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1. Introduction. The purpose of this paper is to analyze equations which are
approximations to a theory of nerve impulse conduction. The equations are a nonlinear
parabolic system of third order, and the desired solutions are steady, propagating
waves. The method of analysis is that of singular perturbations and relies on the fact
that the third-order system contains a small parameter.

Although the approximate equations used here lose some of the physical meaning
and mathematical richness of the more complete theory, they allow for a great deal
more analytical manipulation and therefore more insight into the mathematical processes
involved.

The Hodgkin-Huxley theory for the conduction of voltage pulses along the mem-
branes of nerve cell axons [1] is a satisfactory, empirically supported theory. It repre-
sents the voltage changes that are measurable as the fixed-shape, constant-velocity
propagating voltage pulse by a set of partial differential equations. One of these,

Cft + Uv,m,h,n) = (1.1)

describes the voltage difference, v(x, t), across the axon membrane in terms of lumped
electrical characteristics of the membrane: C, the cross-membrane capacitance; a,
axon radius; Rt , specific resistivity of the fluid inside the membrane; and Im(v, m, n, h),
the cross-membrane ionic current, x is distance along the membrane, and t is the time.

The ionic current, /„ , is represented as a sum of three currents, given in terms of
products of conductivities and voltages:
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I,n = 0na(v — Vna) + (j K(v — V K) + fjt (v - V,), (1.2)

with

Ona = rn3hgna , g K = ngk . (1.3, 1.4)

The barred quantities are constants. The terms of the expression represent sodium,
potassium, and leakage ion current densities, v here represents the voltage difference
between the measurable voltage and the voltage of the rest state at which there is
identically zero total ion current. vna ,vK, and vt are the equilibrium values of the voltage,
determined under the condition that the membrane is permeable to only one of the
ion species at a time. gna and g K are the nonlinear conductivities for the sodium and
potassium current densities. They depend, as is shown, on the variables in, h, and ft,
which in turn satisfy the equations:

dm/dt = —{m„{v) — m), (1.5)

dll/dt = -L.(ju(p)-h), (1.6)
Th\V)

dn/dt = —jrr (na(v) — ft). (1.7)
T, ,(v)

Tm , Th , rn , ftico , /ico , and n„ are experimentally determined functions of the voltage,
v(x, t). <7; is the constant conductivity of the leakage ion current density, and gna and g K
are the maximum conductivity values for gna and g K .

As will be mentioned shortly, this fifth-order partial differential equation system,
Eqs. (1.1)—(1.7), when solved numerically, exhibits many of the experimentally mea-
surable phenomena. However, it is a cumbersome set of equations to handle analytically:
linearizations are not very useful and, although some qualitative treatment has begun
[4], it would be helpful to have other approximations available.

One such appi'oximation has been suggested by Fitz Hugh [5] and used by Nagurno
et al. [6]. It replaces (1.1)—(1.7) by the equations

dv/dt + j(v) + z = d2v/dx2, (1.8)

dz/dt = tv, f(v) = y(l — v)(a — v). (1.9, 1.10)

The relationship between the systems (1.1)—(1.7) and (1.8)-(1.10) will be discussed.
Before doing so, however, it is useful to describe the kind of solutions that have been
obtained for the Hodgkin-Huxley equations.

When the six experimental functions are provided, the system (1.1)—(1.7) can be
shown by numerical solution to exhibit a number of the measurable properties of the
nerve impulse and its conduction along the axon:

1. For the spatially-independent (space-clamped) case, d/dx = 0, v = 0 when
t —> ± a>, the time dependence of the pulse and its amplitude compare well with experi-
ment [1].

2. For the steady, traveling pulse, v(x, t) = vix + dt), v = 0 when x + 6t —-> ± 00,
the shape of the pulse and its velocity of propagation compare well with experiment
[1]. The solution is found on the infinite line. It is not unique; there appear to be at
least two traveling pulses of different velocity and amplitude [2],
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3. For the initial-value problem, v(x, 0) = 0; w(0, t) = v0(t), 0 < t < t0 ; v = 0,
x —* ± o°, a transient solution is shown to build up into a steady traveling pulse whose
shape and velocity approach those found in item 2 [3],

4. A threshold can be found numerically such that the amplitude of the stimulus
applied (e.g., v0(t) in item 3) and its duration of application determine whether or not
a pulse will form and propagate [3].

5. The effects of changing the electrolytic environment and of alterations in axon
geometry can be calculated [3, 7, 8].

6. The response of the system for small signal stimulus is calculable, and compares
well with experiment [9, 10].

7. Similar equations for axons in which ion transport across the membrane only
occurs at nodes along the axon (myelinated axons) yield numerical solutions that cor-
respond well with experiment [11, 12],

8. Solutions with repeated pulses, finite trains of pulses and infinite trains of periodic
pulses have been numerically determined [3],

From the experimental data and from the calculations just mentioned, some useful
observations can be made of the Hodgkin-Huxley theory:

1. The sodium and potassium current densities can be correctly separated as in
Eq. (1.2); each current has a linear dependence on voltage changes near its equilibrium
voltage.

2. The variables m and h describe the turning on and the turning off, respectively,
of the rate of inflow (into the membrane) of the sodium ions, m follows the voltage
pulse as it rises and falls; h decreases as the voltage increases. The variable n describes
the outflow of the potassium ions; n increases as the voltage increases (m, n, and h are
normalized to be maximum at unity). Thus the time course of m is closely related to
the rise of the impulse; n and h act to return the voltage toward the original state.

3. The responsiveness of m, h and n are measured by rm , rh , and r„ . rm is much
smaller in magnitude than either rh or t„ .

4. The basic data used in determining Im is called voltage clamp data. It is obtained
by threading an electrode through a nerve axon and closing the circuit with an external
voltage control circuit. This allows a step voltage to be applied and held constant, and
also shorts out changes with respect to distance along the axon, dv/Ot = dv/dx = 0.

