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Abstract

This paper introduces a design tool and its associated
procedures for determining the sensitivity of outputs in a
digital signal processing design to small errors introduced
by rounding or truncation of internal variables. The pro-
posed approach can be applied to both linear and nonlin-
ear designs. By analyzing the resulting sensitivity values,
the proposed procedure is able to determine an appropri-
ate distinct word-length for each internal variable. Also
in this paper, the power-optimizing capabilities of word-
length optimization are studied for the first time. Applica-
tion of the proposed procedure to adaptive filters realized
in a Xilinx Virtex FPGA has resulted in area reductions of
up to ��� combined with power reductions of up to ���

and speed-up of up to ��� over common alternative design
strategies.

1 Introduction

This paper is concerned with design automation for dig-
ital signal processing (DSP) algorithms implemented on
field-programmable gate arrays (FPGAs). The aim of this
work is to raise the level at which DSP systems can be
specified beyond a bit-true hardware description language
to the domain commonly operated in by digital signal pro-
cessing (DSP) algorithm designers, an infinite-precision
behavioural domain. Thus by using the proposed pro-
cedure, a designer need not consider implementation de-
tails such as finite word-length effects or fixed-point im-
plementation strategies. The proposed procedure will auto-
matically trade-off implementation area, power, and speed
against user-specified numerical accuracy, expressed as a
signal-to-noise ratio (SNR).

The accuracy observable at the outputs of a DSP system
is a function of the word-lengths used to represent all in-
termediate variables in the algorithm. However accuracy
is less sensitive to some variables than to others, as are
implementation area, power consumption, and speed. It
is therefore possible to view the design process as a con-
strained optimization: produce the smallest, lowest power,

or fastest implementation subject to constraints on the sig-
nal quality at the system outputs.

A tool called Right-Size has been implemented, which
performs the proposed procedures and automates the de-
sign flow. The software is designed in a highly modular,
extensible object-oriented manner, allowing any building
block operations to be easily incorporated. It is hoped to
soon release this tool to the research community – inter-
ested parties are encouraged to contact the author.

The contributions of this paper are therefore:

� a novel technique for applying semi-analytic error
sensitivity analysis to certain nonlinear systems, ex-
tending the domain of applications beyond that ad-
dressed by our previous work in this area [1, 2], which
was limited to linear systems

� the first exploration of the power-saving capability of
word-length optimization

� an evaluation of the proposed technique for least-
mean-square (LMS) adaptive filters, showing area re-
ductions of up to ��� combined with power reduc-
tions of up to ��� and speed-up of up to ��� over
common alternative design strategies

� an introduction to design using the Right-Size tool,
which implements the proposed optimization proce-
dures

The rest of this paper is organized as follows. Section 2
reviews the related literature, section 3 introduces the pro-
posed design flow, and section 4 describes the required al-
gorithm representation. Section 5 introduces the proposed
error analysis procedure, and section 6 examines its appli-
cation to a particular class of signal processing algorithms:
LMS adaptive filters. Results from these filters are dis-
cussed in section 6.2, after which conclusions are drawn in
section 7.

2 Background

Several sections of this paper will refer to the concepts
of linearity and time-invariance. A system exhibiting the
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former of these properties is one which responds to the
weighted sum of two input sequences with an output se-
quence equal to the corresponding weighted sum of the in-
dividual output sequences. A system exhibiting the latter
property is one which responds to a time-shifted input se-
quence with an equally time-shifted output sequence. For
more precise definitions and further information, any in-
troductory signal processing text such as [3] may be con-
sulted.

In order to obtain an efficient fixed-point implementa-
tion of a DSP system while satisfying the computational
accuracy constraints imposed by the environment, it is nec-
essary to consider an appropriate scaling and word-length
for each signal. This section reviews the previous work
that has taken place in the field of optimization of signal
word-length and scaling. It should be mentioned that only
work relating to fixed-point or integer arithmetic design
is reviewed. There is, however, some ongoing work on
floating-point optimization [4, 5].

In [6] it has been demonstrated that word-length op-
timization, even for linear time-invariant systems, is NP-
hard. There are, however, several published approaches to
word-length optimization. Those offering an area / signal
quality trade-off propose various heuristic approaches [1,
7, 8] or do not support different fractional precision for
different internal variables [9]. An optimum approach has
also been proposed [2], which is limited to linear time-
invariant systems.

