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Perturbation analysis for t-product based tensor inverse,

Moore-Penrose inverse and tensor system

Zhengbang Cao∗, Pengpeng Xie†

Abstract

This paper establishes some perturbation analysis for the tensor inverse, the tensor
Moore-Penrose inverse and the tensor system based on the t-product. In the settings of
structured perturbations, we generalize the Sherman-Morrison-Woodbury (SMW) formula
to the t-product tensor scenarios. The SMW formula can be used to perform sensitivity
analysis for a multilinear system of equations.
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1 Introduction

Applications with tensors have become increasingly prevalent in recent years. An order m
tensor can be regarded as a multidimensional array, which takes the form

A = (ai1···im) ∈ R
n1×n2×···×nm .

In this paper, we mainly focus on tensors of order three. The well-known representations of
tensors are the CANDECOMP/PARAFAC [2] and Tucker models [16]. The authors in [1, 6]
proposed an entirely different setting of tensor operation known as t-product in which the
familiar tools of linear algebra can be extended to better understand third-order tensors. The
t-product has been proved to be a useful tool in many areas such as image processing [11, 15]
and signal processing [7, 14].

Jin et al. [4] defined the Moore-Penrose inverse of a tensor by the t-product. Later, the
Drazin inverse was investigated by Miao et al. in [12]. In fact, there has already been a lot of
work on generalized inverses and their perturbation theory based on the Einstein product. For
example, in [10] Ma et al. considered the perturbation theory for the Moore-Penrose inverses of
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tensors via the Einstein product. Chang [3] established the Einstein-product based Sherman-
Morrison-Woodbury (SMW) formula for tensors. However, as far as we know, limited research
has been done on the t-product based perturbation analysis except the weighted T-core-EP
inverse [8]. Therefore, this paper is devoted to further developing the perturbation results of
tensor inverses, Moore-Penrose inverses and tensor system under the t-product. Especially,
for better performing sensitivity analysis for a multilinear system of equations, we develop the
SMW formula for tensors under the t-product.

This paper is organized as follows. In section 2, we review basic definitions and notations.
Section 3 details perturbation analysis of the tensor inverse, tensor equations and the SMW
formula for the tensor inverse. Perturbation results of the Moore-Penrose inverse and the least
squares problem of tensors are presented in section 4. In section 5, we conduct sensitivity
analysis for a multilinear system of equations by the SMW formula. Section 6 gives some
conclusions.

2 Preliminaries

Throughout this paper, we follow notations used in [5, 6]. Third-order tensors, denoted
by calligraphic script letters with real entries are considered. Capital letters refer to matrices,
and lower case letters to vectors. The ith frontal slice of tensor A will be denoted by A(i). For
A ∈ Rn1×n2×n3 , define bcirc as a block circulant matrix of size n1n3 × n2n3

bcirc(A) =











A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)











.

The command unfold reshapes a tensor A ∈ Rn1×n2×n3 into an n1n3 × n2 block-column vector
(the first block-column of bcirc(A)), while fold is the inverse, i.e., fold(unfold(A)) = A.

Definition 2.1. (t-product) [5] Let A ∈ Rn1×n2×n3 and B ∈ Rn2×n4×n3. The t-product A ∗ B is
the tensor C ∈ Rn1×n4×n3 defined by

C = fold(bcirc(A) · unfold(B)).

Note that the t-product reduces to the standard matrix multiplication when n3 = 1. The
Discrete Fourier Transformation (DFT) plays a core role in tensor-tensor product. The DFT
on v ∈ Rn, denoted as v̄, is given by v̄ = Fnv ∈ Cn. Here Fn is the DFT matrix Fn = (ωjk)n×n,
where ωjk = e−2(j−1)(k−1)πi/n with i =

√
−1 and Fn satisfies F ∗

nFn = FnF
∗
n = nIn. The block

circulant matrix can be block diagonalized by the DFT, i.e.,

(Fn3
⊗ In1

) · bcirc(A) · (F−1
n3

⊗ In2
) = Ā, (2.1)

where ⊗ denotes the Kronecker product and Ā = diag(Ā(1), Ā(2), . . . , Ā(n3)). By taking the
Fast Fourier Transform (FFT) along each tubal scalar of A, Ā = fold(Ā) = fft(A, [], 3) and
A = ifft(Ā, [], 3).

Definition 2.2. (identity tensor) [5] The identity tensor I ∈ Rn×n×n3 is the tensor with I(1)

being the n× n identity matrix, and other frontal slices being zeros.
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Definition 2.3. (tensor transpose) [5] If A ∈ Rn1×n2×n3, then AT is the n2 × n1 × n3 tensor
obtained by transposing each of the frontal slices and then reversing the order of transposed
frontal slices 2 through n3.