4 Time
milliseconds

Fig. 1.1. Time dependence of v and the ionic conductance variables m, n, and h, m, n, and h have maxi-
mum value unity. v(t) is drawn on a different ordinate scale.
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Fig. 1.2. Time dependence of the response times. rm , r„ and Th given in milliseconds as a function o
voltage.

The ionic current is then measured as a function of time at each fixed voltage level.
A typical set of voltage clamp data may look like Fig. 1.3.

It can be seen that there are two time scales involved in the pulse and reflected in
the behavior of the ion current: a fast rise time that corresponds to turning on the
sodium ion inflow (m) and the voltage rise (v), and a slower recovery that is related to
turning off the sodium inflow (h) and the potassium outflow (n). If we make the as-
sumption that these time scales are, in fact, very widely separated we might make the
approximation in (1.5)—(1.7)

= 0, Th = r„ = CO. (1.11)

In this case

Time, milliseconds

Fig. 1.3. Voltage clamp data: membrane current I,„ as a function of time in milliseconds for various
values of voltage Vi .
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m = ma{v)] h = h„(v = 0), n = na{v = 0), (1-12)

and the resulting wave form for v and m is a step instead of a pulse, as shown in Fig. 1.4.
Setting rm = 0 corresponds to translating the negative peaks of the voltage clamp

curves (Fig. 1.3) to t = 0. An inspection of these peaks reveals that they behave very
nearly like a cubic function of the voltage. The remainder of each voltage clamp curve
has an increasing slope with increasing value of the voltage step. Putting together
these notions, we may look for an approximation to Im in the form:

Im = Cig(v)(v - vna) + C2z. (1.13)

The function g will be quadratic in v and will represent the sodium ion turn-on behavior,
and z will model the recovery process related to n and h. We will approximate the slow
large-time behavior of the voltage clamp curves by

dz/dt = v. (1-14)

For any fixed v = v0 (if z = 0 at t = 0)

z = v0l, (1-15)

Im = Clfif(l>o)(fo - Vna) + C2V0t. (1.16)

Allowing v = 0, /„ = 0 to represent the rest state, we can account for the cubic character
of the early sodium current density by taking

g(v) = (v/vna)(a - (v/vrj), (1.17)

where a is a positive constant, chosen small enough so that the sodium current is ap-
proximated for v > 0.

Im = Ci{v/vna){a - (v/vna))(y - vna) + C2z. (1.18)

To determine the constants, one may try roughly matching this expression to the
cubic behavior of the peak sodium inflow current density and to the increasing slope
of the outflow current in the voltage clamp data. Suitable values are

r - 100 millimhos „ _ 7 millimhos
1 cm" ' 2 millisec cm"

We now have for the space-clamped (space-independent) case

Cjt + C\(v/vna)(a - (v/vJXv - O + C2z = 0, (1.19)

dz/dt = v. (1-20)

C is the capacitance of the membrane, as in (1.1).

Fig. 1.4. Wave form for v and m when t„ = 0, rj,
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The two time scales we have mentioned earlier can now be associated with the
fitting constants, and C2 . We can take C/Cx = and Ci/C2 = T2 . Ti is related to
the early sodium current as it charges the membrane capacitance; T2 is the time scale
of the outward potassium current and the sodium turn-off. We may now use 7\ to
make the time scale non-dimensional and T2 in non-dimensionalizing 2:

t* = t/Ti , z* = z/l\vna , v* = v/vna . (1.21)

Then with

TJT2 = 6, (1.22)

(1.19) and (1.20) become

(dv*/dt*) + v*(a - v*)(l - v*) + z* = 0, (1.23a)

dz*/dt* = ev*. (1.23b)

The ratio T1/T2 will be very small; for the given values of the constants, e = .0007.
The perturbation analysis that we shall use depends on this small size of e.

Dropping the stars and combining Eqs. (1.23a, b), we have

(d2v/dt2) + (dj/dv) (dv/dt) + ev = 0, (1.24)

where

/ = v(a — y)(l — v), df/dv = a — 2(1 + a)v + 3w2. (1.25a, b)

If we put p = v — (1 + a)/3, this equation becomes

d'2p , dp ( 2 a2 - a + l\ , 1 + a ,, ,1/1X
+  "a j+q. = .— , (1.26)

which is a forced Van der Pol equation.
Fitz Hugh [5] observed that the nonlinearity of the Van der Pol equation provided

a two-dimensional phase space analogue to the behavior of the reduced-dimensional
Hodgkin-Huxley equations.

To complete the description of this approximate system we can add a longitudinal
current term to describe propagation of the current along the axon:

dv/dt + v(a — v)(l — v) + 2 = d2v/dx2. (1.27a)

dz/dt = ev. (1.27b)

In taking the coefficient of vxx to be unity, we are making the time scale of the longi-
tudinal current density the same as the fast time of response in this approximate system.

For Eqs. (1.27) we may set a series of problems similar to those considered for the
Hodgkin-Huxley equations:

(i) Space-clamped case: We assume d/dx = 0, so that v is a function of t only. Then

dv/dt + j(v) +2 = 0, dz/dt = tv. (1.28a, b)

As initial conditions one may take

u(0) = vn , z(0) = 0. (1.28c, d)

(ii) Steady propagating waves: We put
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f = X + 91, (1.29)
where d is a constant which without loss of generality we may assume to be positive.
In the steady case v depends on £ only and the equations are then

- dJt~ ^ " z = °> 6 % = ev- (1.30a, b)

We shall look for solutions which defined for all £ and periodic in £. The single pulse
(solitary wave) will be seen to be the limiting case of infinite period.