Benedetti and Perona [10] have proposed an analytic
method for word-length optimization of general systems
based on interval arithmetic. The authors concentrate
on error-free word-length determination in loop-free data-
flow graphs, and thus do not consider the problem of al-
lowing a trade-off between accuracy and other figures of
merit.

The Bitwise Project [11] proposes a similar compiler-
based technique based on propagating the ranges of inte-
ger variables backwards and forwards through integer data-
flow graphs. The focus is on removing unwanted most-
significant bits (MSBs), and no technique is proposed for
removing unwanted least-significant bits (LSBs). The au-
thors demonstrate area savings of ��� to ��� combined
with speed increases of up to ��� over the use of 32-bit
integers for all variables.

The MATCH Project [9] also uses compiler-based prop-
agation through data-flow graphs, except variables with a
fractional component are allowed. All signals in the model
must have equal fractional precision; the authors propose
an analytic worst-case error model in order to estimate the
required number of fractional bits, applicable to loop-free
data-flow graphs. Area reductions of ��� combined with
speed increases of ��� are reported when compared to a

uniform 32-bit representation. Recently this design flow
has been updated [12] to support a combination of simula-
tion and analysis.

Wadekar and Parker [7] have also proposed a methodol-
ogy for word-length optimization. Like [9], this technique
allows controlled worst-case error at system outputs, how-
ever each intermediate variable is allowed a distinct word-
length. Series expansions are used to evaluate an estimate
of the worst-case error at the output of a loop-free data-
flow graph. Results indicate area reductions of between
��� and ��� over the optimum uniform word-length im-
plementation.

Cmar et al. [13] have developed a word-length opti-
mization system which uses a combination of range prop-
agation and simulation with known input vectors to limit
the word-lengths of internal variables. No mechanism is
proposed to automate the trade-off of system area against
error.

Kum and Sung [8] have proposed several word-length
optimization techniques to trade-off system area against
system error, some of which have been incorporated in the
Cadence Signal Processing Worksystem. These techniques
are heuristics based on bit-true simulation of the design un-
der various internal word-lengths. Indeed, simulation to
determine error properties has recently been given a firm
theoretical footing by Alippi [14].

In previous work [1, 2], we have proposed the use of
analytic techniques for word-length and scaling optimiza-
tion, achieving up to ��� area reduction combined with
�	� speed-up. The main limitation of this work is its ap-
plicability only to linear time-invariant systems.

In summary, several systems for word-length determi-
nation have been proposed in the past. Some use an ana-
lytic approach to scaling and/or error estimation [1, 2, 7,
9, 10, 11], some use simulation [8], and some use a hybrid
of the two [12, 13]. Analytic techniques often have the ad-
vantage of speed over simulation-based approaches, how-
ever they tend to be less general (applicable only to linear
systems [1, 2] or only to systems with loop-free data-flow
graphs [7, 9, 10, 11]).

3 Design Flow

Before discussing the internal details of the word-length
optimization system, it is first appropriate to consider the
use of the system within a familiar design flow in order to
place the tool in context.

DSP algorithm design is often initially performed di-
rectly in a graphical programming environment such as
Mathworks’ Simulink [15]. Simulink is widely used within
the DSP community, and has been recently incorporated
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Figure 1: Design Flow (shaded portions are FPGA vendor-
specific)

into the Xilinx System Generator [16] and Altera DSP
builder design flows. Our tool can either use its own tex-
tual input format to describe a DSP system, or can read di-
rectly from Simulink models providing a fast design route
for DSP engineers. At the design stage, the engineer need
not specify any hardware-specific signal features such as
their word-length or scaling (binary point location). Be-
yond a standard Simulink algorithm description, only one
piece of information is required: a lower-bound on the out-
put signal to quantization noise (SNR) acceptable to the
user. The design tool thus represents a truly ‘behavioural’
synthesis route, exposing to the DSP engineer only those
aspects of design naturally expressed in the DSP applica-
tion domain.

A diagram of the design flow for Xilinx FPGAs is
shown in Fig. 1, with the vendor-specific portions shaded.
The proposed technique is entirely architecture indepen-
dent, although the exact savings possible by using the ap-
proach may vary from architecture to architecture. In order
to re-target the synthesis tool to a different architecture it
is sufficient to create a new module-generation method for
each type of computation supported, and characterize the
modules with parameterizable area models.