Definition 2.4. (inverse tensor) [5] An n × n × n3 tensor A has an inverse B, provided that
A ∗ B = Innn3

and B ∗ A = Innn3
.

Definition 2.5. The range of tensor A ∈ Rn1×n2×n3 is defined as

R(A) =
{

A ∗ X : X ∈ R
n2×1×n3

}

.

Definition 2.6. [6] The inner product of X ∈ Rn1×1×n3 and Y ∈ Rn1×1×n3 is defined as

〈X ,Y〉 = XT ∗ Y ,

and if 〈X ,Y〉 = 0, we call that the tensor X is orthogonal to Y.

Definition 2.7. (Moore-Penrose inverse of tensor) [4] Let A ∈ R
n1×n2×n3. If there exists a

tensor X ∈ Rn2×n1×n3 such that

A ∗ X ∗ A = A, X ∗ A ∗ X = X , (A ∗ X )T = A ∗ X , (X ∗ A)T = X ∗ A,

then X is called the Moore-Penrose inverse of the tensor A and is denoted by A†.

Definition 2.8. (multirank) [5] The multirank of tensor A is the tubal scalar ρ = multirank(A)
such that ρ(i) is the rank of the ith matrix Ā(i).

Definition 2.9. [5,9] The Frobenius norm and the spectral norm of A ∈ Rn1×n2×n3 are defined

as ‖A‖F =
√

∑

ijk |aijk|
2, ‖A‖2 = ‖bcirc(A)‖2.

Lemma 2.1. [9] ‖A‖F = 1√
n3

∥

∥Ā
∥

∥

F
, ‖A‖2 =

∥

∥Ā
∥

∥

2
.

By the results above, we summarize several properties of the two norms.

Theorem 2.1. For A and B of appropriate size, the following statements hold:
(a) ‖A ∗ B‖F ≤ ‖A‖2 · ‖B‖F , ‖A ∗ B‖F ≤ ‖A‖F · ‖B‖2.
(b) ‖A ∗ B‖2 ≤ ‖A‖2 · ‖B‖2, ‖A ∗ B‖F ≤ √

n3‖A‖F · ‖B‖F .
(c) ‖A+ B‖2 ≤ ‖A‖2 + ‖B‖2, ‖A+ B‖F ≤ ‖A‖F + ‖B‖F , ‖A‖2 ≤

√
n3‖A‖F .

Proof. It can be deduced from Lemma 2.1 and the properties of matrix norm that ‖A ∗ B‖F =
1√
n3

∥

∥Ā · B̄
∥

∥

F
≤ 1√

n3

∥

∥Ā
∥

∥

F
·
∥

∥B̄
∥

∥

2
= ‖A‖2·‖B‖F , and the rest of the proof follows analogously.

3 Perturbation for tensor inverses and tensor equations

In this section, we concentrate on the perturbation theory related to the inverses of tensors,
and give two classical perturbation theorems. Furthermore, a classical result of structural
perturbation of matrix, i.e. Sherman-Morrison-Woodbury identity is also extended to tensors.
Following similar approach, we derive perturbation theorems for tensor equations. It is worth
noting that these results still apply for matrices.
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Theorem 3.1. Let A ∈ Rn×n×n3 and B = A+ E be invertible respectively, then

‖A−1 − B−1‖F
‖A−1‖F

≤ κ1
‖E‖2
‖A‖F

and
‖A−1 − B−1‖2

‖A−1‖2
≤ κ2

‖E‖2
‖A‖2

,

where κ1 = ‖A‖F · ‖B−1‖2 and κ2 = ‖A‖2 · ‖B−1‖2.

Proof. Due to the fact that

B−1 −A−1 = A−1 ∗ (A− B) ∗ B−1 (3.1)

and from Theorem 2.1, we know

∥

∥A−1 − B−1
∥

∥

F
≤

∥

∥A−1
∥

∥

F
‖A − B‖2

∥

∥B−1
∥

∥

2
.

Thus, ‖A−1 − B−1‖F/‖A−1‖F ≤ √
n3‖E‖2‖B−1‖F = κ1‖E‖2/‖A‖F . A similar procedure can be

applied for the spectral norm.

Since the inverse of tensor after perturbation is involed in the upper bounds of Theorem 3.1, it
is not adequate for practical use. In the following, we impove the results by two lemmas below.

Lemma 3.1. For A ∈ Rn×n×n3, ‖(I −A)−1‖2 ≤ (1− ‖A‖2)−1.

Proof. It is obvious that
(I − A)−1 = I +A ∗ (I −A)−1.

