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Abstract. In this paper, we characterize the perturbations of the Moore–
Penrose metric generalized inverse of closed operator in Banach spaces. Under
the condition R(δT ) ⊂ R(T ), N(T ) ⊂ N(δT ), respectively, we get some new
results about upper-bound estimates of ‖T̄M‖ and ‖T̄M − TM‖.

1. Introduction

Throughout the present article, let X, Y be reflexive strictly convex Banach
spaces on real field R. Let L(X,Y ), B(X,Y ), and C(X,Y ) be the set of linear
operators, the set of all bounded linear operators, and the set of all densely de-
fined closed linear operators from X to Y , respectively. For any T ∈ L(X,Y ),
D(T ), R(T ), and N(T ) denote the domain, the range and the kernel of T , re-
spectively.

A closed subset M ⊂ X is called topological-complemented if there is a closed
subset N ⊂ X such that X = M + N and M ∩ N = {0}. In this case, we set

X = M⊕fN . As we know, for any T ∈ C(X,Y ), ifR(T ) (the closure ofR(T )) and
N(T ) are topological-complemented, then there is a linearly generalized inverse
T+ such that

TT+T = T on D(T ), T+TT+ = T+ on D(T+).

Copyright 2016 by the Tusi Mathematical Research Group.
Received Mar. 16, 2015; Accepted Jun. 18, 2015.
*Corresponding author.
2010 Mathematics Subject Classification. Primary 15A09; Secondary 47A05.
Keywords. Banach space, closed operator, Moore–Penrose metric generalized inverse.

240

http://dx.doi.org/10.1215/20088752-3462434
http://projecteuclid.org/afa


PERTURBATION ANALYSIS FOR MP METRIC GENERALIZED INVERSE 241

Furthermore, if R(T ) is closed, then T+ ∈ B(Y,X) is a bounded linear operator
(see [4], [15]).

The linear generalized inverse has been widely studied over the last decades
and has many important applications in numerical approximation, statistics, op-
timization, and more (see [2], [12]). However, linearly generalized inverse cannot
deal with the extremal solutions, the minimal norm solutions, and the best ap-
proximation solutions of an ill-posed linear operator equation in Banach spaces.
In order to solve the best approximation problems for an ill-posed linear opera-
tor equation in Banach spaces, Nashed and Votruba introduced the concept of
the (set-valued) metric generalized inverse of a linear operator in Banach spaces
(see [8]). In 2003, H. Wang and Y. Wang introduced the Moore–Penrose met-
ric generalized inverse for linear operator on Banach space in [14], which is a
homogeneous operator.

In recent years, some papers on the perturbation of Moore–Penrose metric
generalized inverse have appeared (see [3], [10], [13]). In [9], Ni characterized
the Moore–Penrose metric generalized inverse for an arbitrary linear operator in
Banach space. In [1], J. Cao and Y. Xue considered the simple expressions of
the Moore–Penrose metric generalized inverse and investigated the perturbations
for the Moore–Penrose metric generalized inverse of bounded linear operators.
Some results on the perturbation of the Moore–Penrose metric generalized inverse
similar to the linearly generalized inverse are obtained in [7] by H. Ma et al., under
the assumption that TM is quasiadditive and that metric projection πN(T ) is linear
and that R(δT ) ⊆ R(T ), N(T ) ⊆ N(δT ).

It is well known the metric projection is a homogeneous operator, and then
the Moore–Penrose metric generalized inverse is different from the linearly gen-
eralized inverse. In the present article, we characterize the Moore–Penrose metric
generalized inverse of closed operator with closed range in Banach spaces. Un-
der some conditions, we present the upper bounds of ‖T̄M‖ and ‖T̄M − TM‖,
respectively.

2. Preliminaries

Let M be a subset in X. If λx ∈ M whenever x ∈ M and λ ∈ R, then we call
M a homogeneous subset. A nonlinear operator T : X → Y is called a bounded
homogeneous operator if T maps every bounded set in X into a bounded set in
Y and T (λx) = λTx for all λ ∈ R. Let H(X,Y ) denote the set of all bounded
homogeneous operators from X to Y . Equipped with the usual linear operations
on H(X,Y ) and norm on T ∈ H(X,Y ) defined as ‖T‖ = sup‖x‖=1 ‖Tx‖, H(X,Y )
become a Banach space (see [12]). Obviously, B(X,Y ) ⊆ H(X,Y ).

Recall that a nonlinear operator T is called quasi-additive on subspace M ⊂ X
if

T (x+ z) = T (x) + T (z), ∀x ∈ X, ∀z ∈ M.

If a homogeneous operator T ∈ H(X,X) is quasiadditive on R(T ), then we call
T a quasilinear operator.

Let M ⊂ X. Then the (set-valued) metric projection PM defined on X is a
mapping from X to M ,
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PM(x) =
{
z ∈ M

∣∣ ‖x− z‖ = d(x,M),∀x ∈ X
}
,

where d(x,M) = inf∀y∈M ‖x− y‖.
If PM 6= ∅, then M is called a proximinal set. If PM is a singleton, then M

is said to be a Chebyshev set. In this case, we denote PM by πM . Moreover, πM

satisfies the following properties.