As shown in Fig. 1, the inputs to the Right-Size sys-
tem are a specification of the system behaviour (e.g. using
Simulink), a specification of the acceptable SNR at each
output, and a set of representative input signals. From
these inputs, the tool automatically generates a synthesiz-
able structural description of the architecture and a bit-true
behavioural VHDL testbench, together with a set of ex-
pected outputs for the provided set of representative inputs.

X Y+

(b) an example data-flow graph

+
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adder gain delay fork
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F
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*
mult

F

Figure 2: The graphical representation of a data-flow graph

Also generated is a makefile which can be used to automate
the post-Right-Size synthesis process.

4 Algorithm Representation

Individual computations in a design can be one of many
types. The described procedure requires each of these com-
putation types to produce a differentiable function of its in-
puts. The types currently implemented in Right-Size and
discussed in this paper are: constant coefficient multipli-
cation, general multiplication, unit-sample delay, addition,
and branching (fork). Only fork nodes are allowed to have
greater than unit outdegree. It is straight-forward to ex-
tend Right-Size to other node types using the class struc-
ture available.

The representation used as a starting point for the op-
timization techniques described in this paper is referred
to as a data-flow graph (DFG) [17]. A DFG ���� �� is
the formal representation of an algorithm. � is a set of
graph nodes, each representing an atomic computation or
input/output port, and � � � �� is a set of directed edges
representing the data flow. An element of � is referred to
as a signal.

Throughout this paper, DFGs will be visualized using a
graphical representation, as shown in Fig. 2.

5 Proposed Procedure

The proposed procedure consists of three steps. Firstly
a perturbation analysis is performed, in order to quantify
the sensitivity of each system output to noise at each point
within the computational structure. Secondly a scaling
analysis is performed in order to determine an appropriate
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binary-point location for each signal in the system. Finally,
the results of the two preceding steps are used in a word-
length optimization procedure which aims to find the low-
est area implementation of the system, subject to the user’s
specified constraints on signal to noise ratio. The first two
of these three steps are described below. The third step is
then only briefly reviewed, as it is identical to that pub-
lished previously [1] and shown to produce near-optimal
results for small systems [2].

5.1 Perturbation Analysis

In order to make some of the analytical results on error
sensitivity for linear, time-invariant systems [1] applicable
to nonlinear systems, the first step is to linearize these sys-
tems. The assumption is made that the quantization errors
induced by rounding or truncation are sufficiently small not
to affect the macroscopic behaviour of the system. Under
such circumstances, each component in the system can be
locally linearized, or replaced by its “small-signal equiva-
lent” [18] in order to determine the output behaviour under
a given rounding scheme.

We shall consider one such �-input component, the dif-
ferentiable function � ��� � �������� ������ � � � � ������,
where � is a time index. If we denote by ����� a small pertur-
bation on variable �����, then a first-order Taylor approx-
imation for the induced perturbation ���� on � ��� is given
by ���� � �����

��
���

� � � �� �����
��
���

.
Note that this approximation is linear in each ��, but that

the coefficients may vary with time index � since in general
��
���

is a function of ��� ��� � � � � ��. Thus by applying
such an approximation, we have produced a linear time-
varying small-signal model for a nonlinear time-invariant
component.

The linearity of the resulting model allows us to predict
the error at system outputs due to any small perturbation
of signal 	 � 
 analytically, given the simulation-obtained
error of a single perturbation instance at 	. Thus the pro-
posed method can be considered to be a hybrid analytic /
simulation error analysis.

Simulation is performed at several stages of the anal-
ysis, as detailed below. In each case, Right-Size takes
advantage of the static schedulability of the synchronous
data-flow [17] model implied by the algorithm representa-
tion, leading to an exceptionally fast simulation compared
to event-driven simulation.

5.1.1 Derivative Monitors

In order to construct the small-signal model, Right-Size
must first evaluate the differential coefficients of the Taylor
series model for nonlinear components. Like other proce-

*
a
b

c
*

a

b

c

(a) multiplier node (b) with derivative
monitors

F

dc_da

dc_db

F

Figure 3: Local graph transformation to insert derivative
monitors

dures described in this paper, this is expressed as a graph
transformation.

In general, methods must be introduced to calculate
the differential of each nonlinear node type. This is per-
formed by applying a graph transformation to the DFG,
introducing the necessary extra nodes and outputs to cal-
culate this differential. The general multiplier is the only
nonlinear component considered in the present paper; the
graph transformation for multipliers is illustrated in Fig. 3.
Since ����� ��� � ����, ��

���

� �� and ��
���

� ��.
After insertion of the monitors, the simulation method

is called to provide a (double precision floating point) sim-
ulation of the entire system, and write-out the derivatives
to appropriate data files to be used by the linearization pro-
cess, to be described below.