(iii) Mixed initial-value boundary-value problem: We prescribe the values at x = 0

v(0, t) = v0(t), z(0, 0=0 (1.31a, b)

with suitable initial values, say

v = 0, z — 0 at t = 0 for x > 0. (1.31c, d)

Eqs. (1.27) were first studied by Nagumo [6]. For the space-clamped case and e = 0
(1.28) reduces to

clv/dt + v(l — v)(a — v) + 2 = 0, dz/dt = 0, (1-32, 1.33)

which has the solution
(1 —a) /-1 \a

K cxp ( —a(l — a)t) = -—> K = constant. (1-34)

This solution has the property that for initial values above or below a, respectively,
the solution will tend to one or to zero. Thus a has the character of a threshold. This
will be seen to be true for Eqs. (1.27) as well. From the relationship to the peak inflow
sodium current density, a will be seen to be positive. In an experimentally important
case (squid axon) it has a value near 0.1.

Eqs. (1.27) are the approximation to the Hodgkin-Huxley equations that will be
used in the remainder of this paper. We note that in the approximation used here the
expression for the ion current density, /„ , has been greatly simplified: the parabola
represented by Eq. (1.17), taken with rm = 0, rk = <» should be an approximation to

Time

Fig. 1.5. Behavior of v(t) solutions of (1.32) for different initial conditions.
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mj(y) h„(0) (rriniy) appears in (1.5)); in fact, the parabola fits only a portion of
mJiv) ha(0). Similarly, the linear function taken for the recovery current term is only
a crude fit to the current outflow portion of the voltage clamp curves. The functional
dependence of m, n, and h on v is very much altered. We must expect, therefore, to
find some of the behavior of nerve impulse conduction lacking.

In spite of these and other limitations, the equations do provide traveling pulses
and periodic trains of traveling pulses. As we have mentioned earlier, the nature of the
cubic nonlinearity relates this system to the Van der Pol equation. A singular per-
turbation analysis for relaxation oscillation solutions for the Van der Pol equation has
been given by Carrier [13] and Dorodnitsyn [14] and is to be found in the book by Cole
[15], There are, however, important and interesting differences between the Van der Pol
equation and the equations studied here.

Numerical solutions for problems (ii) and (iii) (p. 1.12 and 1.13) have been cal-
culated first by Nagumo et al. [6] and also by James Cooley of IBM Research. For
(ii) Cooley has found that well-formed propagating pulses are obtained for values of
0 < e. For fixed e, the solutions lie along the curves shown as dotted lines in Fig. 1.10.
Solutions can be obtained for 1/2 > a > 0 until e reaches the value 0.015. Numerical
solutions were difficult to obtain with a close to 1/2. For e extremely small, the pulses
have a steep rise and a steep fall but have a flat, long top.

For (iii), with a small initial value given for v, Cooley has shown that after a transient
phase, solutions reach well formed pulses and approach shapes and propagation velocities
that correspond to those found for the same t, and in the steady, propagating solutions.

Several qualitative studies have been made of problem (ii). Hastings [10] has shown
that there are no bounded solutions for a > 1/2, and «/02 greater than a certain value.
Greenberg [17] has studied the problem with an added term, linear in z, in the second
equation. He shows that, with this term present, for e > 0 and certain other conditions
satisfied there are propagating pulse-like solutions. Conley [18] has shown that pulse-like
solutions exist for a set of values of e and 8 for j(v) more general than the one considered
here but with the condition that f0" l(v') dv' is negative for some values of v. This cor-
responds to a condition in the present analysis on the limiting solutions and the point
of inflection of j(y). McKean [19] has studied the phase plane behavior of (1.36)—(1.37),
some of which is given again in our Appendix. He has also considered solutions for
t > 0 for a piece-wise linear nonlinear current term which has a Jump in place of the
cubic function. Rinzel and Keller [20] studied this case in greater detail and have produced
slow and fast traveling waves, both solitary and periodic. They have established stability
for the fast waves and instability for the slow ones.

In subsequent chapters we shall use singular-perturbation methods to discuss steady
progressing periodic waves. The calculations will be carried to order e. Below we shall
give a heuristic introduction to this problem and also give a survey of the principal
results. We start with a discussion of the solitary wave for the case when 0 is strictly of
order unity. By this we mean that 6 = 60 + 0(e) where 60 > 0. As will be seen the
method for the solitary wave generalizes easily to the general case of periodic waves.
We shall also discuss slow waves for which 9 = 0(e).

Pulses for 6 = 0(1). If we put e = 0 in (1.30b) we obtain dz/d£ = 0 since by as-
sumption 6 is bounded away from zero as e tends to zero. For the pulse we assume that
z = 0 at £ = - co; hence z is everywhere zero. Solving (1.30a) with 2 = 0, we find a
bounded solution which is zero at £ = — , namely
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v = i>0(£) = 1/(1 + exp (-£/\/2)). (1.35)

As discussed in the Appendix, such a solution can exist only if

do = V2 (| - a). (1.36)

This solution, however, does not represent a pulse but rather a front, as shown in Fig. 1.4.
Near £ = 0 it shows a sharp rise (which we shall call an upjump) from a value which is
slightly greater than zero to a value which is almost unity. After the upjump it remains
almost flat and rises slowly to the value one at £ = ». Higher-order approximations
will not improve the situation. The fact that the problem had two time scales of different
orders of magnitude suggested a perturbation analysis of the problem. The same fact
suggests that possibly different time scales should be used in different regions; in other
words, that the problem should be treated as a singular perturbation problem. Indeed,
we see that v0 as given by (1.35) is not a uniformly valid approximation. The exact
expression for z is z(Q = e/8 f-J v(£)d£. At the upjump this quantity remains 0(«)
but at a distance of l/« from the upjump its value is of order unity and 2 can no longer
be neglected in (1.30). The slow variation of v with £ after the upjump suggests that to
study large values of £ we introduce a variable

V = * (1-37)
(This amounts to using the long time scale T2 instead of .)