Proposition 2.1 ([12]). Let M ⊂ X be a subspace of X. Then

(1) π2
M(x) = πM(x), ∀x ∈ X (i.e., πM is idempotent);

(2) ‖x− πM(x)‖ ≤ ‖x‖ and so ‖πM(x)‖ ≤ 2‖x‖, ∀x ∈ X;
(3) πM(λx) = λπ(x), ∀x ∈ X, ∀λ ∈ R (i.e., πM is homogenous);
(4) πM(x + z) = πM(x) + πM(z) = πM(x) + z for any z ∈ M (i.e., πM is

quasiadditive on M);
(5) πM is a closed operator if M is a Chebyshev subspace.

Lemma 2.2 ([12]). Let M ⊂ X be a Chebyshev subspace. Then π−1
M (0) is a linear

subspace if and only if πM is a linear operator.

Lemma 2.3 ([6]). Let X be a reflexive Banach space. Then X is strictly convex
if and only if every nonempty closed convex subset M ⊂ X is a Chebyshev set.

Let X∗ be the dual space of X and let M⊥ = {x∗ ∈ X∗ | 〈x, x∗〉 = 0, x ∈ M}.
Now, we recall the notation from “dual-mapping.”

Definition 2.4. The set-valued mapping FX : X → X∗ defined as

FX(x) =
{
x∗ ∈ X∗ ∣∣ 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ X.

is called the dual-mapping of X, where 〈x, x∗〉 = x∗(x).

Lemma 2.5 (Generalized Orthogonal Decomposition Theorem; see [12]). Let X
be a Banach space and let M ⊂ X be a proximinal subspace. Then for any x ∈ X,
we have

(1) x = x1 + x2 with x1 ∈ M and x2 ∈ F−1
X (M⊥);

(2) if M ⊂ X is a Chebyshev subspace, then the decomposition in (1) is unique
such that x = πM(x)+x2, and in this case, we write X = M uF−1

X (M⊥).

Where F−1
X (M⊥) = {x ∈ X | FX(x) ∩M⊥ 6= ∅}.

Definition 2.6 ([12], [14]). Let T ∈ L(X,Y ). Assume that R(T ) and N(T ) are
Chebyshev subspaces. If there is a homogeneous operator TM : D(TM) → D(T )
such that

(1) TTMT = T, on D(T ); (2) TMTTM = TM , on D(TM);

(3) TTM = πR(T ), on D(TM); (4) TMT = I − πN(T ), on D(T ),

then TM is called the Moore–Penrose metric generalized inverse of T . Here,
D(TM) = R(T )u F−1

Y (R(T )⊥).

By Definition 2.6 and Lemma 2.5, if TM exists, then the spaces X, Y have the
following unique decompositions:

X = N(T )u F−1
X

(
N(T )⊥

)
, Y = R(T )u F−1

Y

(
R(T )⊥

)
.
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Lemma 2.7 ([12]). Let T ∈ L(X,Y ) be a linear operator with R(T ), N(T ) as
Chebyshev subspaces. Then there exists unique Moore–Penrose metric generalized
inverse TM of T such that

TM(y) = (T |C(T ))
−1πR(T )(y)

for any y ∈ D(TM). Here, C(T ) = D(T ) ∩ F−1
X (N(T )⊥).

Lemma 2.8. Let T ∈ L(X,Y ) be a linear operator with R(T ), N(T ) as Cheby-
shev subspaces. Then TM = (I − πN(T ))T

−πR(T ) is independence of the choice of
T− ∈ L(Y,X) which satisfied TT−T = T .

Proof. Since N(T ), R(T ) are Chebyshev subspaces, we have that TM exists and
TTM = πR(T ), T

MT = I − πN(T ). Let B = (I − πN(T ))T
−πR(T ). Then

B = (I − πN(T ))T
−πR(T ) = TMTT−TTM = πR(T ) = TM . �

From Lemma 2.8, we know that, if T− is a bounded linear operator, then TM

is a bounded homogeneous operator and ‖TM‖ ≤ 2‖T−‖.

Lemma 2.9 ([11, IV.5, Theorem 5.8]). Let X, Y be Banach spaces and let T
be a closed linear operator with D(T ) ⊆ X, R(T ) ⊆ Y . Suppose that T−1 exists.
Then T−1 is continuous if and only if R(T ) is closed in Y .

Lemma 2.10. Let X, Y be reflexive strictly convex Banach spaces, T ∈ C(X,Y )
with R(T ) closed. If πN(T ) is a linear metric projection, then TM is a closed
homogeneous operator that is quasiadditive on R(T ).

