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Abstract

The classical hydrogen atom is examined for the situation where a circularly polarized electro-

magnetic plane wave acts on a classical charged point particle in a near-circular orbit about an

infinitely massive nucleus, with the plane wave normally incident to the plane of the orbit. The

effect of the phase α of the polarized wave in relation to the velocity vector of the classical electron

is examined in detail by carrying out a perturbation analysis and then comparing results using

simulation methods. By expanding the variational parts of the radius and angular velocity about

their average values, simpler nonlinear differential equations of motion are obtained that still re-

tain the key features of oscillating amplitude, namely, the gradual increase of the envelope of the

oscillating amplitude and the point of rapid orbital decay. Also, as shown here, these key features

carry over nicely to conventional quantities of interest such as energy and angular momentum. The

phase α is shown here to have both subtle yet very significant effects on the quasistability of the

orbital motion. A far wider range of phase conditions are found to provide stability than might

intuitively be expected, with the time to orbital decay, td, varying by orders of magnitude for any

plane wave with an amplitude A above a critical value, Ac.

keywords: hydrogen, Rydberg, stochastic, electrodynamics, simulation classical, nonlinear
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I. INTRODUCTION

The present article continues the study of the classical hydrogen atom system interacting

with radiation, as reported in Refs. [1] and [2]. Somewhat surprisingly, there has apparently

been little detailed simulation work regarding a classical charged point particle orbiting an

infinitely massive and oppositely charged classical nucleus when this system is acted upon by

a variety of types of classical electromagnetic radiation. Initially, of course, around 1900,

this was the main physical picture that physicists had of the simplest of atomic systems

(hydrogen). However, the apparent obvious result of the decay of the orbit, in a time frame

of about 1.3×10−11 sec, appeared to have dissuaded most scientists from taking this physical

picture too seriously, since it seemed obvious to most that such a simple physical picture

could not possibly provide a close physical description of nature. Bohr’s initial quantized

model of the atom, involving selected orbits that would not radiated, then led scientists to

develop the description of nature we call quantum mechanics.

Nevertheless, there are a number of reasons for reexamining this simple classical system.

The study of Rydberg atoms, both theoretically and experimentally, has been quite fruitful

for scientific investigations in recent years [3], [4], [5], [6], [7], [8]. To aid in understanding

the rich and complex phenomena observed in these relatively simple Rydberg systems, often

semiclassical physical ideas are used. However, to date, these semiclassical ideas have either

entirely, or largely, ignored the effects of radiation reaction, and have only been concerned

with the general Keplerian type orbits, without the perturbed effects of radiation reaction.

We expect the present research direction to aid in furthering such physical reasoning and to

help improve semiclassical modeling of such atomic systems.

Second, we expect that a close analysis of the classical electrodynamic hydrogen atom,

when acted upon by rapid and strong electromagnetic fields, should enable further advances

in controlling such simple systems. Engineers and scientists have in recent years been

suggesting a variety of possible applications of such ideas, ranging from “storing information”

in Rydberg-like systems [9], to better controlling chemical reactions [10],[11], as well as

manipulating and utilizing plasma etching systems and sources for ion implantation. Some

of these systems are so very complicated, that simulation of them seems essential to help

guide the possible experiments and physical understanding.

Third, clearly from the mathematical perspective regarding nonlinear systems and chaotic
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theory, this relatively simple classical system is far from being understood in any depth.

Moreover, there are underlying symmetries [12], [13], [14] that should strongly influence its

behavior; only the beginnings of such studies have been carried out to date.

Lastly, the classical exploration of this simplest of atomic physical systems, aided by

simulation methods, may shed further insight on the relevancy of a proposed theory of na-

ture called stochastic electrodynamics (SED). This theory was developed by a number of

researchers, with major developments by Marshall [15],[16] and Boyer [17],[18] in the 1960s,

that proposed that quantum phenomena was a result of the natural interaction of classi-

cal charged particles with classical electromagnetic radiation. A key element of the SED

physical ideas was that a classical hydrogen atom must be in thermodynamic equilibrium

with classical electromagnetic radiation, if it is to result in any sort of stable-like behavior.

Boyer in Ref. [19] appears to have been the first to clarify and investigate the ideas here

for hydrogen (also see Refs. [20] and [21]). If a classical electron orbits a classical nucleus,

then of course it must radiate electromagnetic radiation. However, if a classical system

of charged particles is to have any hope of being in a thermodynamic equilibrium state,

then on average as much energy radiated off must be equal to the work done by radiation

on the charged particles. The qualitative SED picture arises that the classical electron

orbits the classical nucleus, always radiating off electromagnetic energy, sometimes faster,

and sometimes slower, depending on it’s instantaneous rapidity of movement. Likewise,

the thermal radiation acting on the electron does work on the particle, sometimes positive

work, and sometimes negative work, and of different magnitudes at different times. On

average, though, it does just as much net positive work as is radiated off by the electron

during its stochastic motion, in large part because of the natural correlation of motion that

arises between the motion of the electron and the thermal radiation; i.e., if they are to be

in thermodynamic equilibrium, then of course, there must be a correlation, of fundamen-

tal significance, between the fluctuations of the thermal radiation and the atomic systems

embedded in the radiation bath.

As first discussed in Ref. [19], the qualitative idea behind this correlative motion is the

following: the closer the particle is to the nucleus, the smaller the period of its motion about

the nucleus and the more likely it is to have positive work done on it by the higher frequency

components of the thermal radiation, thereby on average acting to increase the orbit of the

particle. Likewise, the larger the radius of the particle from the nucleus, the larger the
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period of the effective orbit and the more the lower frequency components of the radiation

will be the dominant part of the radiation that acts on the orbit. However, since the average

amplitude of the radiation of these lower frequency components is smaller, then the average

effect is not sufficient to offset the energy always being radiated by the particle’s motion,

and the average effect is to have the orbit decrease. In this way, a stochastic-like motion

should arise, resulting in the radius decreasing and increasing, but in such a way to agree

with the stability observed in nature. Related points are discussed further in other work,

such as Refs. [22], [23], and [24].