5.1.2 Linearization

The construction of the small-signal model may now pro-
ceed, again through graph transformation. All linear com-
ponents (adder, constant-coefficient multiplier, fork, de-
lay, primary input, primary output) remain unchanged as
a result of the linearization process. Each nonlinear com-
ponent is replaced by its Taylor model. Additional pri-
mary inputs are added to the DFG to read the Taylor co-
efficients from the derivative monitor files created by the
above large-signal simulation.

As an example, the Taylor expansion transformation for
the multiplier node is illustrated in Fig. 4. Note that the
graph portion in Fig. 4(b) still contains multiplier ‘non-
linear’ components, although one input of each multiplier
node is now external to the model. This absence of feed-
back ensures linearity, although not time-invariance.

5.1.3 Noise Injection

The SNR measure of signal quality is used to specify the
user-acceptable limits on signal distortion through trunca-
tion or rounding. In [1], so-called ��-scaling was used to
analytically estimate the noise variance at a system output
through scaling of the (analytically derived) noise variance
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Figure 5: Local graph transformation to inject perturba-
tions

injected at each point of quantization. Such a purely an-
alytic technique can be used only for linear time-invariant
systems, however in this paper we suggest an extension of
the approach for nonlinear systems.

Since the small-signal model is linear, if an output ex-
hibits variance � when excited by an error of variance ��

injected into any given signal, then the output will exhibit
variance �� when excited by a signal of variance ��� in-
jected into the same signal (� � � � �). Herein lies the
strength of the proposed linearization procedure: if the out-
put response to a noise of known variance can be deter-
mined once only through simulation, this response can be
scaled with analytically derived coefficients in order to de-
termine the response to any rounding or truncation scheme.

Thus the next step of the procedure is to transform the
graph through the introduction of an additional adder node,
and associated signals, and then simulate the graph with a
known noise. In our case, to simulate truncation of a two’s
complement signal, the noise is independent and identi-
cally distributed with a uniform distribution over the range
������ ��. This range is chosen to have unit variance, thus
making the measured output response an unscaled “sensi-
tivity” measure.

The graph transformation of inserting a noise injection
is shown in Fig. 5. One of these transformations is ap-
plied to a distinct copy of the linearized graph for each sig-
nal in the DFG, after which zeros are propagated from the
original primary-inputs, to finalize the small-signal model.
This is a special case of constant propagation [19] which
leads to significantly faster simulation results for nontriv-
ial DFGs.

p

...S

n

Figure 7: A multiple word-length signal (‘S’ represents the
sign bit), the triangle represents the binary-point location

The entire process is illustrated for a simple DFG in
Fig. 6. The original DFG is illustrated in Fig. 6(a). The
perturbation analysis will be performed for the signals
marked (*) and (**) in this figure. After inserting deriva-
tive monitors for nonlinear components, the transformed
DFG is shown in Fig. 6(b). The linearized DFG is shown
in Fig. 6(c), and its two variants for the signals (*) and (**)
are illustrated in Figs. 6(d) and (e) respectively. Finally, the
corresponding simplified DFGs after zero-propagation are
shown in Figs. 6(f) and (g) respectively.

5.2 Scaling Analysis

Each signal in a multiple word-length system has two
parameters, its word-length � and its scaling �, as intro-
duced in [1] and illustrated in Fig. 7.

Scaling analysis is performed in two phases. Firstly a
simulation is performed using the user-provided input se-
quence. The peak signal value �� reached by each sig-
nal � � 	 in the simulation is recorded, and scaled-
up by a user-defined ‘safety factor’ 
 (typically 
 � �,
i.e. two most-significant guard bits). The scaling �� �
���	

�

��� 
 � is thus derived. For some systems, the

safety factor may lead to an overly pessimistic scaling, and
so the role of the second phase is to compensate for this.

The second phase determines the maximum scaling re-
quired at the output of each node, in terms of the scalings at
the input to each node. For example, if an adder has inputs
with scaling �� and ��, then its output cannot have a scal-
ing above ��� � ������ ���
�. If this scaling is less than
the simulation-determined version, i.e. ��� � ��, then �� is
set equal to ���. Such a conditioning [1] is performed for
each node in the DFG, and if there have been any changes,
the process is repeated until the scalings converge.

