fig. 3, the SMA ->g; s-a-1)={;=0, g,=0, g5=0, ...}. time limitation). Then, we map (using theap command in misll)
Changinggs from an AND to an XNOR causes tlggt1l. But on the the circuit into a circuit with general 2-input gates as shown in sec-
other handys =0 as a side input of a dominator. Therefore, we corend column of TABLE 1. The initial circuits for Perturb/Simplify
clude that ifgs is changed to an XNOR gate, then Sigé&->g; s-a- and RAMBO are obtained by running script.algebra and then map-
1) is inconsistent angk ->g; is redundant. ping into 2-input gates. We run both RAMBO and our algorithm to

optimize the circuit. Since the output of RAMBO may contain gates
. . . with more than 2 inputs, we also decompose the result of RAMBO
5 Simultaneous addition and removal of two wires (gates) into 2-input gates. In the third, and fourth columns, we show the
results of running RAMBO, and our algorithm, respectively. All the
each wire is irredundant but simultaneously adding/remonjrand results are _described in terms of the number of 2-input gates and the
number of literals. As shown in the table, the results we obtained are,

addmg{removmgvb qOes not changg the circuit's functionality. . on the average for the listed examples, 19% better than misll and
Intuitively, the existence of two simultaneously redundant wires isso; petter than RAMBO in terms of number of 2-input gates.
not obvious. It can be explained as follows. Vgt stuck-at fault) - gegiges of the superior results of our algorithm, our memory require-
denote all the input vectors that can testihetuck-at fault. Thatis men is very low. For example, C7552 needs only 6 Mbytes. All our
any vector inV(w, stuck-at fault) can distinguish the original (good)eqits have been verified using the circuit verification command in

circuit from the faulty one. Consider another wivg If both sets, .o\ The experiment was performed on DEC 5000. Note that the
Vi(w; stuck-at fault) and/(w, stuck-at fault) are the same, and the

We say that two wireswg,w,) are simultaneously redundant if

RAMBO's results are 4% better than results shown if RAMBO'§4] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.R. Wang,
input circuits are script.boolean optimized first. “MIS: Multi-level Interactive Logic Optimization System,” IEEE Trans.
8 Conclusions on CAD, CAD-6(6), pp. 1062-1081(Nov. 1989).

. [52) Shih-Chieh Chang and Malgorzata Marek-Sadowska, “Layout Driven
In this paper, we have p_roposed several new ways to Qdd one or Logic Synthesis for FPGA,” Proc. Design Automation Conference. pp
more redundant gates or wires to remove other gates or wires fror@ AT Cheng and LA. Entrena. “Multi-Level Logic Ontimization b
network. We show how to identify gates which are good candidat % I.?édun(?ar?c;Addit.ioﬁ and ge?ﬁovalu" I|-n Ii\rlsc Eou%:):pea'?]ICcI)Zne;ellc’)enchn
for local functionali han hieve network’s r ion. r)) ' '
or local functionality change to achieve network’s reduction. Ou Design Automation, pp. 373-377, Feb. 1993.

experimental results have demonstrated usefulness of our approach. el - L .
Acknowledgement [7] M.Damiani, J.C.Y.Yang and G.De Micheli, “Optimization of Combina-
.) . .) tional Logic Circuits Based on Compatible Gates”, Proc. DAC'93,
This work was supported in part by the National Science Foundation under pp.631-636, June 1993
Grant MIP 9117328 and in part by AT&T Bell Laboratories and Digital ' ' ' .) L
Equipment Corporation through the California MICRO Program. The authol8] L-A. Entrena and K. T. Cheng, “Sequential Logic Optimization By Redun-
also would like to thank Professor Kwang-Ting Cheng for many helpful dis- dancy Addition and Removal”, Proc. International Conference on Com-

cussions. puter Aided Design, Nov. 1993.
TABLE 1 Experimental results [9] E. Detjens, G. Gannot, R. Rudell, A. L. Sangiovanni-Vincentelli and A.
Wang, “Technology Mapping in MIS,Proc. ICCAD, pp. 116-119,
1987.