Proof. Since X, Y are reflexive strictly convex Banach spaces and R(T ), N(T )
are Chebyshev subspaces, TM exists. By Lemma 2.7, we have

TM(y) = (T |C(T ))
−1πR(T )(y), ∀y ∈ D(TM).

Noting that πN(T ) is a linear metric projection, by Lemma 2.2, π−1
N(T )(0) =

F−1
X (N(T )⊥) is a linear subspace, and so is C(T ). Thus, T |C(T ) is a linear operator

from C(T ) onto R(T ) and consequently (T |C(T ))
−1 is a linear operator from R(T )

onto C(T ).
For any xn ∈ D(TM), limn→∞ xn = x, limn→∞ TM(xn) = y, we have

y = lim
n→∞

TM(xn) = lim
n→∞

(T |C(T ))
−1πR(T )(xn).

Since R(T ) is closed, by Lemma 2.9, (T |C(T ))
−1 is a continuous linear operator.

Thus, limn→∞ πR(T )(xn) = T |C(T )y. By Proposition 2.1(5), πR(T ) is a closed oper-
ator and so πR(T )(x) = T |C(T )y. Thus, y = (T |C(T ))

−1πR(T )(x). Consequently, T
M

is a closed homogeneous operator.
Noting that πR(T ) is quasiadditive on R(T ) and that (T |C(T ))

−1 is a linear
operator, it is easy to verify that TM is quasiadditive on R(T ). �

Proposition 2.11. Let X, Y be reflexive strictly convex Banach spaces, T ∈
C(X,Y ) with R(T ) closed. Then πN(T ) is a linear metric projection if and only
if TM is quasiadditive on R(T ).
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Proof. From the proof of Lemma 2.10, we know that if πN(T ) is a linear metric
projection, then TM is quasiadditive on R(T ). On the contrary, suppose that TM

is quasiadditive on R(T ). Then, for any x, y ∈ D(T ),

πN(T )(x+ y) = (I − TMT )(x+ y)

= (x+ y)− TM(Tx+ Ty)

= x+ y − TMTx− TMTy

= (I − TMT )x+ (I − TMT )y

= πN(T )x+ πN(T )y.

This shows that πN(T ) is a linear metric projection. �

3. The perturbation analysis of the Moore–Penrose metric
generalized inverse

Let T ∈ C(X,Y ) and δT be a linear operator with D(T ) ⊆ D(δT ). Recall
that δT is relatively bounded with respect to T or simply T -bounded if there are
constants a, b > 0 such that

‖δTx‖ ≤ a‖x‖+ b‖Tx‖, ∀x ∈ D(T ).

The constant b is called the T -bounded of δT . From [5, Theorem 1.1], we know
that if b < 1, then T̄ = T + δT is closed if and only if T is closed.

Let T be a linear operator. The reduced modulus γ(T ) of T is defined as

γ(T ) = inf
{
‖Tx‖

∣∣ dist(x,N(T )
)
= 1,∀x ∈ D(T )

}
.

Here, dist(x,N(T )) = inf∀y∈N(T ) ‖x− y‖. Obviously, γ(T ) dist(x,N(T )) ≤ ‖Tx‖.
Let M , N be the homogeneous subsets of Banach space X. Put

η(M,N) =

{
sup{dist(x,N) | x ∈ M, ‖x‖ = 1}, M 6= {0},
0, M = {0}.

We define η̂ = max{η(M,N), η(N,M)} the gap between M and N (see [3]).
Clearly, dist(x,N) ≤ ‖x‖η(M,N). If M and N are subspaces, then the gap

between M and N is denoted by δ̂ = max{δ(M,N), δ(N,M)} (see [5]).

Lemma 3.1. Let X, Y be reflexive strictly convex Banach spaces, T ∈ C(X,Y )
with R(T ) closed. If TM is a bounded homogenous operator, then

1

‖TM‖
≤ γ(T ) ≤ ‖TTM‖

‖TM‖
.

Proof. Since TM is a bounded homogenous operator, we have

dist
(
x,N(T )

)
= ‖x− πN(T )x‖ = ‖TMTx‖ ≤ ‖TM‖‖Tx‖,

and so γ(T ) ≥ 1
‖TM‖ .

Noting that dist(x,N(T )) = ‖TMTx‖, we have

γ(T )‖TMTx‖ = γ(T ) dist
(
x,N(T )

)
≤ ‖Tx‖, ∀x ∈ D(T ).
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For any y ∈ Y , TMy ∈ D(T ). Hence,

γ(T )‖TMTTMy‖ ≤ ‖TTMy‖,

and consequently, γ(T ) ≤ ‖TTM‖
‖TM‖ . �

Lemma 3.2 ([15, Lemma 1.3.6]). Let T, T̄ ∈ C(X,Y ) with D(T ) = D(T̄ ). As-
sume that there are constants λ > 0 and µ ∈ R such that

‖T̄ x‖ ≥ λ‖Tx‖+ µ‖x‖, ∀x ∈ D(T ).

Then

γ(T̄ ) ≥ λγ(T )
(
1− 2δ

(
N(T ), N(T̄ )

))
+ µ.