Although few scientists are familiar with these notions, a number of researchers have

deeply probed the possibilities of this theory. Many ideas that seemed impossible to ex-

plain by classical physics alone, were shown to be at least partly explainable from this

stochastic-like interaction between classical electromagnetic fields and classical charged par-

ticles [19], [24], [23]. However, deeper quantitative probing revealed difficulties with these

ideas, particularly when the hydrogen atom was examined in close detail [25], [26], [? ],

[27]. Boyer [12] and Cole [13] suggested that the problem with these approaches might

be the difficult nonlinear equations involved in real physical, Coulombic based systems in

nature. However, to date, improvements in solving these equations of motion have not

been obtained, possibly because of the difficulty in carrying out the full analysis, combined

undoubtedly with the doubt that most physicists have of the likelihood of success of this

research program.

However, Refs. [1] and [2] showed that the simple classical electrodynamic model of

hydrogen, even without the full thermodynamic radiation spectrum acting, already reveals

fascinating nonlinear behaviors that at the very least beg for further understanding at a

mathematical level, but may also reveal deep physical insights that could help to propel

the investigations of SED forward yet again. The aim of the present article is to continue

this investigation on the next logical level, namely, more deeply understanding the nonlinear

behavior and interaction of particle movement and applied fields. Indeed, our preliminary

numerical experiments to date indicate that the richness and surprisingly complex behavior

of this simplest of atomic systems [28] has only begun to be uncovered in terms of such

classical analysis [29]. The recent work reported in Refs. [29] and [30] provide further

evidence that, indeed, the ideas of SED may well hold for hydrogen, with Ref. [30] reporting

on the results of numerical simulations that show surprisingly close results from SED to the
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quantum mechanical ground state probability distribution function for hydrogen.

We now turn to a brief summary of the work in Refs. [1] and [2], where it was shown

that a classical charged point particle, obeying the Lorentz-Dirac equation of motion [31],

while under the interaction of a Coulombic binding potential and sets of classical electro-

magnetic plane waves, can maintain stable patterns of motion under a far wider range of

conditions than might normally be expected. Reference [1] began this work by studying

near-circular motion and showing that circularly polarized (CP) plane waves near the same

orbital frequency of the classical electron’s orbit, can greatly influence the behavior of the

orbit. When the amplitude of the CP plane wave is above a particular value, the elec-

tron’s orbit will slowly spiral out and in for relatively long periods of time, before eventually

becoming out of step with the CP wave and then decaying in orbit.

Reference [2] continued this analysis to the more general, but more difficult, situation

of elliptical orbits. For this case, a spectrum of CP waves was required to achieve the

same orbital balance, where the detailed spectral shape was a function of the eccentricity,

ε, of the orbit (ε = 0 means a circular orbit, while ε → 1 entails a highly eccentric one).

As shown, the more eccentric the orbit, the more important become the higher frequency

harmonics associated with the period of the orbit. If the amplitudes of the CP plane waves

that balanced the near elliptical orbit were scaled linearly above their critical balance point,

then it was found that a similar behavior to the circular case resulted, where the semimajor

and semiminor axes would spiral out and in, over and over again, until eventually orbital

decay would begin. The values of the periodicity and the amplitude of this spiraling motion,

for both the circular and elliptical cases, were found to be highly dependent on the scaling

factor of the CP waves that balanced the orbit.

In the present article, a deeper study of this nonlinear behavior will be carried out. Since

much of the physical aspects is contained in the much simpler, near-circular orbital situation,

this is what we will concentrate on here. We begin in Sec. II by examining in detail the

situation of a near-circular, spiralling orbit as discussed in Ref. [1], but now showing how

the same patterns for the radius also carry over to the energy, angular momentum, and

other important physical factors. In Sec. III, a perturbation analysis is carried out to help

reveal the important factors of this pattern of stability and decay. As shown here, some very

subtle and nonintuitive effects occur regarding stability via the simple change of altering the

phase of the incident CP plane wave in relation to the velocity of the orbiting electron. A
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far wider range of phases than might otherwise be expected is shown to provide quasi-stable

behavior, with the time to decay being very significantly altered by this simple change in

phase. Indeed, as will be shown in a subsequent article, for any CP, normally incident plane

wave, with an amplitude falling within a very wide range of values that will be clarified later,

an infinite time of stability can be achieved, by properly selecting the phase and angular

frequency of the CP wave. We should qualify this claim by emphasizing that this result

holds in the nonrelativistic approximation treated here. However, it appears that most

of this work will carry over nicely, but of course with differences, to where the problem is

treated fully relativistically.

Finally, Sec. IV ends with a few concluding remarks summarizing the results found here.

The perturbation analysis helps us to better understand some of the key characteristics of

the nonlinear behavior of this simple classical atomic system. We note, that much of the

analysis in the present article forms a direct natural basis for the work reported in Ref. [29].

II. STABILITY AND DECAY, MONITORED BY ENERGY AND ANGULAR

MOMENTUM

As shown in [1], if a classical electron with charge −e and rest mass m orbits a classical

nucleus with charge +e and assumed infinite mass (this can be readily corrected, but does

not influence our main points here), then the classical radiation reaction will result in the

orbit steadily decaying in radius. However, if the classical electron starts out in a circular

orbit of radius a, and is acted upon by a CP plane wave traveling in a direction normal to

the plane of the orbit, with the phase and amplitude of the CP wave carefully chosen as

discussed in Ref. [1], then the radiation reaction can be precisely balanced so that the orbit

does not decay. To achieve this balance, the electric field amplitude of the CP wave needs

to equal, in the nonrelativistic approximation,

Ac ≡
2e3ωc

3mc3a2
= (ωcτ)

e

a2
, (1)

where τ ≡ 2e2

3mc3
and the angular frequency of the orbit and of the CP plane wave is

ωc ≡
µ

e2

ma3

¶1/2
. (2)

(The subscript “c” on Ac stands for “critical”, in the sense of the smallest incident amplitude

that allows stability; the associated angular velocity ωc ensures a circular orbit at radius a.)
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Most of Ref. [1] was devoted to examining what happens when A > Ac. The general

behavior can be quickly understood by looking at a particular example. Figure 1 shows a

situation where the initial circular orbit is 0.5 Å, the CP wave is initially out of phase by π/4

with the electron’s motion, and A = 100 statvolt, which is about 18.5 times larger than the

value of Ac = 5.419 statvolt needed to maintain a perfect circular orbit of radius a = 0.5 Å.