o misil RAMBO Pert/Sim |CPU of Pert/l 10] T.Kirkand and M.R. Mercer, “A Topological Search Algorithm For
Circuit gatesl/literals|gate/literals |gates/literals|Sim (sec) ATPG,” Proc. 24th Design Automation Conf., pp. 502-508, June 1987.
5xpl 117(231) 111(221) 66(131) 34.5 [11] C.E.Leiserson, F.M.Rose, and J.B.Saxe, “Optimizing synchronous circuit
9sym-hdl 96(192) 100(200) 39(78) 19.7 by retiming”, in Proc. Third Caltech Conf. on VLSI, 1983.

C3540 1073(2145) 988(1976) 938(1876) 5692.8 [12] S. Muroga et aI, f‘The Transduption Method—Design Of LOgiC Networks
Based on Permissible Functions,” IEEEE Transaction. on Computer
C5315 1452(2871) | 1458(2883) | 1321(2631)| 2236.7 C38(10). pp. 1404-1423 (Oct. 1989)
C6288 2619(5237) | 2334(4666) | 1883(3766)] 2124.8 [13] M.Schulz and E.Auth, “Advanced Automatic Test Pattern Generation and
C7552 1757(3513) 1761(3521) 1426(2851)| 3668.6 _Redundancy Identification Techniques,” Proc. Fault Tolerant Comput-
alu2 383(765) 366(731) 281(562) 1127.4 ing Si’mpol:'fm’o‘;‘ll 30-34 June 1988.
alud 687(1373) 700(1399) 555(1110) 41715 c o=
apex6 632(1260) 647(1291) 543(1086) 568.9 3
b9 _n2 102(200) 96(188) 79(156) 17.4 .
cm85a 40(80) 40(80) 27(54) 5.1 c
comp 137(273) 119(273) 84(168) 51.9 g
des 3048(6095) | 3073(6145) | 2859(5718)| 31507.6]?
duke2 366(727) 314(626) 246(491) 648.5
f51m 120(239) 116(231) 78(155) 47 c
misex3 434(868) 468(936) 317(634) 978.8 8
my_adder 160(320) 160(320) 116(232) 29.1 o
pcler8 80(151) 80(151) 64(128) 29.7]9
rd53-hdl 36(72) 35(70) 20(40) 2.0
rot 575(1135) 569(1131) 452(902) 256 ? —
ig.
sa02-hdl 195(390) 199(398) 104(208) 119.6 9
Let g. has mandatory assignment is a dominator (AND gate) and
terml 203(403) 203(404) 113(225) 56.2 o1 isga fault propagating Wge. ? (gate)
tt2 184(365) 174(247) 118(236) 57.8 Liqir;]alcw —i":'—ego
x3 629(1253) 617(1231) 552(1104) 472.0 —= 8 8 @
2
z4ml 37(74) 30(60) 21(42) 1.7 Fig. 5 2Fig. 6
total 15162 14758 12302 53883.0 Type 1 o H‘%EO new gate
S=| —
g
9 References 9 Fio 8
Fig. 7 g.
[1] K.A. Bartlett et al, “Multilevel Logic Minimizing Using Implicit Don’t perturb_simplify(k_iteration, network)
cares,” IEEE Trans. on CAD-7(6), pp. 723-740(June 1988). wét%f'g%q‘%ne;twor;'
[2] C. L. Berman and L. H. Trevillyan. “Global Flow Optimization in Auto- Fo?(i =0 i< k’iteration' i) {
matic Logic Design,” IEEE Trans. CAD 10, pp. 557-564(May 1991). Ada one gate tc’> remove_other_wires():
[3] D. Bostick et al, “The Boulder Optimal Logic Design Systefbc. Flj?emoe)/ez_larg‘e_reducti_on_wires(f
ICCAD, pp. 62-65, 1987. } ert“::.—cgcu't—moreo’ !
ig.