Taking the spectral norm of both sides, we get

∥

∥(I − A)−1
∥

∥

2
≤ ‖I‖2 +

∥

∥A ∗ (I −A)−1
∥

∥

2
≤ 1 + ‖A‖2

∥

∥(I − A)−1
∥

∥

2
,

where Theorem 2.1 is exploited.

Lemma 3.2. Let A ∈ Rn×n×n3 be invertible, and E ∈ Rn×n×n3. If ‖A−1‖2‖E‖2 < 1, then
B = A+ E is invertible.

Proof. From the assumption, we have ‖Ā−1‖2‖Ē‖2 ≤ 1. According to [17, Theorem 8.1.2], B̄
is invertible, which implies that B is invertible.

Theorem 3.2. Let A ∈ Rn×n×n3 be invertible, E ∈ Rn×n×n3 and B = A+E . If ‖A−1‖2‖E‖2 < 1,
then

∥

∥B−1
∥

∥

F
≤ 1

γ1

∥

∥A−1
∥

∥

F
,
∥

∥B−1
∥

∥

2
≤ 1

γ2

∥

∥A−1
∥

∥

2
, (3.2)

and
‖B−1 −A−1‖F

‖A−1‖F
≤ κ1

γ1

‖E‖2
‖A‖F

,
‖B−1 −A−1‖2

‖A−1‖2
≤ κ2

γ2

‖E‖2
‖A‖2

, (3.3)

where κ1 = ‖A‖F‖A−1‖2, γ1 = 1− κ1
‖E‖

2

‖A‖
F

, and κ2 = ‖A‖2‖A−1‖2, γ2 = 1− κ2
‖E‖

2

‖A‖
2

.
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Proof. From Lemma 3.2, we know that B is invertible. Hence,
∥

∥B−1
∥

∥

F
=

∥

∥(A+ E)−1
∥

∥

F
=

∥

∥(I +A−1 ∗ E)−1 ∗ A−1
∥

∥

F

≤
∥

∥(I +A−1 ∗ E)−1
∥

∥

2

∥

∥A−1
∥

∥

F
.

(3.4)

In view of Lemma 3.1,

∥

∥(I +A−1 ∗ E)−1
∥

∥

2
≤ (1−

∥

∥A−1 ∗ E
∥

∥

2
)−1 ≤ 1

1− ‖A−1‖2‖E‖2
=

1

γ1
. (3.5)

Substituting (3.5) into right-hand side of (3.4), the first inequality of (3.2) follows. Moreover,

∥

∥B−1 −A−1
∥

∥

F
≤

∥

∥A−1
∥

∥

2
‖A − B‖2

∥

∥B−1
∥

∥

F
≤ κ1

‖E‖2
‖A‖F

1

γ1

∥

∥A−1
∥

∥

F
,

which leads to the first part of (3.3). The spectral norm case is similar and omitted.

The next theorem characterizes the perturbation for tensor equations.

Theorem 3.3. Suppose A ∈ Rn×n×n3 is invertible, M = A + E and X is the solution to
equation A ∗ X = B, satisfying ‖A−1‖2‖E‖2 < 1. Then M ∗ (X +H) = B +K has a unique
solution and

‖H‖F
‖X‖F

≤ κ1

γ1

( ‖E‖2
‖A‖F

+

√
n3‖K‖F
‖B‖F

)

,
‖H‖2
‖X‖2

≤ κ2

γ2

( ‖E‖2
‖A‖2

+
‖K‖2
‖B‖2

)

, (3.6)

where κ1 = ‖A−1‖2‖A‖F , γ1 = 1− κ1
‖E‖

2

‖A‖
F

, and κ2 = ‖A−1‖2‖A‖2, γ2 = 1− κ2
‖E‖

2

‖A‖
2

.

Proof. From Lemma 3.2, we know that M is invertible, so M∗ (X +H) = B +K has a unique
solution. Next, we only prove the first inequality of (3.6). Rewrite A+ E ∗ X +H = B +K
as A ∗ H = −E ∗ X + K − E ∗ H, which yields H = −A−1 ∗ E ∗ X + A−1 ∗ K − A−1 ∗ E ∗ H.
Therefore,

‖H‖F ≤
∥

∥A−1
∥

∥

2
‖E‖2‖X‖F +

∥

∥A−1
∥

∥

2
‖K‖F +

∥

∥A−1
∥

∥

2
‖E‖2‖H‖F ,

which, together with ‖A−1‖2‖E‖2 < 1, gives

‖H‖F ≤ ‖A−1‖2‖A‖F
1− ‖A−1‖2‖E‖2

(‖E‖2‖X‖F
‖A‖F

+
‖K‖F
‖A‖F

)

.

We arrive at (3.6) using ‖B‖F = ‖A ∗ X‖F ≤ √
n3‖A‖F‖X‖F .