As can be seen, the orbit steadily spirals in and out about r = 0.5 Å. As shown in Fig. 1(b),

the envelope of the r vs. t curve gradually increases, until finally decay sets in, as shown in

the blown up version in Fig. 1(c) near t = 3.227 × 10−12 sec. Much of Ref. [1] described

why these effects occur, from the point of view of the positive versus negative work done by

the CP plane wave on the orbiting particle, during its spiraling in and out motion. In the

next section, we will analyze these properties much more deeply.

However, before proceeding with this task, it seems of some interest to observe how

the general trends shown in Fig. 1 for r versus t, translate into other properties of the

particle’s motion during this same time period, such as for energy, E = 1
2
mv2 − e2

r
, and

angular momentum, L = r× (mv) = ẑm (xẏ − yẋ). After all, one might suspect that

if other quantities were tracked, such as the usual “conserved” quantities of energy and

angular momentum, then a deeper insight might be revealed of the dynamics of this behavior.

However, as seen in Fig. 2, the basic behavior of these quantities behaves very similar in

character to the radius variations in Fig. 1. Although we did not make a duplicate blown-

up version of Fig. 1(b) for the energy and angular momentum, this property also of the

envelope gradually increasing until decay sets in, holds for these two variables as well. A

similar behavior holds for a variety of other quantities, such as speed versus time. (Note

that in Figs. 2(c) and 2(d), Lz < 0; if |Lz| was plotted, then the magnitude would decrease

after the transition point.)

The reason for the variation in energy and angular momentum of the orbiting classical

electron is that these quantities are not conserved; the CP plane wave does both positive

and negative work on the electron, increasing and decreasing its energy. If we plot the

total force in the tangential direction of the motion, acting on the electron, including the

radiation reaction, this force varies very systematically between about −5.06 × 10−8 and

+4.54 × 10−8 dynes throughout the entire range of time shown in Fig. 1(a); however, its

character changes significantly at the point when orbital decay sets in, as illustrated in Fig.

3(a). If we superimpose the energy and tangential force curves, as in Fig. 3(b), then it can
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be seen that the peaks and valleys of the energy curve coincide perfectly with the points

where the tangential force equals zero.

Of course, energy and angular momentum in the global sense are conserved. If one

considers a volume enclosing the orbit of the electron, then the change in the sum of kinetic

energy plus electromagnetic energy of all the sources of electromagnetic fields precisely equals

the electromagnetic energy that flows into this volume within any given interval of time.

Alternatively, the work done in a given time period by the CP plane wave on the classical

electron is precisely equal to the change in the kinetic plus electromagnetic energy associated

with the electron and classical nucleus, minus the electromagnetic energy that flows out of

this volume due to these two electromagnetic sources. A similar statement holds for the

angular momentum. References [23] and [32] provide further details on these statements.

Clearly, a key point to the pattern of the continued spiraling in and out motion, eventually

leading to the point of decay, has to do with the relation of the electron’s angular position,

θ, about the classical nucleus, versus the net “angle”, ωt, of the CP plane wave. Eventually

they become too much “out of step”, and decay sets in. Precisely how this occurs will be

the focus of the next section. Figure 4 shows the relationship of θ − ωt versus t, where

x = r cos (θ) and y = r sin (θ). As can be seen in Figs. 4(a) and 4(b), (θ − ωt) falls within

a tight range between about −4.7 to +0.64, or about −1.5π to 0.20π, all the way until the
transition point, at which point θ and ωt become greatly out of step. Figure 4(b) shows the

characteristic feature of the envelope curve widening, while Fig. 4(c) shows the region near

the transition point. As can be seen there, the top peak of each of the maxima to the left

of the decay point become increasingly more and more flat the closer to the point of decay.

This is a key feature that will be brought out more fully in a later publication involving a

deeper analysis of the decay time of these orbits.

III. PERTURBATION ANALYSIS OF MOTION

We will now turn to a perturbation analysis of the orbiting particle’s motion in an attempt

to probe the essential features of the nonlinear behavior examined in earlier plots. Our

treatment here will be nonrelativistic (NR), with plans to cover much of the relativistic

treatments in a future publication. We will treat the electron as being confined to the x−y

plane, with the particle traveling in a counterclockwise direction, starting at x = a, y = 0.
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We will assume the plane wave propagates in the −ẑ direction with angular frequency ω

and electric field amplitude A, with the electric field in the x− y plane given by

ECP = A
h
x̂ cos

³
ωt− π

2
+ α

´
− ŷ cos (ωt+ α)

i
. (3)

The value of α allows us to adjust the phase of the CP wave to make the electron’s orbital

decay sooner or later (see Fig. 9 in Ref. [1]); for the simulation in Fig. 1, α = −π/4. The

NR equations of motion for the x and y coordinates of the orbiting particle then become

mẍ = −e2x

|z|3
− eAcos

³
ωt− π

2
+ α

´
− 2e4

3mc3

µ
ẋ

|z|3
− 3x (xẋ+ yẏ)

|z|5

¶
, (4)

and

mÿ = − e2y

|z|3
+ eAcos (ωt+ α)− 2e4

3mc3

µ
ẏ

|z|3
− 3y (xẋ+ yẏ)

|z|5

¶
. (5)

The last terms in Eqs. (4) and (5) represent the NR approximation of the radiation reaction

Rreac in the Lorentz-Dirac equation [31], where

Rreac ≈
2e2

3c3
...
z ≈ 2e2

3c3
d

dt

½ −e2z

|z|3m

¾
= − 2e4

3mc3

"
dz
dt

|z|3
− 3z(z·

dz
dt
)

|z|5

#

. (6)

Here we have ignored the contribution to the radiation reaction due to the contribution of

the plane wave, since the force it exerts in the simulations we are investigating here is so

very much smaller than the binding Coulombic force of the classical nucleus. We have

verified that if the latter contribution was included, the effect would not be noticeable in

the simulation results we show here. (I.e., nearly all figures shown here would be altered

unperceptively.) The only real change of signficance might be on our examination of “infinite

time without decay”, as including this term would alter that analysis. However, the length

of time to decay would still be enormously long. We prefer to include the contribution of

this “plane wave” contribution to the radiation reaction in later work when we report on a

full relativistic analysis, as the size of this additional term is so very small, and since our NR

radiation reaction term of 2e
2

3c3
...
z is already an approximation of the term in the full Lorentz-

Dirac equation. Thus, to clarify, the “nonrelativistic” results we are reporting here, hold

for the case of Eqs. (4) and (5), with the approximation made in Eq. (6) for the radiation

reaction.