5.3 Word-length Optimization

The word-length optimization procedure used in Right-
Size is identical to that described for linear time-invariant
systems in [1].

By using the perturbation sensitivities calculated as de-
scribed in section 5.1, estimation of the error at system out-
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puts, given a scaling and word-length for each signal, is a
trivial operation, requiring only the calculation of the error
variance injected at each signal as described in [1]. This al-
lows the optimization procedure to obtain a fast on-the-fly
estimation of signal quality.

The exact procedure used for area estimation, given a
scaling and word-length for each signal, will depend on
the target FPGA architecture. Currently, Right-Size targets
Xilinx Virtex FPGAs [20], and instantiates cores from the
Xilinx Coregen system to implement the integer arithmetic
units at the heart of each multiple word-length component.
By a thorough analysis of these cores, involving the synthe-
sis of several thousand parameter values, high-level models
of LUT-usage have been constructed, enabling the word-
length optimization procedure to obtain a fast on-the-fly
estimation of resource usage.

6 Case Study: Adaptive Filtering

Adaptive filtering is a common DSP application, espe-
cially in the field of communications where it is widely
used, for example, to compensate for multi-path distortion
in mobile communication systems [21].

In addition to its practical significance, adaptive filtering
has some interesting algorithmic features:

� All adaptive filtering algorithms contain feedback,
limiting the applicability of several existing word-
length optimization techniques [7, 9, 10, 11, 13] and
limiting the performance achievable through pipelin-
ing.

� Adaptive filters contain general multipliers, rather
than the constant coefficient multipliers present in
static filters. This means that adaptive filters are non-
linear systems, limiting the applicability of purely an-
alytic techniques such as [1, 2].

� The coefficients of an adaptive filter are updated by
accumulating (usually small) correction terms. Such
‘integration loops’ make the outputs of an adaptive fil-
ter very sensitive to errors induced around such loops.

The so-called least-mean-square (LMS) adaptive fil-
ter [21] will be considered in this section, due to its
widespread use in practice. For the unfamiliar reader, a
brief review of LMS filters will now be provided.

6.1 LMS filters: A review

Consider an input signal ���� and a desired filter re-
sponse ����. (The desired response could be known a-
priori, for example from a ‘training sequence’ used in

+ z-1 F* *

F z-1

+ z-1 F* *

F

+

F +

F

x

y

-1

d

filter taps

Figure 8: First order LMS adaptive filter

GSM mobile telephony). Let � denote the order of the
filter, and ���� denote the vector ���� � ����� ������ ����
�� � � � ���� ���� , where � represents vector/matrix trans-
pose. An LMS filter with real input and coefficients has
the following algorithm, where � represents a column vec-
tor with each element equal to �, and � is a user-chosen
scalar adaptation coefficient.

���� � �

for � � � do
���� � �

� �������
���� � ����� ����
���� �� � ���� � ���������

end do

A DFG for a first-order LMS filter is shown in Fig. 8.
The DFG for an �th order filter is easily derived through a
replication of the taps and the use of an adder-tree to sum
the partial results.

6.2 Results

In order to demonstrate the area, power, and delay ad-
vantages of the proposed method, 90 filters of between
1st and 10th order have been constructed in Simulink and
passed to Right-Size for synthesis. In each case the ‘de-
sired’ input ���� to the adaptive filter is a well-known
100,000 sample voice clip from [22]. The filter input ����
is a version of the same signal, corrupted by three different
12th order autoregressive filters, operating on three disjoint
and equally sized portions of the input signal. Each distor-
tion filter has constant coefficients randomly chosen such
that the filter poles occur in complex conjugate pairs and
have independent, identically distributed uniform distribu-
tion in magnitude range ��� �� and in phase range ��� 	
��.

The filter designs and input sequences have then been
passed to Right-Size, and for each design three different
optimization procedures have been followed. Firstly, the
design has been synthesized with the optimum uniform
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scaling and the optimum uniform word-length for all sig-
nals. This design choice reflects the simplest form of opti-
mized DSP design. Secondly, the design has been synthe-
sized with scaling individually optimized for each signal
(see section 5.2) and the optimum uniform word-length.
This design choice reflects the use of a tool such as [11]
which focuses on optimizing signals from the MSB-side.
The final design procedure has been to use an individu-
ally optimized scaling combined with an individually opti-
mized word-length, as proposed by this paper.