Note that κi’s can be treated as condition numbers when interpreting the sensitivity of
tensor equations to small perturbations on A and B.

Some of the results and proofs above are derived through the identity (3.1), which shows
how the inverse changes if the tensor changes. For matrices, a rank-k perturbation to a nonsin-
gular matrix results in a rank-k correction of the inverse. Specifically, the SMW formula gives
a convenient expression for the inverse of the matrix A + UBV where A ∈ R

n×n, U ∈ R
n×k

and V ∈ Rk×n:

(A + UBV )−1 = A−1 − A−1U
(

B−1 + V A−1U
)−1

V A−1, (3.7)

in which we assume that A, B and B−1 + V A−1U are all nonsingular. In what follows, we
prove that a result similar to (3.7) also works well on characterizing the inverse of a tensor after
structured perturbations.
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Theorem 3.4. (SMW formula for invertible tensors) Suppose that A ∈ Cn1×n1×n3 and B ∈
Cn2×n2×n3 are invertible. Given U ∈ Cn1×n2×n3, V ∈ Cn2×n1×n3. If B−1+V∗A−1∗U is invertible,
then we have

(A+ U ∗ B ∗ V)−1 = A−1 −A−1 ∗ U ∗ (B−1 + V ∗ A−1 ∗ U)−1 ∗ V ∗ A−1.

Proof. Taking FFT along each tubal scalar of A, U , B and V respectively, we obtain the
corresponding Ā, Ū , B̄ and V̄ . The assumption ensures the invertibility of Ā, B̄ and B̄−1 +
V̄ Ā−1Ū . The result holds as

(Ā + ŪB̄V̄ )−1 = Ā−1 − Ā−1Ū(B̄−1 + V̄ Ā−1Ū)−1V̄ Ā−1,

which is a direct application of (3.7).

4 Perturbation for tensor Moore-Penrose inverses and

least squares problem

In this section, based on the Moore-Penrose inverse proposed by Jin et al. in [4], we
will bound the perturbation of the tensor Moore-Penrose inverse and generalize a classical
perturbation theorem for the tensor least squares problem. We first recall an important property
of A†. Suppose that

(Fn3
⊗ In1

) · bcirc(A†) · (F−1
n3

⊗ In2
) = B̄ = diag(B̄(1), B̄(2), · · · B̄(n3)),

(Fn3
⊗ In1

) · bcirc(A) · (F−1
n3

⊗ In2
) = Ā = diag(Ā(1), Ā(2), · · · , Ā(n3)),

then
(

Ā
)†

= B̄, B̄(i) =
(

Ā(i)
)†
. The subsequent theorem gives upper bounds on the perturba-

tion for the t-product based Moore-Penrose inverse under the two norms.

Theorem 4.1. Let A ∈ Rn1×n2×n3, B = A+ E , then
∥

∥B† −A†∥
∥

F
≤

√
2max

{

∥

∥A†∥
∥

2

2
,
∥

∥B†∥
∥

2

2

}

‖E‖F ,

∥

∥B† −A†∥
∥

2
≤ 1 +

√
5

2
max

{

∥

∥A†∥
∥

2

2
,
∥

∥B†∥
∥

2

2

}

‖E‖2.

Proof. Apply (2.1) to A†,B†,A,B and E respectively, and then we get C̄ = Ā†, D̄ = B̄†, Ā, B̄
and Ē correspondingly. By [13, Theorem 2.9], we deduce that

∥

∥B† −A†∥
∥

F
=

1√
n3

∥

∥C̄ − D̄
∥

∥

F
≤ 1√

n3

√
2max

{

∥

∥D̄
∥

∥

2

2
,
∥

∥C̄
∥

∥

2

2

}

∥

∥Ē
∥

∥

F

=
√
2max

{

∥

∥A†∥
∥

2

2
,
∥

∥B†∥
∥

2

2

}

‖E‖F .

Similar manipulation gives the spectral norm inequality.

By repeated applications of the relationship between A† and Ā†, we get a rank-preserving
perturbation result.
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Theorem 4.2. Let A ∈ Rn1×n2×n3, B = A+ E , multirank(A) = multirank(B) = [r1, r2, . . . , rn3
],

then
∥

∥B† −A†∥
∥

F
≤ µ

∥

∥A†∥
∥

2

∥

∥B†∥
∥

2
‖E‖F ,

∥

∥B† −A†∥
∥

2
≤ λ

∥

∥A†∥
∥

2

∥

∥B†∥
∥

2
‖E‖2, (4.1)

where µ and λ are given blow:











µ =
√
2, λ = 1+

√
5

2
,

∑n3

i=1 ri < min {n3n1, n3n2}
µ = 1, λ =

√
2,

∑n3

i=1 ri = min {n3n1, n3n2} , n1 6= n2

µ = 1, λ = 1,
∑n3

i=1 ri = n1n3 = n2n3.