Putting u(ti, e) = v(£, e), y(ri, e) = z(£, e), we may rewrite (1.30) as

e2 ~ - ed ̂  - /(«) - y = o, e ~~ — u. (i.38a, b)
at] drj ari

This system, with 6 = 0 and 9 = 90 , has solutions u0 and y0 given by (2.11a) and
(2.9b) and illustrated by Fig. 2.1. The uppermost branch (Region I) of the multivalued
solution should be used.

In the language of singular perturbation theory u0{r)) and y0(v) represent outer
solutions relative to the inner solutions v0(£) and z0(£) (where z0(£) = 0). The constants
of integration of the outer solutions are determined by matching with the inner solutions.
In our case the rules of matching yield the simple conditions

lim u0(v) = i>0(°°) = 1, 2/o(0) = 0. (1.39)
vi 0

The function u0 decreases with increasing rj but is bounded from below by a positive
value. Thus the combination of t>0(£) and uQ{ri) still does not represent a uniformly valid
solution for the pulse. Somehow', we must make the solution assume negative values.
Now, corresponding to the upjump (1.35) there is also a solution of the same equation
which represents a downjump from one to zero. Actually, however, we should use a
slightly different equation. During the almost flat part, expressed by u0(t]), the value
of z has been growing. We may assume it to be constant during the downjump, which
effectively takes place in a region of order e on the ?/-scale. However, this constant, which
we shall call R0 , is now greater than 0. Let the downjump take place near (that is,
within 0(e)), the value v ~ Vd ■ The variable has the correct scale for describing the
downjump but it is convenient to shift the origin to near y = Vd by introducing the
variable p,

e(p — pd) = v ~ Vd ■ (1-40)
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(The constant pd will be determined by higher-order matching, as shown in Sec. 3).
The first approximation to v near r] = rjd will be denoted by v0(p). Thus the equations
are now

dvo/clp = vb0 (1.41a)

dtta/dp = 0o®o + j(v 0) + K0 (1.41b)

The essential fact is that the wave velocity 60 is now given; it must be the same as for
the upjump. A downjump with given wave velocity is possible only for a specific value
of K0 . Furthermore, the jump must occur from u = U to u = V, where U and V are
uniquely determined by K0 . The function u0 is monotonely decreasing and the equation

u0(vd) = U (1.42)

determines the location of the downjump uniquely. Corresponding to the upjump
(1.35) the formula for the downjump is

/ \ U exp ( — hp) + V /, n
- ! + exp (_Ip) • (!■«•)

where

V2h = U — V, U = (2 + 2a)/3, V = (2a - l)/3. (1.43b, c, d)
The constants U and V are the largest and smallest roots respectively of

1(u) + K0 = 0, (1.44a)

where

K0 = -2/inf , (1.44b)

finf = value of f(u) at point of inflection = sr (1 + o)(2 — a)(2a — 1). (1.44c)

Since 90 and u are positive it follows that K0 > 0. The solution is possible only if we
impose the restriction

/i„f < 0 (1.45a)

or, equivalently,

0 < a < |. (1.45b)

To complete the solution we need a fourth piece, an outer solution which increases
from F at t] = -qd to zero at . This solution is again given by (2.11a) although this
time the branch where u is negative (cf. Fig. 2.1) should be chosen. It is convenient to
shift the origin of the i)-axis by defining a new outer variable k which has the same
relation to p as t) has to £. Thus

k = ep = r] — Tjd + epd . (1.46)

The four pieces of the solution are indicated in Fig. 1.6. Thus we see how perturbation
analysis can be used to obtain an approximate description of a pulse uniformly valid
to order unity. We observe, however, that the crest of the pulse, described by ua(v),
is very flat and long (in £), unlike the actual pulse shown in Fig. 1.6. However, as e
increases the pulse will be less flat and more like a proper nerve pulse.
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v0<0/

Fiq. 1.6. The four pieces of the perturbation solution.

Note that if one is interested only in determining 0O one need only consider the first
of the four pieces of the solution, namely the upjump described by v0(£).

Phase-plane picture. It is instructive to rephrase some of the above ideas in phase-
plane language. Since we are dealing with a third-order autonomous equation, the
solution may be described by a curve in a three-dimensional phase-space whose axes
we may take to be v, w = dv/dh, and z. However, for upjumps and downjumps 2 changes
little and phase plane analysis may be used. The phase plane is discussed in detail in
the Appendix. The upjump looks as is shown in Fig. 1.7.

The singular points are (0.0), (a, 0), (1, 0). For the special value of d0 given by (1.36)
the integral curve which leaves (0.0) in the first quadrant also passes through (1, 0),
as shown in Fig. 1.7. This corresponds to the function v0(£) given by (1.35). For most of
this curve we find 2 to be practically zero. However, the curve arrives at (1, 0) only when
£ = 00. Thus the value of v would be near unity for a long period. This means that z gets
appreciably greater than zero. The phase-plane solution no longer applies; instead the
solution is described by u0(i)) which corresponds to a rise in z and very slow change of v
and dv/d^. When 2 comes near the value K0 there is a downjump in v while z remains
practically equal to K0 . This downjump is described by the lower branch of the curve
passing from (£/, 0) to (V, 0) in Fig. 1.8. Again, as v0 approaches V, z starts changing
appreciably, as described by U0(k), and, instead of ending up at v = V, w = 0, z = K0,
the solution curve goes toward v = 0, w = 0, 2 = 0 as p—

Fig. 1.7. Phase-plane picture of upjump 2 = 0.
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2 =^£L

Fig. 1.8. Phase-plane picture of downjump, z = K0 .