A perturbation analysis of Eqs. (4) and (5) can be carried out by noting that the radius

of the particle undergoes a small oscillatory perturbation up until the point of orbital decay.
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In contrast, the angular position θ, minus ωt , is not a small number, as it varies on the

order of magnitude of ±π until the point of decay. However, the angular velocity θ̇, does

only vary by a small amount from ω, up until this point. Hence, we will write:

x (t) = [a+ δ (t)] cos (θ) , (7)

and

y (t) = [a+ δ (t)] sin (θ) , (8)

where we will assume that |δ| ¿ a up until the point of orbital decay, where a is the initial

radius. Also, we will assume that

θ̇ = ω + φ̇ , (9)

where
¯̄
¯φ̇
¯̄
¯¿ ω .

We next expand each of the quantities in Eq. (4) to first order in the terms δ/a and its

derivatives, and φ̇ and its derivatives. (The following treatment applies equally to Eq. (5),

but does not provide any additional information.) Hence:

ẋ ≈ −aω sin (θ) + a

"

−φ̇ sin (θ) +
δ̇

a
cos (θ)− δ

a
ω sin (θ)

#

, (10)

ẍ ≈ −aω2 cos (θ)

+ a

"

−φ̈ sin θ − 2ωφ̇ cos θ +
δ̈

a
cos θ − 2 δ̇

a
ω sin θ − δ

a
ω2 cos θ

#

, (11)

ẏ ≈ aω cos (θ) + a

"

φ̇ cos (θ) +
δ̇

a
sin (θ) +

δ

a
ω cos (θ)

#

, (12)

−e2x

|z|3
≈ −e2 cos (θ)

a2
+
2e2 cos (θ)

a2
δ

a
, (13)

− 2e4

3mc3

µ
ẋ

|z|3
− 3x (xẋ+ yẏ)

|z|5

¶

≈ 2e4ω sin θ

3mc3a2
+

2e4

3a2mc3

Ã

+φ̇ sin θ + 2
δ̇

a
cos θ − 2δ

a
ω sin θ

!

. (14)
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Substituting these quantities into Eq. (4) and requiring that ω = ωc,which would be the

angular frequency of the orbiting particle in a circular orbit if the radiation reaction and

effects of the plane wave could be ignored, then we obtain

am

"

−φ̈ sin (θ)− 2ωφ̇ cos (θ) +
δ̈

a
cos (θ)− 2 δ̇

a
ω sin (θ)− δ

a
ω2 cos (θ)

#

=
δ

a

2e2 cos (θ)

a2
− eA sin (ωt+ α) +

2e4ω sin (θ)

3mc3a2

+
2e4

3a2mc3

"

φ̇ sin (θ) + 2
δ̇

a
cos (θ)− 2δ

a
ω sin (θ)

#

. (15)

The above result agrees with the finding in Ref. [1] that when θ = ωt+ α, δ = 0, φ̇ = 0,

and all higher derivatives of δ and φ̇ equal zero, then the amplitude of the CP electric field is

given by Eq. (1). This relationship comes from the two terms
h
−eA sin (ωt+ α) + 2e4ω sin(θ)

3mc3a2

i

on the right side in Eq. (15). Physically, what is happening is that the force from the plane

wave is balancing the radiation reaction term. It should be noted that these two terms

depend rather weakly on φ̇ (in the term sin (θ) = sin
h
ωt+

R
dtφ̇
i
), and they do not depend

directly on δ. However, if A > Ac, then −eA sin (ωt+ α)+ 2e4ω sin(θ)
3mc3a2

on the right side of Eq.

(15) should serve as sort of a forcing function for the rest of the terms.

By substituting

sin (ωt+ α) = sin [θ (t)− φ (t) + α] = sin (θ) cos (φ− α)− cos (θ) sin (φ− α) (16)

into Eq. (15), and requiring that the equation holds for all values of θ, thereby equating

coefficients of cos (θ) and sin (θ), we obtain:

+

·
φ̈+ ω2τ φ̇− eA

am
cos (φ− α) + τω3

¸
+

"

2ω
δ̇

a
− 2τω3 δ

a

#

= 0 , (17)

−
·
2ωφ̇+

eA

am
sin (φ− α)

¸
+

"
δ̈

a
− 2ω2τ δ̇

a
− 3ω2 δ

a

#

= 0 , (18)

where τ = 2e2

3mc3
and Eq. (2) were used to simplify the expressions.

We carried out simulations, numerically solving Eqs. (17) and (18) for the range of

conditions in Ref. [1]. For later comparisons, we will refer to the solutions of Eqs. (17) and

(18) as being “case P1”. These solutions were obtained by substituting w1 ≡ δ
a
, w2 ≡ δ̇

a
,

w3 ≡ φ, and w4 ≡ φ̇, into Eqs. (17) and (18), resulting in four first-order differential
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equations of the form ẇi = fi (w1, w2, w3, w4), for i = 1, 2, 3, 4, that could then be solved

using conventional numerical methods [33], with initial conditions wi = 0 at t = 0 for

i = 1, 2, 3, 4. Nearly identical results to the full numerical solutions of Eqs. (4) and (5)

were obtained (see, for example, Fig. 5), where comparisons were made by examining the

connection due to Eqs. (7), (8), and θ = ωt+ φ.

However, for most of the conditions of Ref. [1], which examined A ranging up to about

1000 statvolt, and a ≈ 0.5 Å, we found that Eqs. (17) and (18) could be simplified yet

further, allowing yet deeper analytical approximations. There are roughly three time scales

involved in the above two equations, namely, τ = 2e2

3mc3
≈ 6.3 × 10−24 sec (roughly the

time for light to cross the distance of the classical electron radius of re ≡ e2

mc2
, which is

a key scaling quantity in the radiation reaction term), the period of the classical orbit,

T ≡ 2π
ω
≈ 1.4 × 10−16 sec for a = 0.5 Å , and Ts ≡ 2π

ωs
, which we will call the period of

the radial spiraling motion apparent in Fig. 1(a). From the numerical results in Ref. [1],

Fig. 4, Ts became smaller as A became larger, with its value being about 1.4 × 10−14 sec

when A = 1000 statvolt. Thus, ωs . 7.4 × 1013 sec−1, while ω ≈ 4.5 × 1016 sec−1, and

1
τ
≈ 1.6 × 1023 sec−1, so ωs ¿ ω ¿ 1

τ
when a ≈ 0.5 Å and A < 1000 statvolt. A simple

check then of the terms in Eq. (18) reveals that according to these estimates, the −2ωφ̇ and

−3ω2 δ
a
terms should be the largest magnitude, with the eA

am
sin (φ− α) term being the next

most important, and followed last by the δ̈
a
and −2ω2τ δ̇

a
terms. Indeed, δ

a
≈ − 2

3ω
φ̇ turns

out to be a fairly good approximation, with

δ

a
= − 2

3ω
φ̇− eA

3amω2
sin (φ− α) , (19)

being a somewhat better approximation.