Proof. We only consider the first inequality of (4.1). From [13, Theorem 2.10],

∥

∥B† −A†∥
∥

F
=

1√
n3

∥

∥B̄† − Ā†∥
∥

F
≤ 1√

n3
µ
∥

∥B̄†∥
∥

2

2
‖Ā†‖22

∥

∥Ē
∥

∥

F

= µ‖A†‖2
∥

∥B†∥
∥

2
‖E‖F .

The proof is complete as rank(Ā) =
n3
∑

i=1

ri.

From Theorem 4.2, a corollary immediately follows.

Corollary 4.1. If A and B = A+ E satisfy the conditions in Theorem 4.2, then

∥

∥B† −A†∥
∥

F

‖B†‖2
≤ µκ

‖E‖F
‖A‖2

,

∥

∥B† −A†∥
∥

2

‖B†‖2
≤ λκ

‖E‖2
‖A‖2

,

where µ and λ are as in Theorem 4.2, κ =
∥

∥A†∥
∥

2
‖A‖2.

In a similar fashion, another relative perturbation theorem of the tensor Moore-Penrose
inverse can be obtained.

Theorem 4.3. Suppose A ∈ Rn1×n2×n3, B = A+ E, multirank(A) = multirank(B). If
∥

∥A†∥
∥

2
‖E‖2 < 1, then

∥

∥B†∥
∥

2
≤

∥

∥A†∥
∥

2
/γ,

and
∥

∥B† −A†∥
∥

F

‖A†‖2
≤ µκ1

γ

‖E‖F
‖A‖F

,

∥

∥B† −A†∥
∥

2

‖A†‖2
≤ µκ2

γ

‖E‖2
‖A‖2

,

where κ1 =
∥

∥A†∥
∥

2
‖A‖F , κ2 =

∥

∥A†∥
∥

2
‖A‖2, and γ = 1−

∥

∥A†∥
∥

2
‖E‖2.

The technique above works well in analyzing the sensitivity of the tensor least squares
problem.

Theorem 4.4. Suppose A ∈ Rn1×n2×n3 ,B ∈ Rn1×n4×n3 , B̃ = B+K, Ã = A+E , X and X̃ = X+
H are minimal-Frobenius norm solutions to the tensor least squares problems min{‖A∗X−B‖F}
and min{‖Ã ∗ X̃ − B̃‖F} respectively. If multirank(A) = multirank(Ã), ‖A†‖2‖E‖2 < 1, then

‖H‖F ≤ κ1

γ

( ‖E‖2
‖A‖F

‖X‖F +
‖K‖F
‖A‖F

+
κ1

γ

‖E‖2
‖A‖F

‖R‖F
‖A‖F

+
√
n3‖E‖2‖Y ∗ X‖F

)

,
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‖H‖2 ≤
κ2

γ

( ‖E‖2
‖A‖2

‖X‖2 +
‖K‖2
‖A‖2

+
κ2

γ

‖E‖2
‖A‖2

‖R‖2
‖A‖2

+ ‖E‖2‖Y ∗ X‖2
)

,

where κ′
is and γ are as in Theorem 4.3, R = B − A ∗ X ,Y = (A†)T. Particularly, if

multirank(A) = multirank(Ã) = [n2, n2, . . . , n2], we have

‖H‖F ≤ κ1

γ

( ‖E‖2
‖A‖F

‖X‖F +
‖K‖F
‖A‖F

+
κ1

γ

‖E‖2
‖A‖F

‖R‖F
‖A‖F

)

,

‖H‖2 ≤
κ2

γ

( ‖E‖2
‖A‖2

‖X‖2 +
‖K‖2
‖A‖2

+
κ2

γ

‖E‖2
‖A‖2

‖R‖2
‖A‖2

)

.

Remark 4.1. Theorems 4.1 and 4.2 give upper bounds on the absolute perturbation for the
Moore-Penrose inverse of tensors, while Theorem 4.3 describes the bounds of the relative pertur-
bation. Theorem 4.4 reflects the sensitivity of the tensor least squares problem to perturbation.
It is clear that κ′

is can be viewed as condition numbers.

5 Perturbation analysis for multilinear system based on

the SMW formula

We have derived the SMW formula for invertible tensors in section 3. To deal with tensors
which are not invertible, we generalize the SMW formula for the Moore-Penrose inverse of
tensors in this section. Moreover, based on the new established theorem, a sensitivity analysis
is also performed for multilinear system by deriving upper bounds for the solution of the
multilinear system. We first propose a lemma necessary for the subsequent work.