Periodic solutions. A slight generalization of the above leads to the construction
of periodic solutions. It is necessary to retain the restrictions (1.45). We assume that
rather than being zero during the upjump z has, to leading order, the value Ka , where

0 < K0 < - /int . (1.47)

(As will be shown, solutions are not possible if K0 < 0.) Then an upjump from V to U
is possible, where V and U are the smallest and largest roots respectively of

f(v) + K0 = 0, (1.48)
and, generalizing (1.35), we find that the formula for the upjump is

v(t) = U exP + V _ U + V exP (i 4qa)
m 1 + exp (hQ 1 + exp (-hQ ' U }

where

\/2h = (U - V). (1.49b)
The wave velocity is now, to leading order,

V'2d0 = 3(17 + V) - 2(1 + a). (1.50)

After the upjump there is an upper branch w0(i?) of the outer solution, at rjd a downjump
v0(p) and then a negative branch u0(k) of the outer solution. The constants U and V
are still found from (1.44a) if we generalize (1.44b) to

K0 = -K0 - 2/iIlt . (1.51)

The essential difference from the case of the solitary wave is the following. By assumption
V is now less than zero and the negative branch of the outer solution reaches this value
for a finite value of k,

«oW = v. (1.52)

At this point there is another upjump and the process then repeats itself periodically.
The period is, in the 77-scale,

T n = Vd + Ku + o(l) (1.53)

with the constants determined by (1.42) and (1.52).
Slotu ivaves. Eqs. (1.38) also admit solutions for which 9 = 0(\/e). These are

discussed in Sec. 4. A pulse solution looks as is shown in Fig. 1.9. The inner solution
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Fig. 1.9. Pulse with velocity = 0(\/e).

uses £ as a variable. For £ large one needs an outer solution of amplitude \/e depending
on the variable £/\/e- The maximum of v is 0(1), the minimum is 0(\/«)- However, the
effective interval of integration for the positive part of v is 0(1), whereas that of the
negative part is of order e~1/2. In this way it is possible for v to be zero.

Thus for given values of a and t two pulse solutions are possible, as shown in Fig.
1.10. It is believed that the larger value of d corresponds to a stable solution and the
smaller value to an unstable one.

2. Periodic solutions to lowest order. 6 = 0(1).
A. Statement of mathematical -problem. The equations to be solved are, expressed

in the outer ^-coordinate (cf. 1.38),

e2 ~2 - id ~ - f(u) - y = 0, d ~r~ — u. (2.1a, b)
ttTJ CL7] at]

Here

f(u) = u(u — a)(u — 1); 0 < a < 1 (2.1c)

As conditions we impose

u is defined and bounded for — oo < r) < <», (2.2a)

u is periodic in r}. (2.2b)

€=0.015 ■

e = 0 1/2 a

Fig. 1.10. Wave velocity as a function of a parametrized by .
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We include the solitary wave among the periodic solutions since it will turn out to be
a limiting case as the period tends to infinity. We define U, V, W as the roots of

f(u) -+■ K0 = 0, with U < W < V. (2.3)

The initial conditions at r) = 0 are

u = (U + V)/2, y = K = K0 + tKx , = M + y/2 log 2/9a , (2.4a, b, c)

du/dr] > 0. (2.4d)

Here K0 and M are given constants and 90 , the first approximation to 6, will be seen to
be uniquely determined by iv0 • The initial value of u may be considered as fixing the
origin of the ?j-axis. The location of this origin is physically irrelevant since the equations
are translation-invariant. The prescribed value of y is then the only true initial con-
dition. This condition will uniquely determine the period and the wave velocity 6.
Thus the problem cannot be solved for an arbitrary value of 6; in other words, 6 should
be regarded as an eigenvalue. The constant Ki may of course be put equal to zero;
however, it will be convenient for calculations to assume a general value. Condition
(2.4d) implies that there is an upjump near rj = 0.

As stated in Sec. 1, solutions will be possible only if K and a are in the range de-
scribed by (2.28c) and (2.28d).

For the limiting case of the solitary wave we shall find

U(— oo ) = u( oo ) = 0. (2.5)

We note that

u periodic => y periodic. (2.6)

For the solitary wave we assume

y{- oo) = 0, (2.7a)

which implies

2/(°°) = \ / udv = 0. (2.7b)

B. Outer solutions to order unity. The necessity for having inner and outer (expan-
sions) was made plausible in Sec. 1. Actually it was shown that we needed two outer
expansions, one for the upper branches of the solutions and one for the lower ones.

We assume that u and y have expansions of the form

u(t], e) = u„(tj) + eu,(v) + • • • , (2.8a)

y(v, «) = Vo(v) + tyi(v)- (2.8b)
Also, we put

9(e) = 90 + e0! + • • • . (2.8c)

By assumption 90 > 0. Actually, the expansions of u and y will be essentially different
on the upper and lower branches. However, the equations which the terms of the expan-
sions satisfy will be the same for both cases. To order unity we have

8o(dy0/dr]) = Ua , /(mo) = 2/o (2.9a, b)
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and hence

dy0/dy = -f(u0)(du0/dri) = u0/60 . (2.9c)

To order e we find

doidyjdti) - Ui = 9i(dy0/di)), (2.10a)

j'{u0){dui/d£) + yx = — d0(du0/drj). (2.10b)

The solution of (2.9c) is

r)/8o = — |m02 + 2(1 + a)u0 — a log |w0| + C. (2.11a)

In addition, there is the solution

Wo = 0. (2.11b)

Let umin and be the values of u for which f(u) has a maximum and a minimum
respectively. The slope du0/dri is infinite when u0 assumes these values and u0 becomes
a multivalued function of 77. Another source of multivaluedness if the occurrence of
log |u0| in (2.11a): a positive and a negative value of u0 can give the same value of 17.
As a result there are four different branches of the solution depending on which region
u0 is in. The four regions are defined by

Region I

Region II

Region III

Region IV

M0 > Wmin ,

Wmax < U0 < Mmin , (2.12)

0 ^ Wo ^ Wmax j

u0 < 0.