Substituting Eq. (19) into Eq. (17) then yields the following differential equation, all in

terms of φ:

φ̈+
3eA

am

Ã

1 +
2φ̇

3ω

!

cos (φ− α)− 3 (ωτ)ω2 − 7 (ωτ)ωφ̇ = 0 . (20)

Indeed, it turns out that Eq. (20), plus δ
a
≈ − 2

3ω
φ̇, reproduces the results of Ref. [1] very

nicely.

However, Eq. (20) is still fairly complicated; a further reduction can still be made that

reveals a fair amount of insight. If we treat the terms of 2eAφ̇
amω

cos (φ− α) and −7 (ωτ)ωφ̇

as perturbation terms, then we should be able to obtain a reasonably close approximation
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solution to Eq. (20) by the following version of the method of successive approximation,

namely, where

φ̈0 +
3eA

am
cos (φ0 − α)− 3 (ωτ)ω2 = 0 (21)

yields the lowest order approximate solution, φ0 (t), with φ0 (t = 0) = 0 and φ̇0 (t = 0) = 0,

and then successive improvements to this solution are obtained by solving, for n = 1, 2, ...,

φ̈n +
3eA

am
cos (φn − α)− 3 (ωτ)ω2

= −3eA
am

Ã

1 +
2φ̇n−1
3ω

!

cos (φn−1 − α) + 7 (ωτ)ωφ̇n−1 , (22)

to enable one to deduce φ1, φ2, etc., with φn and φ̇n always set equal to zero at t = 0.

We will now make a few comparisons between the results of (i) Eqs. (21) combined with
δ
a
≈ − 2

3ω
φ̇, which we will call “case 0”, to (ii) Eq. (20) combined also with δ

a
≈ − 2

3ω
φ̇,

which we will call “case P2” (“P” for perturbation), to “case E” (“E” for exact), meaning

numerically solving Eqs. (4) and (5). Case P2 and case E are extremely close for most of

the conditions of Ref. [1], with typical results looking almost identical to Fig. 5. [Cases

P1 and P2 are essentially indistinguishable in Figs. 5 and 6(a), so we did not include their

comparison in these figures. However, there are cases we will discuss shortly, where P2 is

not fully adequate, and P1 is clearly the better approximation.] Hence, we can treat case

P2 as yielding excellent agreement for times past the decay point, for most situations at

least up to about A ≈ 1000 statvolt, and for a ≈ 0.5 Å. In contrast, case 0 generally agrees
with the other two cases only at the beginning (see Fig. 6), at which point it agrees very

nicely [Fig. 6(b)]. Near the decay point [Fig. 6(c)], cases E and P2 are virtually still on

top of each other, while case 0 remains of the same shape, unable to predict any tendency

for decay.

Thus, case 0 provides a simplified basis for estimating the initial period and amplitude

of the radial oscillations, while case P2 provides a basis for closely estimating the rate of

increase in radial oscillation, and the time of decay, td. The difference between the two

cases arises from the additional terms in Eq. (20) (case P2) which do not occur in Eq. (21)

(case 0), namely,

φ̇

·
2

3ω
cos (φ− α)− 7ω2τ

¸
.

These terms make the amplitude in both the r vs. t curves, and in the φ vs. t curves,

increase with time, and eventually give rise to the rapid change in orbital decay. These

13



terms also give rise to the slowly changing period of the radial oscillations.

What is interesting about the solution of Eq. (21), for case 0, is that it can be expressed

in terms of the Legendre elliptic integral of the first kind. Indeed, if we drop the last term

(the constant one) in Eq. (21), let α = π/2, then the equation can be put in the same form

as

Θ̈+
³g
l

´
sinΘ = 0 , (23)

which is the equation sometimes analyzed in mechanics textbooks as the full, nonlinear

equation of motion for an idealized pendulum of length l, swinging with angular displacement

Θ from the vertical, with a constant gravitational acceleration g acting. A nice discussion

is provided in Ref. [34], Sec. 8.2, which shows the result as being an elliptic integral of the

first kind.

Retaining the constant term in Eq. (21), however, provides a much closer match with

cases P2 and E in the early time domain. The larger the amplitude A, then the less

important this constant term. Multiplying Eq. (21) by φ̇0, then integrating over t, enables

one to show that
1

2

³
φ̇0

´2
+
3eA

am
sin (φ0 − α)− 3τω3φ0 = C , (24)

where C is a constant. (Again, φ0 represents our “zero-order approximation” from Eq. (21),

as opposed to the phase at t = 0.) In all our present examples, at t = 0, then φ0 = φ̇0 = 0,

so,

C = −3eA
am

sin (α) . (25)

Solving for φ̇0 and integrating once more, yields:

1

2

1
¡
3eA
am

¢1/2

φ0(t2)Z

φ0(t1)

dφ0
©

τω3am
eA

φ0 − [sin (φ0 − α) + sin (α)]
ª1/2 = (t2 − t1) . (26)

This can be integrated numerically; in general, though, we are not aware of a closed form

solution, unless one treats the τω3am
eA

φ0 as sufficiently small that it can be ignored. Again,

for large A, this is a good approximation. In that case, one then has available the elliptic

integral solutions [35]. A better approximation, is to treat the term τω3am
eA

φ0 as a small

term and to expand the integrand, thereby obtaining a power series in the dimensionless

14



parameter τω3am
eA

. We obtain:

(t2 − t1) =
1

2
¡
3eA
am

¢1/2





φ0(t2)R

φ0(t1)

dφ0
{− sin(φ0−α)−sin(α)}1/2

−1
2
τω3am

eA

φ0(t2)R

φ0(t1)

φ0dφ0
{− sin(φ0−α)−sin(α)}3/2 +O

·³
τω3am

eA

´2¸





. (27)

The first integral can be evaluated using integral # 2.5711 in Ref. [35], which gives the

result as a Legendre elliptic integral of the first kind; the second integral appears to be not

readily expressible in terms of standard integrals, and must be numerically evaluated.