Lemma 5.1. Let A ∈ Rn1×n2×n3. For any U ∈ Rn1×1×n3, there exists a tensor X ∈ Rn1×1×n3

which is contained in R(A) and a tensor Y ∈ R
n1×1×n3 being orthogonal to R(A), such that

U = X + Y .

Proof. Assume Ā = fft(A, [], 3) and Ū = fft(U , [], 3), whose ith frontal slices are Ā(i) and Ū (i)

respectively. For each Ū (i), there exists X̄(i) ∈ R(Ā(i)) and Ȳ (i) ∈ R⊥(Ā(i)) such that

Ū (i) = X̄(i) + Ȳ (i).

Set

X̄ = fold





















X̄(1)

X̄(2)

...
X̄(n3)





















, Ȳ = fold





















Ȳ (1)

Ȳ (2)

...
Ȳ (n3)





















,

and
X = ifft

(

X̄ , [], 3
)

, Y = ifft
(

Ȳ , [], 3
)

.

It is easy to verify that the tensors X and Y satisfy the requirements.
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Theorem 5.1. (SMW formula for the tensor Moore-Penrose inverse). Suppose A ∈ Rn1×n1×n3,
U ∈ Rn1×n2×n3, V ∈ Rn2×n1×n3, B ∈ Rn2×n2×n3, and the following conditions are satisfied:

1. U = X1 + Y1, where the lateral slices of X1 are contained in R(A), and the lateral slices of
Y1 are orthogonal to R(A);

2. V = X2 + Y2, where the lateral slices of X2 are contained in R(AT), and the lateral slices of
Y1 are orthogonal to R(AT);

3. (1) E2 ∗ B† ∗ ET
1 ∗ Y1 ∗ B = E2 (2) X1 ∗ ET

1 ∗ Y1 ∗ B = X1 ∗ B (3) Y1 ∗ ET
1 ∗ Y1 = Y1;

4. (1) B ∗ YT
2 ∗ E2 ∗ B† ∗ ET

1 = ET
1 (2) B ∗ YT

2 ∗ E2 ∗ XT
2 = B ∗ XT

2 (3) E2 ∗ YT
2 ∗ E2 = E2,

where Ei = Yi ∗ (YT
i ∗ Yi)

†, i = 1, 2.

Then the Moore-Penrose inverse of tensor

M = A+ U ∗ B ∗ V
= A+ (X1 + Y1) ∗ B ∗ (X2 + Y2)

T

can be represented as:

M† = A† − E2 ∗ XT
2 ∗ A† −A† ∗ X1 ∗ ET

1 + E2 ∗ (B† + XT
2 ∗ A† ∗ X1) ∗ ET

1 .

Proof. The formula is verified by direct computation. We recall that the Moore-Penrose inverse
is the unique solution which satisfies the following four conditions:

(a)M∗M† ∗M = M, (b)M† ∗M ∗M† = M†,
(c)(M∗M†)T = M∗M†, (d)(M† ∗M)T = M† ∗M.

By simple expansion,

M∗M† =A ∗M† −A ∗ A† ∗ X1 ∗ ET
1 +A ∗ E2 ∗ (B† + XT

2 ∗ A† ∗ X1) ∗ E1
+ (X1 + Y1) ∗ B ∗ (X2 ∗+Y2)

T ∗ A†

− (X1 + Y1) ∗ B ∗ (X2 + Y2)
T ∗ E2 ∗ XT

2 ∗ A†

− (X1 + Y1) ∗ B ∗ (X2 ∗+Y2)
T ∗ A† ∗ X1 ∗ ET

1

+ (X1 + Y1) ∗ B ∗ (X2 ∗+Y2)
T ∗ E2 ∗ XT

2 ∗ A† ∗ X1 ∗ ET
1

+ (X1 + Y1) ∗ B ∗ (X2 ∗+Y2)
T ∗ E2 ∗ B† ∗ ET

1 .

(5.1)

Since the lateral slices of Y2 are orthogonal to R(AT), we have A ∗ Y2 = 0, Y2 ∗ A† = 0, and
XT

2 ∗ Y2 = 0, which simplify (5.1) to

M∗M† =A ∗ A† −A ∗ A† ∗ X1 ∗ ET
1

+ (X1 + Y1) ∗ B ∗ XT
2 ∗ A† − (X1 + Y1) ∗ B ∗ YT

2 ∗ E2 ∗ XT
2 ∗ A†

− (X1 + Y1) ∗ B ∗ XT
2 A† ∗ X1 ∗ ET

1

+ (X1 + Y1) ∗ B ∗ YT
2 ∗ E2 ∗ XT

2 ∗ A† ∗ X1 ∗ ET
1

+ (X1 + Y1) ∗ B ∗ YT
2 ∗ E2 ∗ XT

2 ∗ B† ∗ ET
1 .