From the filter designs in Simulink and the represen-
tative input sequences, Right-Size automatically generates
a combination of structural VHDL and Xilinx Coregen
scripts, together with a makefile to synthesize the Virtex
bit-stream. Each design has been fully placed and routed
in a Xilinx Virtex 1000 (XCV1000BG560-6), after which
an area, power consumption, and timing analysis has been
performed. Due to memory and run-time constraints im-
posed by large value-change-dump simulation files, power
analysis could only be performed for a 100-sample portion
of the 100,000-sample input sequence used by Right-Size.

The first set of results is concerned with the variation of
design metrics with the order of the filter to be synthesized.
For each of these results, the filters have been synthesized
using the same lower-bound on output SNR of 34dB.

The results are illustrated in Fig. 9(a), (b) and (c) for
area, power, and clock period, respectively. Area savings
of up to ��� (mean ���) have been achieved over scal-
ing optimization alone, and up to ��� (mean ���) over
neither scaling nor word-length optimization. This is com-
bined with a power reduction of up to ��� (mean ���) and
speed-up of up to ��� (mean �	�) over scaling optimiza-
tion alone, and a power reduction of up to ����� (mean
�����) and speed-up of up to ��� (mean ���) over nei-
ther scaling nor word-length optimization.

The second set of results is concerned with the varia-
tion of design metrics with the user-specified lower-bound
on allowable SNR. For these results, a 5th order LMS fil-
ter has been synthesized with SNR bound varying between
��dB and ��dB. These results are illustrated in Fig. 9(d),
(e) and (f) for area, power, and clock period, respectively.
As well as demonstrating the useful capability to trade-off
numerical accuracy for area, power and speed, these results
also illustrate significant improvements in all three metrics.

Area savings have been achieved of up to �
� (mean
�
�) over scaling optimization alone, and up to �	�

(mean ���) over neither scaling nor word-length opti-
mization. This is combined with a power reduction of up to
��� (mean 
��) and speed-up of up to ��� (mean ���)
over scaling optimization alone, and a power reduction of
up ��� (mean ���) and speed up of up to ��� (mean
�	�) over neither scaling nor word-length optimization.

It should be expected that on average the power savings
are no smaller than the area savings of this approach. How-
ever in practice, the power savings are often significantly
greater. This can be explained by two observations relating
to the switching activity of signals. Firstly, if the scaling of
each signal is not individually optimized, then a significant
number of signals will contain unnecessary sign-extension.
When a two’s complement signal changes from a positive
to a negative value, or vice-versa, all of these MSBs will
toggle. Thus the overall switching activity in a realization
can be reduced dramatically by applying scaling optimiza-
tion. Secondly, when a sampled signal is in a period of rela-
tively low-frequency (with respect to the Nyquist rate [3]),
the activity amongst low-order bits is, on average, likely
to be significantly larger than that amongst high-order bits
due to the slowly changing signal value. Thus word-length
optimization, which specifically targets the low-order bits
of each signal, is likely to lead to a significant reduction in
the overall activity level. In addition, it is likely that a large
portion of the power consumption due to logic activity in
DSP systems derives from multiplier cores. In multipli-
ers, the power consumption is far more sensitive to reduc-
tions in the switching activity of low-order input bits than
that of high-order input bits [23]. These explanations are
supported by the plot of Fig. 9(e) which shows the power
saving of the proposed method over scaling optimization
alone increasing rapidly for low SNR. This is because the
low SNR allows word-length optimization to aggressively
target more low-order bits.

7 Conclusion

A novel error prediction procedure has been proposed
for nonlinear systems containing differentiable nonlinear-
ities. This procedure has been incorporated within the
word-length optimization procedure first introduced in [1],
to produce a tool called Right-Size, which it is hoped will
soon be released to the research community.

The power of the proposed technique has been illus-
trated by synthesizing several LMS adaptive filters. Re-
sults from these filters have shown area reductions of up to
�	� combined with power reductions of up to ��� and
speed-up of up to ��� over common alternative design
strategies.

Word-length optimization has been shown to effectively
take advantage of the differing switching activity in differ-
ent bits of a two’s complement signal, in order to reduce
the overall power consumption.

Future work in this field will concentrate on extending
the range of operations known to the Right-Size tool, and
providing a framework to approach non-differentiable non-
linearities such as threshold detectors.
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Figure 9: Synthesis results for LMS adaptive filters
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