The solution is plotted in Fig. 2.1. The curves shown may be translated an arbitrary
amount along the ij-axis.

Region I

Region B7

Fig. 2.1. The four branches of w0 .
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The only branch which is defined for all values of rj is in Region IV. However, on this
branch u0 tends to - «> as ij tends to — °°. Thus a solution u0 which is bounded and
which is defined for all 77 must jump discontinuously from one branch to another.

This confirms the assertion made in Sec. 1 that we are dealing with a singular per-
turbation problem. We regard u0 as an outer solution and look for inner solutions which
replace the discontinuities by rapid but smooth transitions. In the shock wave problem
in fluid mechanics one can derive jump conditions from conservation laws, without
studying the inner solution which corresponds to the discontinuity. In the present
case, however, a detailed study of the inner solution is necessary for deriving jump
conditions.

C. Inner solution. As will be studied in detail later, for 60 > 0 there must be at
least one upward jump followed by a downward jump (we determine its direction by
considering increasing values of tj). Without any loss of generality we may assume that
there is an upward jump at rj = 0. This is condition (2.4d). The form of the equations
suggests that the correct inner variable is £ (cf. (1.29) and (1.37))

S = u/e. (2.13)
Using this coordinate one may write (2.1) as (1.30),

d2v . dv ,, . _ „ dz , . , s
d?~ S--Kv)-z = Q, dj^ev. (2.14a, b)

Here w(»?; e) = i>(£; «) and y(r?; e) = z(£; e). Assuming inner expansions near 1? = 0

y(£; e) = Vo(i-) + et>i(£) + • ■ • , (2.15a)

2(£; e) = zo(0 + ez 1 (£)+••■ , (2.15b)
we find

- d0 ̂  - f(v0) -K, = 0, en § = 0. (2.16a, b)

Since we assume d0 ^ 0 we find that z0 = constant. The value of this constant is
given by the initial condition (2.4b). Thus

z„ = K0 . (2.17)

This equation has been used in writing down (2.16a).
To order e we find

d v 1 _ dv 1 r 1 / \ 1 « dvo - dz 1 /r» 1 o \^ / (fo)fi = 2i 61 ^ , da = Wo • (2.18a, b)

The second equation integrates to

zx = ~ f( Vo(s) ds + M + V2ln2. (2.19)"0 * 0 "0

According to standard theory of singular perturbations, the jump of an outer solution
from m0 = A at = 0— to u0 = B at j? = 0+ must be matched with a solution of
(2.16) which tends to A as £ —> —00 and to B as £ —» ». This means that in the phase-
plane of (2.16) the points where dv0/d£ = 0 and v0 = A and B respectively must be
singular points.
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Thus we must find solutions of (2.16) which originate at one singular point at £ = — <*>
and reach another singular point at £ = . The singular points of (2.16) are obtained
by solving the cubic equation

j(v0) = -K0 . (2.20a)

We shall call the three roots U, V, W with the convention that

V < W < U. (2.20b)
The value of dv0/d£ at the singular points is zero. Obviously only real roots of (2.20a)
are of interest. This places a first restriction on the range of K0 . The position of the
roots is illustrated in Fig. A.l in the Appendix for the case K0 > 0. If Kn < 0, then W
and U are still in Regions II and I respectively whereas V is in Region III or, for K0 = 0,
equal to zero.

As stated above, in addition to the upjump at t] = 0 the outer solution must have
at least one more discontinuity. For instance, assume that following the upjump at
ij = 0 there is a downjump at y = rjd . The inner variable p should now be defined by

«(p ~ Pd) = v — Vd ■ (2.21)

(the choice of the constant pd will be discussed later). Near rj = -qd the solution has the
inner expansion

v ~ v0(p) + efJjGo) + • • • . (2.22)

The value of z may have changed between 17 = 0 and v ~ V.t ■ Thus at rjd we have an
expansion

zM = Ro + eK, + 0(e2). (2.23)

The values of /?„ , Rl may no longer be chosen arbitrary1 but must be determined from
the initial conditions at 77 = 0. It is obvious that v0 will obey (2.16), with £ replaced by
p and K0 by /v0 . Thus the discussion below will apply to the upward jump at 77 = 0
as well as to any upward or downward jump at any other discontinuity in u0 .

D. Jump conditions. The possible inner solutions are studied in the Appendix
with the aid of standard phase-plane methods. It is found that for d„ > 0 there are at
most four possibilities of a solution going from one singular point to a different singular
point as £ increases, namely

V-*U,U-^V,W-+V,W-*U. (2.24a, b, c, d)

The above restrictions were found from a study of the inner solution alone. If we
now combine this with a study of the outer solution we can impose further restrictions.
We shall prove:

The values of an outer solution cannot lie in Region II. (2.25a)

An easy corollary is

The jumps (2.24c, d) cannot occur. (2.25b)

1 Thus, even if we put M — 0 in (2.4), the corresponding M at 17 = rid may not be zero. In order to
copy the calculations of the inner solution at tj = rid from those at ij = 0 it is convenient to have a
general value of M at tj = 0.
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Proof. If u0(r)i) is in Region II for some ??i , then as v decreases it eventually has
to jump out of Region II. This means that as y (and £) increases there is a jump into
Region II. Since neither U nor V are in this region this is excluded according to (2.24).
Furthermore a jump from W would mean that u0 is in Region II just before the jump.
Hence (2.24c) and (2.24d) are excluded.