Still, if one only wants to estimate and extract some information quickly, such as the

initial amplitude and the initial period, then Eqs. (21), (24), and (25) provides sufficient

information. If we evaluate Eq. (24) at the first minimum (φ0 starts at 0, falling first, then

continuing in a periodic motion up and down), we obtain

sin (α− φ0 (Ts/2)) +
amτω3

eA
φ0 (Ts/2) = sin (α) , (28)

where Ts represents the period. This is a nonlinear relationship for φ0 (Ts/2) that can

be readily solved. Treating
³

amτω3

eA

´
as a small parameter, for large A, then an iterative

method suggests itself where

(φ0)n+1 = α− sin−1
·
sin (α)− amτω3

eA
(φ0)n

¸
. (29)

At the first minimum, with [φ0 (Ts/2)]1 = −2π, then

[φ0 (Ts/2)]2 = α− sin−1
·
sin (α) +

2πamτω3

eA

¸
, (30)

yields fairly good results for the first minima of φ0, with rapid improvement coming by

increasing iterations of Eq. (29). Since φ0 (t = 0) = 0, then |[φ0 (Ts/2)]2| is the approximate

amplitude of the oscillations of φ0. As can be seen from Eq. (30), or more generally from

Eq. (28), this amplitude is a highly nonlinear function of A, as first illustrated in Fig. 4 in

Ref. [1].

The approximate period can then be extracted either from a numerical integration of

Eq. (26), letting t1 = 0, t2 = Ts/2, φ0 (t1) = 0, φ0 (t2) = φ0 (Ts/2) as obtained above;

alternatively, one could obtain a more approximate, but analytic and closed form result,

using the first integral in Eq. (27). We have found that numerical results for Ts from
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this approximate method, yield good agreement with the full solution of Eqs. (4) and (5),

particularly for smaller values of
³

amτω3

eA

´
, although, our testing only examined the situation

where eA is still small compared to the magnitude of the Coulombic binding force.

Figures 7(a) and (b) shows some of the subtle, but significant differences in the φ0 behavior

due to changes in A and α. Again, φ0 largely dictates the initial behavior of the full particle

behavior, meaning, that by writing x (t) = [a+ δ (t)] cos (θ) , y (t) = [a+ δ (t)] sin (θ), and by

approximating θ ≈ ωt + φ0 (t), with δ (t) ≈ − 2a
3ω

φ̇0 − eA
3mω2

sin (φ0 − α), then one “usually”

(we will qualify this shortly) obtains a fairly good approximation to the initial behavior,

including amplitude and period of the full r versus t curves as calculated from Eqs. (4) and

(5) [see Fig. 6(b)]. As seen in Fig. 7, simply changing α has a very significant effect on the

amplitude of φ0, as well as a less significant, but still important, effect on the period.

To put some of this in perspective, Fig. 8 shows, for initial radius 0.5 Å, A = 1000 statvolt,

the variety of solutions one obtains by simply changing the initial phase α between the

orbiting electron and the electric field direction. Figure 8(a) shows a sketch indicating the

meaning of α, namely, that at t = 0, if α = 0, then the force (−e)Eplane of the plane wave

in the x − y plane is parallel to the initial velocity of the particle. Even though initially

the frequency of the plane wave and the orbital frequency of the particle are chosen to be

the same, this changes immediately for α = 0, since the plane wave acts to accelerate the

electron, making it spiral outward, increasing its radius, and changing its orbital frequency.

Figure 8(b) shows the behavior as α ranges between −π/2 to 0, and 0 to π/2, while Fig.

8(c) shows the complementary region as α ranges between −π/2 to −π, and π (physically

equivalent to −π) to +π/2. As noted in Ref. [2], increasing A can significantly increase the

length of time of stability; here we also see that for a fixed value of A, with A > 2e3ω
3mc3a2

, the

initial phase α has a very similar and significant effect.

What is rather surprising is that when α = −π (or π), so that the initial force (−e)Eplane

is exactly opposite to the initial velocity v of the particle, decay does not automatically occur;

instead, near-immediate decay begins when α ≈ −π/2, as can be seen in Figs. 8(b) and

8(c) [as is also predicted by the corresponding φ0 (t) vs. t curve in Fig. 7(b)]. Moreover,

when α = −π, the time to decay is nearly identical, although not exactly [see Fig. 8(d)], to

the situation of α = 0, when (−e)Eplane and v are initially parallel, at least for A = 1000

statvolt. Indeed, each of the curves in Fig. 8(b) have a very similar nature (i.e., shape and

time to decay) to the curves in Fig. 8(c), with 5
8
π similar to 3

8
π, 3

4
π to 1

4
π, 7

8
π to 1

8
π, etc., as
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indicated in Fig. 8(a). More specifically, for A = 1000 statvolt, any initial angle in the top

half of the dotted circle in Fig. 8(a) that produces one of the curves in Fig. 8(b), will result

in a value of td very similar to the corresponding initial angle that is its mirror reflection

about the horizontal line in Fig. 8(a) [Fig. 8(c)].

The following discussion attempts to shed some physical insight into the reasons for

these nonintuitive effects. As can be seen in Fig. 8(e), immediately after t = 0, the radius

increases for the α = 0 case and decreases for the α = −π case. The same is true for each

pair of angles discussed above; i.e., each of the trajectories with an angle α from the top

half of the dotted circle in Fig. 8(a) has the radius initially increasing, while the mirror

image about the horizontal [e.g., the “mirror” of (1/8)π is (7/8)π] has the radius initially

decreasing. In the first case (−e)Eplane acts to accelerate the particle, while in the latter,

(−e)Eplane deaccelerates it, thereby explaining why r tends to increase (decrease) for the

initial angles in the top (bottom) half of the dotted circle in Fig. 8(a).

However, the reason why decay does not immediately set in for the α = −π case, is that

when the particle deaccelerates, this allows the (−e)Eplane force, which is rotating at a fixed

angular frequency rate of ω, to catch up to the orbiting particle, which then starts to aid

the particle’s orbit to increase. The amplitudes of oscillation of the r versus t curves in Fig.