(5.2)

Utilizing B ∗ YT
2 ∗ E2 ∗ B† ∗ ET

1 = ET
1 , B ∗ YT

2 ∗ E2 ∗ XT
2 = B ∗ XT

2 , and A ∗ A† ∗ X1 = X1, (5.2)
can be further reduced to

M∗M† = A ∗ A† + Y1 ∗ ET
1 .
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Therefore,
(M∗M†)T = (A ∗ A† + Y1 ∗ ET

1 )
T

= (A ∗ A†)T + (Y1 ∗ ET
1 )

T = M∗M†,

which implies (c). By mimicking the above argument, we obtain that

(M† ∗M)T = A† ∗ A+ E2 ∗ YT
2 ,

which shows that (d) is valid.

Moreover, we can get that

M∗M† ∗M =(A ∗ A† + Y1 ∗ ET
1 ) ∗ (A+ (X1 + Y1) ∗ B ∗ (X2 + Y2)

T)

=A ∗ A† ∗ A+ Y1 ∗ ET
1 ∗ A

+A ∗ A† ∗ (A+ (X1 + Y1) ∗ B ∗ (X2 + Y2)
T)

+ Y1 ∗ ET
1 ∗ (A+ (X1 + Y1) ∗ B ∗ (X2 + Y2)

T)

=A+ Y1 ∗ ET
1 ∗ A+A ∗A† ∗ X1 ∗ B ∗ (X2 + Y2)

T

+A ∗ A† ∗ Y1 ∗ B ∗ (X2 + Y2)
T + Y1 ∗ ET

1 ∗ X1 ∗ B ∗ (X2 + Y2)
T

+ Y1 ∗ ET
1 ∗ Y1 ∗ B ∗ (X2 + Y2)

T.

(5.3)

Applying A ∗ A† ∗ X1 = X1,A† ∗ Y1 = 0,YT
1 ∗ XT

1 = 0 and Y1 ∗ ET
1 ∗ Y1 = Y1, (5.3) can be

simplified as

M∗M† ∗M = A+ X1 ∗ B ∗ (X2 + Y2)
T + Y1 ∗ B ∗ (X2 + Y2)

T

= A+ (X1 + Y1) ∗ B ∗ (X2 + Y2)
T = M,

which is precisely (a), and (b) can be proved analogously.

Since all requirements for the definition of the Moore-Penrose inverse have been fulfilled,
the theorem is proved.

Then we give a related lemma necessary for our derivation. According to [4, Theorem 3.3],
it is straightforward to obtain the following lemma.

Lemma 5.2. Suppose A ∈ Rn1×n2×n3, D ∈ Rn1×n4×n3 and X ∈ Rn2×n4×n3. Then the tensor
equation

A ∗ X = D,

has a solution if and only if A ∗ A† ∗ D = D. The solution can be expressed as

X = A† ∗ D + (I − A† ∗ A) ∗ Y ,

where Y ∈ Rn1×n2×n3 is an arbitrary tensor.

Now we are ready to apply the SMW formula to perform the sensitivity analysis for a
multilinear system of equations A ∗ X = D, and we derive upper bounds for the error in the
solution when the coefficient tensor and the right-hand side are perturbed.
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Theorem 5.2. Suppose the multilinear system of equations is

A ∗ X = D
where A ∈ Rn1×n2×n3 ,X ∈ Rn2×n4×n3 and 0 6= D ∈ Rn1×n4×n3. The perturbed system is
expressed as

(A+ E) ∗ Y = (D +H),

where E ∈ R
n1×n2×n3 and H ∈ R

n1×n4×n3. If the tensor E is decomposed as

E = U ∗ B ∗ V = (X1 + Y1) ∗ B ∗ (X2 + Y2)
T ,

where the lateral slices of X1, X2 are contained in R(A) and R(AT) respectively and the lateral
slices of Y1, Y2 are orthogonal to R(A) and R(XT) severally.

We further assume that ‖Xi‖ ≤ ǫA‖A‖, ‖Ei‖ ≤ ǫA‖A‖, ‖B†‖ ≤ ǫA‖A‖ and ‖H‖ ≤ ǫD‖D‖
for 1 ≤ i ≤ 2, then

‖Y − X‖F
‖X‖F

≤(1 + ǫD)‖D‖3F‖X‖F
(

2n2
3ǫ

2
AA† + n2

3ǫ
3
A‖A‖F + n3

3ǫ
4
A‖A‖2F‖A†‖F

)

+ n3ǫD‖A‖F‖A†‖F ,
(5.4)

and
‖Y − X‖2
‖X‖2

≤(1 + ǫD)‖D‖32‖X‖2
(

2ǫ2AA† + ǫ3A‖A‖2 + ǫ4A‖A‖22‖A†‖2
)

+ ǫD‖A‖2‖A†‖2.