Lemma 3.3. Let X, Y be reflexive strictly convex Banach spaces, T ∈ C(X,Y )
with R(T ) closed, and let δT be a T -bounded linear operator with D(T ) ⊆ D(δT ),
T̄ = T + δT . Assume that b < 1 and that

δ
(
N(T ), N(T̄ )

)
<

(1− b)γ(T )− a

2(1− b)γ(T )
.

Then T̄ ∈ C(X,Y ) with R(T̄ ) closed.

Proof. T̄ ∈ C(X,Y ) is evident since b < 1.
Noting that δT is a T -bounded linear operator, we have

‖T̄ x‖ ≥ ‖Tx‖ − ‖δTx‖
≥ ‖Tx‖ −

[
a‖x‖+ b‖Tx‖

]
= (1− b)‖Tx‖ − a‖x‖.

By Lemma 3.2, we have

γ(T̄ ) ≥ (1− b)γ(T )
(
1− 2δ

(
N(T ), N(T̄ )

))
− a.

Thus, if

δ
(
N(T ), N(T̄ )

)
<

(1− b)γ(T )− a

2(1− b)γ(T )
,

then γ(T̄ ) > 0 (i.e., R(T̄ ) is closed). �

Proposition 3.4. Let X, Y be reflexive strictly convex Banach spaces, T ∈
C(X,Y ) with R(T ) closed, and let δT be a T -bounded linear operator with b < 1
and D(T ) ⊆ D(δT ), T̄ = T + δT . Then

(1) γ(T )‖(I − πN(T ))πN(T̄ )‖ ≤ a
1−b

‖πN(T̄ )‖,
(2) |γ(T̄ )− γ(T )| ≤ ‖πN(T̄ ) − πN(T )‖γ(T̄ ) + bγ(T ) + a,

(3) γ(T̄ )γ(T )‖(πN(T̄ )−πN(T ))x‖ ≤ {γ(T̄ )+ (1+ b)γ(T )}‖Tx‖+aγ(T )‖x‖ for
any x ∈ D(T ),

(4) ‖(πN(T̄ ) − πN(T ))‖ ≤ 2{ a
(1−b)γ(T )

+ η(F−1
X (N(T̄ )⊥), F−1

X (N(T )⊥))}.
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Proof. Obviously, T̄ ∈ C(X, Y ) and πN(T̄ ), πN(T ) exist by the assumption.
(1) Since R(T ) is closed, we have γ(T ) > 0. Thus, for any x ∈ X, we have

γ(T )
∥∥(I − πN(T ))πN(T̄ )x

∥∥ = γ(T ) dist
(
πN(T̄ )x,N(T )

)
≤ ‖TπN(T̄ )x‖ =

∥∥(T̄ − δT )πN(T̄ )x
∥∥ = ‖δTπN(T̄ )x‖.

Noting that δT is a T -bounded linear operator with b < 1, we have

‖δTπN(T̄ )x‖ ≤ a‖πN(T̄ )x‖+ b‖TπN(T̄ )x‖
= a‖πN(T̄ )x‖+ b

∥∥(T̄ − δT )πN(T̄ )x
∥∥

= a‖πN(T̄ )x‖+ b‖δTπN(T̄ )x‖.

So, we have ‖δTπN(T̄ )x‖ ≤ a
1−b

‖πN(T̄ )x‖. Consequently, we get

γ(T )
∥∥(I − πN(T ))πN(T̄ )x

∥∥ ≤ a

1− b
‖πN(T̄ )x‖.

(2) Since N(T ) is a Chebyshev subspace, by Lemma 2.5 (generalized orthogonal
decomposition theorem), we have

X = N(T )u F−1
X

(
N(T )⊥

)
.

For any x ∈ F−1
X (N(T )⊥), ‖x‖ = 1, we have

dist
(
x,N(T )

)
= ‖x− πN(T )x‖ = ‖x‖ = 1

and

a+ b‖Tx‖ ≥ ‖δTx‖ ≥ ‖T̄ x‖ − ‖Tx‖
≥ γ(T̄ ) dist

(
x,N(T̄ )

)
− ‖Tx‖

= γ(T̄ )‖x− πN(T̄ )x‖ − ‖Tx‖
≥ γ(T̄ )

{
‖x− πN(T )x‖ − ‖πN(T̄ )x− πN(T )x‖

}
− ‖Tx‖

= γ(T̄ )− γ(T̄ )‖πN(T̄ ) − πN(T )‖ − ‖Tx‖.

This easily implies that

a+ bγ(T ) ≥ γ(T̄ )− γ(T )− ‖πN(T̄ ) − πN(T )‖γ(T̄ ).

Interchanging T̄ and T , we get

±
(
γ(T̄ )− γ(T )

)
≤ ‖πN(T̄ ) − πN(T )‖γ(T̄ ) + bγ(T ) + a.