8(e) are nearly identical. Again, this property holds fairly closely for every pair of mirror

image angles mentioned above. However, these two physically different situations do not

have exactly the same amplitude for A = 1000 statvolt; numerical calculations reveals that

the α = π amplitude in Fig. 8(e) is about 0.01% larger than the corresponding initial α = 0

amplitude [see Fig. 8(f)]. This difference in initial amplitude is what helps to explain the

difference in time for orbital decay [Fig. 8(d)] to set in for these two curves. After all, as

noted in both Refs. [1] and [2], the common phenomena observed when quasi-stability is

established by a plane wave (or set of plane waves in the elliptical case) acting to oppose

the radiation reaction effect, is that the amplitude of oscillation of the spiralling in and out

orbits, steadily increases until orbital decay finally occurs.

Figure 8(g) zooms in on Fig. 8(c) to reveal this pattern of increasing amplitude, leading

to orbital decay. Not all of the different curves of α are shown here, in order to make

sure the general pattern is evident. What is interesting, is that each of the curves are very

similar in character (i.e., shape and size). Indeed, by translating them, and superimposing

them at the transition point, one can obtain a fairly close match - not exact, as there are
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differences, but, the similarity is quite apparent, as seen in Fig. 8(h).

Finally, it seems natural to ask why the α = π/2 curve does not decay immediately, and

in fact lasts the longest of all curves (for A À Ac), while the α = −π/2 curve results in

nearly immediate decay. However, we will save fully addressing this point for a subsequent

article, as it seems that the easiest way to discuss it is to go through an analysis that reveals

that for each value of A > Ac, there are two values of α that result in td actually being

infinite. One of those values of α turns out to be “stable” and the other “unstable”; by this

we mean that in the “stable” case, a small deviation in α still results in td being very large,

while in the “unstable” case, a small deviation in α results in td → 0. For A À Ac, the

stable and unstable values of α can be shown to be α ≈ +π/2 and α ≈ −π/2, respectively.

Our future article will help explain these points.

However, here we can show how subtle the analysis can be for some of these points by

clarifying a statement made earlier, that “usually” case 0 produces the initial behavior quite

well. For smaller values of A, case 0 does work well, even at α = +π/2; however, by

A = 1000 statvolt, then near the critical junction of α ≈ +π/2, the initial prediction for

case 0 does not match case E, nor does case P2 match case E very well. The terms dropped

between cases P1 and P2, namely, the second, third, and fourth terms in Eq. (17), become

no longer negligible for this situation. Near t = 0 in this situation, the first and last terms

in Eq. (17) are very comparable in magnitude, as are the second and third, while the fourth

term involving the δ̇ term is very small. The end result, for this large a value of A is

that, as shown in Fig. 9, the radius actually increases once, before falling into an oscillatory

deceasing pattern.

Thus, there can be a subtle interplay between the interaction between δ and φ̇. As seen

in Fig. 9, decay does not immediately begin for the A = 1000 statvolt, α = +π/2 case,

as r first undergoes a small increase, then decay begins. However, for A = 100 statvolt,

decay begins immediately, as seen in Fig. 9(b) in Ref. [1]. This transitory behavior for the

α = π/2, A = 1000 statvolt case is not predicted by the case P2 case, but is well predicted

by case P1. For most other situations, for α 6= π/2, and for A up to at least 1000 statvolt

(a ≈ 0.5 Å), case P2 provides a sufficiently accurate and simple explanation of the orbiting
particle motion.
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IV. CONCLUDING REMARKS

The key point made in Ref. [1] was that the stability of circular orbital motion for a

classical electron about a classical nucleus can be maintained for extended lengths of time,

not just by one carefully selected circularly polarized plane wave, but by a large range of

amplitudes of plane waves, provided that the amplitude satisfies A ≥ 2e3ωc
3mc3a2

= Ac. We are

not aware of this fact being noted before. Reference [2] then extended this observation to the

more general case of elliptical motion. A very similar condition was shown to occur in the

elliptical case as in the circular one, although now a family of plane waves was required, with

frequencies consisting of harmonics of the orbital motion. However, once their amplitudes

had been selected, then scaling all the amplitudes by a constant factor would again allow a

long stability condition to be achieved.

The present article turned to a different point, namely, that not only the amplitude of

the incident waves, but also their phase with respect to the orbital motion of the classical

electron, is quite important. The phase of a circularly polarized electromagnetic plane wave

can have subtle and profound effects on the stability of the orbit of the classical charged

particle. What is most surprising is that the phase can vary enormously and one can still

obtain quasistability; the issue is not so much that quasistability will be obtained, but rather,

how long it can be achieved. Indeed, as will be shown in future work, for any value of the

electric field amplitude of the incident plane wave, provided that A ≥ Ac, one can always

find a value of α, the angle between the velocity vector and (−e)E, such that the orbit

never decays (for the NR equations of motion addressed here for circular motion). Also,

as will be shown in this future work, a deeper physical understanding can be obtained for

the wide range of decay time as the initial phase is varied, and why this range depends so

significantly on the ratio A/Ac.

The aim of the perturbation work investigated here was to shed deeper insight into

some of the key trends that have been observed in our studies on the classical hydrogen

atom interacting with simple states of classical electromagnetic radiation. In particular,

here we analyzed the steady increase in amplitude of the oscillating radius versus time

curves and the rapid change of character of this oscillating behavior to one of orbital decay.

By expanding the radius and frequency into their small variational components, simpler

nonlinear differential equations were obtained that gave rise to these key features. Moreover,
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as shown in Sec. II, these characteristics for r vs. t carry over in many ways to other

traditional variables of interest, such as the energy and angular momentum of the classical

hydrogen atom.

Our belief is that the detailed study of such effects, in combination with other work in

progress on multi-plane wave effects, will provide much greater insight regarding the dy-

namical and statistical possibilities of the classical hydrogen atom being in thermodynamic

equilibrium with electromagnetic radiation. Moreover, this research should aid in under-

standing the interaction of the classical hydrogen atom with applied radiation that makes

deviations to that equilibrium, as done in spectroscopy situations. Indeed, work of ours

[30], [29] reveal that a probability density distribution of the electron’s position, obtained

by classical simulations like those reported here, but with approximations made to the clas-

sical electromagnetic zero-point spectrum, result in a strikingly close approximation to the

prediction of Schrödinger’s equation for hydrogen in its ground state. We expect to be able

to report and provide yet deeper analysis on these results in the near future.
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Figure Captions

Figure 1: r vs. t for the A = 100 statvolt CP plane wave case, but with the initial phase

between E and ż being −π/4. Also shown is the A = 0 curve, which shows orbital decay

right at the beginning. (a) the r vs. t simulations are carried out to t = 5× 10−12 sec. (b)

Zoomed-in view of (a), near the decay-transition point. The envelope continues to grow

until decay sets in. (c) The region near the transition point is blown-up further to show

the details of the behavior.