From the Appendix we find that an upward jump from V to U fixes the value of 0O
to be

00 = V2(U + V — 2 W) = G(U). (2.26)

Thus, to lowest order, the wave velocity 9 is determined from the given value K0 .
Since the wave velocity must be the same for the entire ^-range, any other jump must
correspond to the same 60 . In the Appendix it is proved that any other upward jump
corresponding to d0 of (2.26) must have the same values of Ka , and hence of U and V,
as before. After having reached U, u0 is Region I and we know (cf. Fig. 2.1) that as -q
increases u0 cannot reach V (which is in Region III or IV) continuously and also that
a continuous one-valued solution exists only for a finite range of ij. Since there is no
upward jump possible from Region I there must be a downward jump. From the
Appendix we know that there is exactly one downward jump U —» V which gives the
same d0 as (2.26). It corresponds to a value K0 which has the property

U < U; V < V; K0> K0, (2.27a)

-K0 - /inf = /inf + A'0 , K0 < ~/in[ , (2.27b)

where

/inf = value of / at its inflection point = aV(l + a)(l — 2a)(a — 2). (2.27c)

E. Further restrictions on parameters. The study of the inner solution showed
(see Appendix) that for an upjump to take place K0 must be restricted to the range
/in( < — K0 < /mal . By a study of the outer solution we shall now show

V and V are in Region IV, i.e. V < V < 0, (2.28a)

M0 takes values only in Regions I and IV, (2.28b)

K0 is restricted to 0 < K0 < — /inf , (2.28c)

0 < a < i (2.28d)

Proof. If V is not in Region IV then it must be inside Region III, in particular
V > 0. Assume this, and follow the solution u0 backwards, i.e. in the direction of de-
creasing From Fig. 2.1 we see that we can stay in Region III only for a limited range
of ij. To get out the solution has to jump. The only jump possible is from F to U (going
backwards). However, as t) decreases u0 increases in Region III. On the other hand,
V < V. This is a contradiction. Hence (2.28a) is proved.

If M0 is in Region III it has to enter by a jump. Since neither U nor V are in Region
III, this is impossible. We have already shown that u0 cannot be in Region II. This
proves (2.28b).

Finally, if K0 < 0 then V is inside Region III which has been shown to be impossible.
This proves (2.28c).

Originally (in (2.2c)) we restricted a to the region 0 < a < 1. If § < a < 1 then
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/inf > 0, which is shown to be impossible by (2.28c). In the limiting case a — § we have
Ka = Ro = 0. As will be shown below, this is a degenerate case which does not cor-
respond to a meaningful solution.

F. Periodic solutions. Using the results obtained above and in the Appendix,
we may describe periodic solutions as follows. At 77 = 0, u0 jumps from V to U, so that
w0(0—) = V, w0(0+) = U. We may, for instance, pick a value of V in the allowable
range. Then we determine K„ by K„ = —f(V), and U and W are determined by (2.20).
The wave velocity 0O is

V2 0o = U + V - 2W = 3(vint - If). (2.29a)
Here, viBt is the value of v at which f(v) has a point of inflection:

wiIlf = (1 + a)/ 3. (2.29b)

For Ka approaching one of the end points in its allowed range we get the following
limiting cases:

Limiting Case I:

7 = - A1/2 < 0, W = vint , U = vM + A1/2 < 1, (2.30a)

Ko = -fin, , 0o = 0, (2.30b)
where

uinf = (1 + o)/3, 3A = 1 + a + a2. (2.30c)

Limiting Case II:

V = 0, W - a < vinl , [7=1, (2.31a)

V2 0o = 1 - 2a, K0 = 0. (2.31b)

As K0 varies in the allowed range U, V, W, 60 vary monotonically between the extreme
values given above.

After having attained the value U at = 0+ the function u„ is in Region I and
decreases with increasing 77 according to the formula (cf. 2.11)

v/80 = ( —3m02/2) + 2(1 + a)u0 — a log u0 + C, (2.32a)

where

C = (3t/2/2) - 2(1 + a)U + a log U. (2.32b)

The solution of (2.32) which gives u0 > u„,ln (Region I) should be chosen. The value of
2/o increases according to

y0 = Ka -\- 4" f u0dt] (2.33a)
"0 Jo

or, more simply, if we treat y0 as a function of ua , (2.9b) gives

v0 = -/(«») (2.33b)

Let U, K0 , etc., be defined from U and K0 as in the Appendix. Define r)d as the value
of ij at which u„ has decreased to U:

u0(Vd) = U. (2.34)
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From (2.33b) we see that

Voivd) = -KU) = K0 . (2.35)

The conditions for a downjump from U to V at 77 = t]d , consistent with keeping the
same value of 60 , are thus fulfilled (cf. Eq. (A.24) in the Appendix). The values of U,
V, W are found from U, V, W according to (A.23) and that of K0 from (2.27b).

In the limiting cases we find
Limiting Case I:

T)d = 0, U = U, etc. (2.36)

This is obviously a degenerate case.
Limiting Case II:

R0 = —2/in[ , (2.37a)

V = 2vin! - 1 = < 0, W = 2vinl - a = ^=-- , U = 2vinf = < I,

(2.37b^

C = -(| + 2 a). (2.37c)

Since w0('7<i+) = F it follows that u0 is in Region IV after the downjump at t)d .
The analytic formula is

% = ( —3m02/2) + 2(1 + a)u0 - a log |w0| + C. (2.38)

The value of C is obtained by inserting the values r\d and V for y and u0 respectively.
The solution of (2.38) which gives u0 < 0 (Region IV) should be chosen. It is convenient
to shift the origin of the outer variable by introducing k as defined by (1.46) and to put
Uq(k) = u0{ri).

As k increases u0 increases and finally reaches the value V at the point k = ku :

u0(ku) = V. (2.39)

At k„ the solution jumps to the value U and then continues periodically. Thus, to lowest
order,

Period = t]d + ku . (2.40)

As for the limiting cases, we see that Case I is meaningless. More generally, as K0 in-
creases to —/inf the period eventually becomes of order e and the perturbation method
does not make sense.