(3) For any x ∈ D(T ), we have

‖Tx‖+ ‖δTx‖ ≥ ‖T̄ x‖ ≥ γ(T̄ ) dist
(
x,N(T̄ )

)
= γ(T̄ )‖x− πN(T̄ )x‖
≥ γ(T̄ )‖πN(T )x− πN(T̄ )x‖ − γ(T̄ )‖x− πN(T )x‖
= γ(T̄ )‖πN(T )x− πN(T̄ )x‖ − γ(T̄ ) dist

(
x,N(T )

)
≥ γ(T̄ )‖πN(T )x− πN(T̄ )x‖ − γ(T̄ )

‖Tx‖
γ(T )

.
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Thus,

γ(T )γ(T̄ )‖πN(T )x− πN(T̄ )x‖ ≤
(
γ(T̄ ) + γ(T )

)
‖Tx‖+ γ(T )‖δTx‖

≤
{
γ(T̄ ) + (1 + b)γ(T )

}
‖Tx‖+ aγ(T )‖x‖.

(4) By Lemma 2.5, π−1
N(T )(0) = F−1

X (N(T )⊥). Thus, for any y ∈ F−1
X (N(T )⊥)∩

D(T ), πN(T )y = 0 and for any x ∈ D(T ), we have∥∥πN(T )(πN(T̄ ) − I)x
∥∥ =

∥∥πN(T )

[
(πN(T̄ ) − I)x− y

]∥∥
≤ ‖πN(T )‖

∥∥(πN(T̄ ) − I)x− y
∥∥

≤ ‖πN(T )‖ inf
y∈F−1

X (N(T )⊥)

∥∥(πN(T̄ ) − I)x− y
∥∥

≤ ‖πN(T )‖ dist
(
(πN(T̄ ) − I)x, F−1

X

(
N(T )⊥

))
≤ ‖πN(T )‖

∥∥(πN(T̄ ) − I)x
∥∥η(F−1

X

(
N(T̄ )⊥

)
, F−1

X

(
N(T )⊥

))
≤ ‖πN(T )‖‖x‖η

(
F−1
X

(
N(T̄ )⊥

)
, F−1

X

(
N(T )⊥

))
.

Associated with item (1), we have∥∥(πN(T̄ ) − πN(T ))x
∥∥

= ‖πN(T̄ )x− πN(T )πN(T̄ )x+ πN(T )πN(T̄ )x− πN(T )x‖
=

∥∥(I − πN(T ))πN(T̄ )x+ πN(T )(πN(T̄ ) − I)x
∥∥

≤
∥∥(I − πN(T ))πN(T̄ )x

∥∥+
∥∥πN(T )(πN(T̄ ) − I)x

∥∥
≤ γ(T )−1‖δTπN(T̄ )x‖+ η

(
F−1
X

(
N(T̄ )⊥

)
, F−1

X

(
N(T )⊥

))
‖πN(T )‖‖x‖

≤ a

(1− b)γ(T )
‖πN(T̄ )x‖+ η

(
F−1
X

(
N(T̄ )⊥

)
, F−1

X

(
N(T )⊥

))
‖πN(T )‖‖x‖

≤ 2
{ a

(1− b)γ(T )
+ η

(
F−1
X

(
N(T̄ )⊥

)
, F−1

X

(
N(T )⊥

))}
‖x‖.

Hence,∥∥(πN(T̄ ) − πN(T ))
∥∥ ≤ 2

{ a

(1− b)γ(T )
+ η

(
F−1
X

(
N(T̄ )⊥

)
, F−1

X

(
N(T )⊥

))}
. �

Corollary 3.5. Let X, Y be reflexive strictly convex Banach spaces, T ∈ C(X,Y )
with R(T ) closed, and let δT ∈ B(X, Y ), T̄ = T + δT . Then

(1) γ(T )‖(I − πN(T ))πN(T̄ )‖ ≤ ‖δT‖‖πN(T̄ )‖,
(2) |γ(T̄ )− γ(T )| ≤ ‖πN(T̄ ) − πN(T )‖γ(T̄ ) + ‖δT‖,
(3) γ(T̄ )γ(T )‖(πN(T̄ ) − πN(T ))x‖ ≤ γ(T̄ )‖Tx‖+ γ(T )‖T̄ x‖ for any x ∈ D(T ),

(4) ‖(πN(T̄ ) − πN(T ))‖ ≤ 2{γ(T )−1‖δT‖+ η(F−1
X (N(T̄ )⊥), F−1

X (N(T )⊥))}.

Theorem 3.6. Let X, Y be reflexive strictly convex Banach spaces, T ∈ C(X,Y )
with R(T ) closed, and let δT be a T -bounded linear operator with D(T ) ⊆ D(δT ).

(1) If πN(T )is a linear metric projection and R(δT ) ⊆ R(T ), then TMδT is a
linear operator. Furthermore, if R(T ) is topological-complemented in Y ,
then TMδT is a T -bounded linear operator.
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(2) If TM is a bounded homogenous operator, then δTTM is bounded homo-
geneous operator and ‖δTTM‖ ≤ (a‖TM‖+ 2b).