Figure 2: (a) E = 1
2
mv2 − e2

r
vs. t over the same region as in Fig. 1(a), again with

A = 100 statvolt; (b) E vs. t over the same region as in Fig. 1(c), near the transition point;

(c) Lz = m (ẋy − ẏx) vs. t over the same region as in Fig. 1(a); (d) Lz vs. t over the same

region as in Fig. 1(c). Although a bit difficult to see, if 2(a) and 2(c) were blown up as in

Fig. 1(b), the same increase in envelope curve would be seen. Note that in Figs. 2(c) and

2(d) the magnitude of |Lz| decreases after the transition point occurs, since Lz < 0.

Figure 3: The same situation as in Fig. 1 with A = 100 statvolt, but now: (a) total

Lorentz force due to the plane wave, plus the radiation reaction, along the tangential direc-

tion of the velocity of the particle, versus t. It’s magnitude does not change radically at the

transition point; rather, the pattern of the force curve undergoes a sharp transition; (b) the

total force vs. t and E vs. t, superimposed. When the tangential force equals zero, so that

no work per time is being done on the particle, then E hits either a minimum or maximum.

Figure 4: Same situation as in Fig. 1, with A = 100 statvolt, α = −π/4, but now

different regions blown up for plots of (θ − ωt), where x = r cos θ, y = r sin θ, and ω is

the angular frequency of the CP plane wave. (a) Here the dramatic change in (θ − ωt)

is revealed at the transition (orbital-decay) point. Prior to this point, (θ − ωt) oscillates

within a comparatively narrow band, as seen in 4(b). However, the envelope of this band

steadily increases. In 4(c), the peaks of (θ − ωt) widen as the transition point is approached.

Figure 5: Numerical solutions to Eqs. (4) and (5) for r vs. t is compared to the numerical

solutions to the approximate equations of motion of Eqs. (17) and (18), where r = a+ δ (t)

and θ = φ + ωt, and A = 100 statvolt and φ = −π/4. If, for example, the same region as

in Fig. 1(c) was blown up, the difference between the two numerical results would not be

detectable by eye. Only near t & 4.5× 10−12 sec does the difference become discernible. If

θ was plotted as in Fig. 4, for the two methods, again, only near t & 4.5× 10−12 sec would
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the difference become evident.

Figure 6: r vs. t for Case 0 [Eq. (21) combined with δ
a
= − 2

3ω
φ̇], Case P2 [Eq. (20)

combined with δ
a
= − 2

3ω
φ̇ ], and Case E [Eqs. (4) and (5)]. In Figs. 6(a), 6(b), and 6(c),

Cases P2 and E are virtually on top of each other, except for t & 4.5 × 10−12 in 6(a). In

Fig. 6(b), at the beginning, Case 0 matches Cases P2 and E very well, although one can see

the period and amplitude of P2 and E increasing as t becomes larger. In Fig. 6(c), Case 0

continues on with no change in shape.

Figure 7: φ0 vs. t [Eq. (21)] when the initial radius is 0.5 Å, and for different conditions

of the phase α. (a) A = 100 statvolt. (b) A = 1000 statvolt. Note that the time scale on the

A = 1000 statvolt plot only goes up to 2.6×10−14 sec, as the period of the A = 1000 curves

is much shorter than the A = 100 statvolt case. With this scaling, (a) and (b) look similar,

but, there are differences. As can be seen, both the amplitude and period of φ0 change with

α, with the amplitude being more strongly effected than the period; the amplitude is nearly

zero at α = +π/2, but increases in magnitude as α changes from +π/2, to +3π/8, to π/4,

to 0, to −π/4, to −3π/8. [See Figs. 8(a) and 11(a) for greater clarification of these trends.]
However, by the point that α = −π/2, then φ0 no longer undergoes an oscillatory behavior

in time, as orbital decay sets in almost immediately, as seen in Fig. 8.

Figure 8: (a) A diagram showing the meaning of the values of α in the other plots here,

namely, α is the angle between the velocity v and the force (−e)Eplane of the plane wave

acting on the electron at time t = 0. When α = 0, v and (−e)E are initially parallel. For

A À Ac, the initial phase α ≈ −π/2 has the smallest value of td and α ≈ +π/2 has the

largest td. Pairs of angles like −π/4, −3π/4, or +π/4, +3π/4, or 0, π, have values of td very

similar, when A = 1000 statvolt. For smaller values of A, these “mirror angles” no longer

behave similarly, as will be analyzed more deeply in later work. Figs. 8(b) through 8(g)

show various plots of r vs. t for A = 1000 statvolt, all with initial radius 0.5 Å. (b) r vs. t

for different values of α ranging from −π/2 to 0, and 0 to +π/2 [top part of (a)]; (c) r vs.

t for α ranging from −π/2 to −π and π to π/2 [bottom part of (a)]; (d) r vs. t, comparing

the difference in the α = 0 and α = π curves at the point of decay; (e) r vs. t, comparing

the difference in the α = 0 and α = π curves initially; (f) initial behavior, as in (e), but

now over a longer time period; (g) a blown up view of (c), right near r = 0.5 Å. Here, the

increase in amplitude of each of the curves can readily be seen. (h) The r vs. t curves for

α = 3
8
π, 1

4
π, 0, −1

4
π, −3

8
π, −1

2
π, each translated in time and superimposed on each other to
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show the similarity in shape at the point of transition.

Figure 9: The initial transitory behavior of r vs. t for the α = −π/2 case with A = 1000

statvolt is shown here. Case P1 still accurately represents the exact case, E, but the

approximations of cases P2 and 0 are quite different initially from E. It should be noted

that for A = 100 statvolt, these curves would again all lie on top of each other. Thus, an

initial transitory behavior is revealed here as A becomes sufficiently large for the α = −π/2

case, before the spiraling decay sets in.
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