Proof. We only consider the Frobenius norm case. It follows from Lemma 5.2 that X can be
expressed as

X = A† ∗ D + (I − A† ∗ A) ∗ U .
Analogously, Y can be expressed as

Y = (A+ E)† ∗ (D +H) + (I − (A+ E)† ∗ (A+ E)) ∗ U .
Particularly, if we set U = 0, combining with Theorem 5.1, the following equation holds.

Y − X =(A+ E)† ∗ (D +H)−A† ∗ D
=[A+ (X1 + Y1) ∗ B ∗ (X2 + Y2)

T]† ∗ (D +H)−A† ∗ D
=(A† − E2 ∗ XT

2 ∗ A† −A† ∗ X1 ∗ ET
1 + E2 ∗ (B† + XT

2 ∗ A† ∗ X1) ∗ ET
1 )∗

(D +H)−A† ∗ D
=E2 ∗ XT

2 ∗ A† ∗ D − A† ∗ X1 ∗ E1 ∗ D + E2 ∗ (B† + XT
2 ∗ A† ∗ X1) ∗ ET

1 ∗ D+

A† ∗ H − E2 ∗ XT
2 ∗ A† ∗ D† −A† ∗ X1) ∗ ET

1 ∗ H+

E2 ∗ (B† + XT
2 ∗ A† ∗ X1) ∗ ET

1 ∗ H.

Taking the Frobenius norm on both sides of the relation above and utilizing the properties of
the tensor norm, we obtain

‖Y − X‖F ≤n
3/2
3 ‖E2‖F‖XT

2 ‖F‖A†‖F‖D‖F + n
3/2
3 ‖A†‖F‖X1‖F‖ET

1 ‖F‖D‖F+
n
3/2
3 ‖E2‖F‖B†‖F‖ET

1 ‖F‖D‖F + n2
3‖XT‖F‖A†‖F‖X1‖F‖ET

1 ‖F‖D‖F+
n
1/2
3 ‖A†‖F‖H‖F + n

3/2
3 ‖E2‖F‖XT

2 ‖F‖A†‖F‖H‖F+
n
3/2
3 ‖A†‖F‖X1‖F‖ET

1 ‖F‖H‖F + ‖n3/2
3 E2‖F‖B†‖F‖E †

1‖F‖H‖F+
n2
3‖XT

2 ‖F‖A†‖F‖X1‖F‖ET
1 ‖F‖H‖F .
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Recall that ‖Xi‖F ≤ ǫA‖A‖F , ‖Ei‖F ≤ ǫA‖A‖F , ‖B†‖F ≤ ǫA‖A‖F , and ‖H‖F ≤ ǫD‖D‖F , then

‖Y − X‖F ≤(1 + ǫD)‖D‖F (2n3/2
3 ǫ2A‖A‖2F‖A†‖2F + n

3/2
3 ǫ3A‖A‖3F‖F+

n
5/2
3 ǫ4A‖A‖4F‖A†‖F ) + n

1/2
3 ‖A†‖F‖D‖F .

Since ‖D‖F = ‖A ∗ X‖F ≤ n
1/2
3 ‖A‖F‖X‖F , the inequality can be further reduced to

‖Y − X‖F
‖X‖F

≤(1 + ǫD)(2n
2
3ǫ

2
A‖A†‖F + n2

3ǫ
3
A‖A‖F + n3

3ǫ
4
A‖A‖2F‖A†‖F )+

n3ǫD‖A†‖F‖A‖F ,

which leads to (5.4).

6 Conclusions

In this paper, we give perturbation theorems of the tensor inverses and tensor equations.
Additionally, we present a collection of perturbation results for the tensor Moore-Penrose inverse
and the tensor least squares problem. Meanwhile, the sensitivity analysis for the multilinear
system of equations is also performed by the extension of the SMW formula.

In contrast to the Moore-Penrose inverse, the Drazin inverse based on the t-product has
already been considered. Naturally, we may consider the corresponding perturbation in the
future.

Acknowledgments

This work is supported by the National Natural Science Foundation of China under grant
11801534.

References

[1] K. Braman, Third-order tensors as linear operators on a space of matrices, Linear Algebra
Appl., 433 (2010), pp. 1241–1253.

[2] J. Carroll and J. Chang, Analysis of individual differences in multidimensional scaling
via an n-way generalization of “Eckart-Young” decomposition, Psychometrika, 35 (1970),
pp. 283–319.

[3] S. Chang, Sherman-Morrison-Woodbury identity for tensors, preprint, arXiv: 2007.01816
(2020).
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