Proof. (1) Since R(δT ) ⊆ R(T ), by Lemma 2.7, we have

TMδT = (T |C(T ))
−1πR(T )δT = (T |C(T ))

−1δT.

Noting that πN(T )is a linear metric projection, we have that (T |C(T ))
−1 is a linear

operator form R(T ) onto C(T ) by Lemma 2.2. Thus, TMδT is a linear operator.
Since πN(T ) is a linear metric projection, by Lemma 2.2, π−1

N(T )(0) = F−1
X (N(T )⊥)

is a closed linear subspace. This shows that N(T ) is topological-complemented
in X. Note that R(T ) is topological-complemented in Y , too. Therefore, there
is a bounded linear operator T− ∈ B(Y,X) such that TT−T = T . Thus, by
Lemma 2.8, TM = (I−πN(T ))T

−πR(T ) is a bounded homogeneous operator. Then,
for any x ∈ D(T ), we have

‖TMδTx‖ =
∥∥(I − πN(T ))T

−πR(T )δTx
∥∥

=
∥∥(I − πN(T ))T

−δTx
∥∥

≤ ‖T−‖‖δTx‖
≤ a‖T−‖‖x‖+ b‖T−‖‖Tx‖.

So, TMδT is a T -bounded linear operator.
(2) For any y ∈ D(TM),

‖δTTMy‖ ≤ a‖TMy‖+ b‖TTMy‖
≤ a‖TM‖‖y‖+ b‖πR(T )‖‖y‖
≤

(
a‖TM‖+ 2b

)
‖y‖.

This indicates that δTTM is a bounded homogeneous operator and that

‖δTTM‖ ≤
(
a‖TM‖+ 2b

)
. �

Proposition 3.7. Let X, Y be reflexive strictly convex Banach spaces, T ∈
C(X,Y ) with R(T ) closed, and let δT : D(δT ) → D(TM) be a linear operator
such that D(T ) ⊂ D(δT ), R(δT ) ⊆ R(T ), T̄ = T + δT . Assume that πN(T ) is a
linear metric projection. Then the following are equivalent:

(1) I + δTTM : D(TM) → D(TM) is bijective,
(2) TM T̄ |R(TM ) = (I + TMδT )|R(TM ) : R(TM) → R(TM) is bijective,

(3) D(TM) = T̄R(TM) +N(TM) and N(T̄ ) ∩R(TM) = {0}.

Proof. Since πN(T ) is a linear metric projection, we have that TM is quasiadditive
on R(T ) by Lemma 2.10. Since N(TM) = F−1

Y (R(T )⊥), we have R(T )∩N(TM) =
{0}.

(1) ⇒ (2). Assume that W = I + δTTM is bijective. For any ξ ∈ R(TM), there
is a z ∈ D(TM) such that ξ = TMz. Thus,

TM T̄ ξ = (TMT + TMδT )TMz = (I + TMδT )TMz = (I + TMδT )ξ.

This shows that TM T̄ |R(TM ) = (I + TMδT )|R(TM ).
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Let ξ ∈ R(TM) and let TM T̄ ξ = 0. Then (I + TMδT )ξ = 0. Since W is
invertible, we have

(I − TMW−1δT )(I + TMδT )ξ = 0,

(i.e., ξ = 0). So TM T̄ |R(TM ) is injective.

For any y ∈ R(TM), there is a z ∈ D(TM) such that y = TMz. Since I+δTTM

is bijective, there is a ξ ∈ D(TM) such that z = (I + δTTM)ξ. Thus,

y = TM(I + δTTM)ξ = TM T̄ TMξ ∈ R(TM T̄ |R(TM )).

This shows that R(TM) ⊂ R(TM T̄ |R(TM )). Hence, R(TM) = R(TM T̄ |R(TM )) and

consequently TM T̄ |R(TM ) is surjective.

(2) ⇒ (3). For any ξ ∈ D(TM), there is an η ∈ D(TM) such that TMξ =
TM T̄ TMη since TM T̄ |R(TM ) is surjective. Noting that R(δT ) ⊆ R(T ) and TM is

quasiadditive on R(T ), we have TM(ξ − T̄ TMη) = 0. Thus, ζ = ξ − T̄ TMη ∈
N(TM) and so D(TM) ⊆ T̄R(TM) + N(TM) ⊆ D(TM). Hence, D(TM) =
T̄R(TM) +N(TM).

For any ξ ∈ N(T̄ ) ∩ R(TM), there is η ∈ D(TM) such that ξ = TMη and
T̄ ξ = 0. So TM T̄ TMη = 0. Since TM T̄ |R(TM ) is a injective, we have TMη = 0

(i.e., ξ = 0). This proves that N(T̄ ) ∩R(TM) = {0}.
(3) ⇒ (1). For any ξ ∈ D(TM), there are ξ1 ∈ D(TM), ξ2 ∈ N(TM) such that

ξ = T̄ TMξ1 + ξ2 since D(TM) = T̄R(TM) +N(TM). Let η = TTMξ1 + ξ2. Then
(I + δTTM)η = ξ, that is, I + δTTM : D(TM) → D(TM) is surjective.

To prove I + δTTM is injective, let ζ ∈ D(TM) such that (I + δTTM)ζ = 0.
Noting that TM is quasiadditive on R(δT ) ⊂ R(T ), we have

0 = TM(I + δTTM)ζ = TM T̄ TMζ

and consequently T̄ TMζ ∈ T̄R(TM) ∩ N(TM). Since R(δT ) ⊂ R(T ), we have
T̄R(TM) ⊂ R(T ). Noting that R(T ) ∩N(TM) = {0}, we have T̄ TMζ = 0. Thus,
TMζ ∈ N(T̄ ) ∩R(TM) = {0} and finally,

0 = (I + δTTM)ζ = ζ. �

Corollary 3.8. Let X, Y be reflexive strictly convex Banach spaces, T ∈ C(X,Y )
with R(T ) closed, and let δT : D(δT ) → D(TM) be a linear operator such that
D(T ) ⊂ D(δT ), R(δT ) ⊆ R(T ), T̄ = T + δT . Assume that πN(T ) is a linear
metric projection. If

N(T̄ ) ∩R(TM) = {0}, D(T ) = N(T̄ ) +R(TM) and

D(TM) = R(T̄ ) +N(TM),

then I + δTTM : D(TM) → D(TM) is bijective.

Proof. SinceD(T ) = N(T̄ )+R(TM), we have R(T̄ ) = T̄R(TM), and consequently
D(TM) = T̄R(M) +N(TM). Thus, I + δTTM : D(TM) → D(TM) is bijective by
Proposition 3.7. �
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Proposition 3.9. Let X, Y be reflexive strictly convex Banach spaces, T ∈
C(X,Y ) with R(T ) closed, and let δT be a T -bounded linear operator with D(T ) ⊆
D(δT ). Assume that R(T ) is topological-complemented in Y and that TM is quasi-
additive on R(δT ). If ‖δTTM‖ < 1, then I + δTTM is invertible, and∥∥(I + δTTM)−1

∥∥ ≤ 1

1− ‖δTTM‖
.

Proof. By Theorem 3.6, we have that δTTM is a bounded homogeneous operator.
If ‖δTTM‖ < 1, then the series

∞∑
n=0

∥∥(δTTM)n
∥∥ ≤

∞∑
n=0

‖δTTM‖n =
(
1− ‖δTTM‖

)−1
< +∞.

This shows the series
∑∞

n=0(−1)n(δTTM)n is convergent to A, say. Since TM is
quasiadditive on R(δT ), we have that

(I + δTTM)
n∑

i=0

(−1)i(δTTM)i

converges to (I + δTTM)A = A(I + δTTM) and to I as n → +∞. That is
(I + δTTM)−1 = A and consequently ‖(I + δTTM)−1‖ ≤ 1

1−‖δTTM‖ . �

Theorem 3.10. LetX, Y be reflexive strictly convex Banach spaces, T ∈ C(X,Y )
with R(T ) closed, and let δT ∈ L(X,Y ) be a T -bounded linear operator with
b < 1 and D(T ) ⊆ D(δT ), R(δT ) ⊆ R(T ), T̄ = T + δT . Assume that πN(T )

is a linear metric projection and that R(T ) is topological-complemented in Y . If
‖δTTM‖ < 1, then

(1) T̄M = (I − πN(T̄ ))T
M(I + δTTM)−1πR(T ),

(2) ‖T̄M‖ ≤ 2 ‖TM‖
1−‖δTTM‖ ,

(3) ‖T̄M − TM‖ ≤ 4{a‖TM‖
1−b

+ ‖δTTM‖
2

+ δ1} ‖TM‖
1−‖δTTM‖ .

Here, δ1 = η(F−1
X (N(T̄ )⊥), F−1

X (N(T )⊥)).

Proof. Since R(T ) is topological-complemented in Y and R(δT ) ⊆ R(T ), then
TM and T̄M are bounded homogeneous operator by Lemma 2.8.

(1) By Theorem 3.6(2), we know that δTTM is a bounded homogenous opera-
tor. If ‖δTTM‖ < 1, then I + δTTM is invertible by Proposition 3.9. Noting that
R(δT ) ⊆ R(T ), we have TTMδT = δT . Thus, T̄ TM(I+δTTM)−1T̄ = T̄ by simple
computation. By Lemma 2.8, we have T̄M = (I − πN(T̄ ))T

M(I + δTTM)−1πR(T ).

(2) It is clear that ‖T̄M‖ ≤ ‖TM‖
1−‖δTTM‖‖πR(T )‖ since ‖I − πN(T̄ )‖ ≤ 1 and ‖(I +

δTTM)−1‖ ≤ 1
1−‖δTTM‖ .

(3) Since TM = (I − πN(T ))T
MπR(T ), we have

T̄M − TM

= (I − πN(T̄ ))T
M(I + δTTM)−1πR(T ) − (I − πN(T ))T

MπR(T )

=
{
(I − πN(T̄ ))T

M − (I − πN(T ))T
M(I + δTTM)

}
(I + δTTM)−1πR(T )
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=
{
(πN(T ) − πN(T̄ ))T

M − TMδTTM
}
(I + δTTM)−1πR(T )

= (πN(T ) − πN(T̄ ))T
M(I + δTTM)−1πR(T ) − TMδTTM(I + δTTM)−1πR(T ).

For convenience, we set δ1 = η(F−1
X (N(T̄ )⊥), F−1

X (N(T )⊥)) in the following. By
Proposition 3.4(4) and Lemma 3.1, we have∥∥(πN(T̄ ) − πN(T ))T

M(I + δTTM)−1πR(T )

∥∥
≤ 2

{ a

(1− b)γ(T )
+ δ1

}∥∥TM(I + δTTM)−1πR(T )

∥∥
≤ 4

{ a

(1− b)γ(T )
+ δ1

} ‖TM‖
1− ‖δTTM‖

≤ 4
{a‖TM‖

1− b
+ δ1

} ‖TM‖
1− ‖δTTM‖

.

Thus,

‖T̄M − TM‖ ≤
∥∥(πN(T̄ ) − πN(T ))T

M(I + δTTM)−1πR(T )

∥∥
+
∥∥TMδTTM(I + δTTM)−1πR(T )

∥∥
≤ 4

{a‖TM‖
1− b

+ δ1

} ‖TM‖
1− ‖δTTM‖

+
2‖TM‖‖δTTM‖
1− ‖δTTM‖

= 4
{a‖TM‖

1− b
+

‖δTTM‖
2

+ δ1

} ‖TM‖
1− ‖δTTM‖

. �

Theorem 3.11. LetX, Y be reflexive strictly convex Banach spaces, T ∈ C(X,Y )
with R(T ) closed, and let δT ∈ L(X,Y ) be a T -bounded linear operator with
D(T ) ⊆ D(δT ), N(T ) ⊆ N(δT ), T̄ = T+δT . Assume that πN(T ) is a linear metric
projection and that R(T ) is topological-complemented in Y . If TM is quasiadditive
on R(δT ) and a‖TM‖+ 2b < 1, then

(1) T̄M = (I − πN(T ))T
M(I + δTTM)−1πR(T̄ ),

(2) ‖T̄M‖ ≤ 2 ‖TM‖
1−‖δTTM‖ ,

(3) ‖T̄M − TM‖ ≤ ‖TM‖
1−‖δTTM‖(1 + a‖TM‖+ 2b).

Proof. By Theorem 3.6(2), we have that δTTM is a bounded homogenous operator
and ‖δTTM‖ ≤ a‖TM‖+ 2b.

(1) Since a‖TM‖+2b < 1, we have b < 1
2
. Thus, let T̄ be a closed linear operator

with I + δTTM invertible. Then N(T ) ⊆ N(δT ) shows that δT = δTTMT . So, it
is easy to check that T̄ TM(I + δTTM)−1T̄ = T̄ . By Lemma 2.8, we have

T̄M = (I − πN(T ))T
M(I + δTTM)−1πR(T̄ ).

(2) Obviously, T̄ is a bounded homogenous operator and ‖T̄M‖ ≤ 2 ‖TM‖
1−‖δTTM‖ .

(3) For any ξ ∈ D(T ), πR(T̄ )ξ ∈ R(T̄ ). Hence, there is an x ∈ D(T ) such that

πR(T̄ )ξ = T̄ x. Thus,

(I + δTTM)−1πR(T̄ )ξ = (I + δTTM)−1T̄ x

= (I + δTTM)−1(T + δTTMT )x = Tx ∈ R(T ).
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Note that TM is quasiadditive on R(T ) and R(δT ). So is I + δTTM . Hence,
(I + δTTM)−1 is quasiadditive on R(T ) and R(δT ) since I + δTTM is invertible.
Thus,

T̄M − TM = (I − πN(T ))T
M(I + δTTM)−1πR(T̄ ) − (I − πN(T ))T

M

= (I − πN(T ))T
M
{
(I + δTTM)−1πR(T̄ ) − I

}
= (I − πN(T ))T

M(I + δTTM)−1{πR(T̄ ) − I − δTTM}.

Therefore,

‖T̄M − TM‖ ≤
∥∥(I + δTTM)−1

∥∥‖TM‖
(
‖I − πR(T̄ )‖+ ‖δTTM‖

)
≤ ‖TM‖

1− ‖δTTM‖
(
1 + ‖δTTM‖

)
≤ ‖TM‖

1− ‖δTTM‖
(
1 + a‖TM‖+ 2b

)
. �
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