For the other extreme we find

Limiting Case II is the solitary wave. (2.41)

As the parameter K0 decreases towards zero the value of V increases towards zero.
Then k„ , and hence also the period, increase towards infinity. In this limiting case we
have the solitary wave for which

u0 - 0 = V for v < 0, (2.42a)

«o(0+) = U = 1, (2.42b)
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M0 decreases from 1 to U for 0 < j? < i)d , (2.42c)

«o(^ + ) = V, (2.42d)

M0 increases from V to 0, for t]d < 77 < <». (2.42e)

The values of U and V are given by (2.37).
The inner solutions corresponding to the outer periodic solutions discussed above

are as follows. The inner solution for the upjump from V to U at t; = 0 is given by
(A. 17) and the downjump from U to V at 77 = -qd is given by (A. 19) with U and V replaced
by U and V, respectively. At k = ku we have (A. 17) again, etc., as demanded
by periodicity.

Solution near t] = 0 reconsidered. We assume that the outer solution jumps from
V to U. For £ large, according to (A. 17),

v0 = U + 0(exp (—h£)). (2.43)

Matching requires that for 77 small the value of m0 be U + o(l). Thus if u0 denotes the
outer solution valid for 0 < 77 < ijd then m0 is given by (2.11a) with the constant of
integration C chosen so that

ua = U for 77 = 0. (2.44)

From (2.9b) it follows that, at 77 = 0,

Vo = -KU) = K0 . (2.45)
Thus w0(£) and z0(£) satisfy the correct initial conditions (2.4) to order unity. The outer
solution m0 (77), being discontinuous at ij = 0, does not satisfy the correct initial con-
dition. On the other hand, (2.45) shows that 2/0(17), being essentially an integral of
ua (v) and hence continuous at 77 = 0, does satisfy the correct condition.

3. Approximations valid to order e
A. Inner solution for upjump at 77 = 0. Determination of di . The initial conditions

at£ = 77 = 0 are given by (2.4). Assuming the inner expansions v = v0(£) + «Wi(£) + 0(e2)
and z = z0(£) + «Zi(£) + 0(t2), we find that v0 is given by (A.17), z0 = K0 , and Zi is
obtained from vQ and (2.19). Summarizing and using the expression for v0 , we have

U exp (h£) + V 1 tt -xi ir /0
Vo ~ 1 + exp m ' ^ h ~ U V' Zo ~ Ko' (31)

d0Zi = V2 In (1 + exp (hQ) + F£ + 60M

= y/2 In (1 + exp (— hff) + £/£ + 60M
d2Vi dv, ... . dv0

(3.2)

d£2 dl; ~~ 1'(Vo)Vl ~ Zl ' (3-3)

For (3.3) we have the initial condition

Vl(0) = 0. (3.4)

The parameter 6, is an eigenvalue. Since dv0/d£ is an eigensolution of the homogeneous
equation corresponding to (3.3), the right-hand side of (3.3) is subject to an orthogonality
condition. It is this condition which determines 0, . By standard methods we find
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di J exp (— 0os)(~j~) ds + J CXP (~-0(>s) 2i(s) els = 0. (3.5)

In Sec. 2 we saw that if one is interested only in calculating 60 one need study only the
upjump at | = 0. Similarly we see from (3.4) that dx is obtained directly, without even
solving for . However, here we are also interested in the details of the solution and
shall proceed to find Vi .

Explicit expression for Vt . In addition to the conditions (3.5) we shall impose con-
ditions that 1^1 can increase at most linearly at £ = ± °°. This is necessary for matching
with the outer solution. Thus we impose three conditions, at 0 and at ± o°, on the
solution. It will, however, be seen that the results are self-consistent exactly if 0i is
determined by (3.5). Thus we have an independent check on (3.5).

Using the fact that dv0/d£ is an eigensolution, we put

Vi(Q = g(0(dv0/d£) (3.6)

and obtain, using "prime" to denote derivatives with respect to £,

v0'g" + (2v0" - (W)g' = Zi + 0iVo(3.7)

Integrating twice, using (3.4), we obtain

with

g(s) = f exp (— 0or)vo'(r)\zi + 0^'(r)] dr + C, (3.8b)
Jo

C = constant of integration.

At ± co grows linearly. Obviously then ^(°°) is finite. Since y/2(h — 60) =
%/2(V — W) > 0, we also find that g(— oo) is finite. Actually we see from (3.8) that to
avoid exponential growth of at £ = ± oo we must have

g(- co) =0, </(<») = 0. (3.9a, b)

These equations represent two conditions on the constant of integration C. Actually,
they are consistent, since if one condition is fulfilled the other one follows from (3.5)
which simply states that g{— oo) = g(co). Thus we have verified (3.5) by a method
independent of orthogonality arguments.

Behavior jor |£| large. We have now found an explicit expression for Vi . For matching
we need to find asymptotic expressions of vx for |£| large. These may be found from (3.8)
but we may also proceed as follows. As £ tends to infinity vx tends asymptotically to a
function v+ which obeys the equation

v+" - <W - j'(JJ)v+ = (U/eo)£ + M. (3.10)
A particular solution is

v+ = A+£ + B+ , (3.11a)

= —U/0of'(U), (3.11b)
B+ = U[f'(U)]-2- (3.11c)
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The general solution of the corresponding homogeneous equation is the sum of a term
which increases exponentially as £ —> <*> and a term which decreases exponentially.
(Note that f'(U) is positive.) The coefficient of the first term must be zero since it could
not be matched with an outer solution. The second term is irrelevant for matching.
Hence (3.11) actually gives the asymptotic behavior of vL for £ large, i.e.

Vi = v+ + exponentially small terms. (3.12)

Similarly, we find as £ —» — »

Vi = v. + exponentially small terms, (3.13)

= A-i. + B- , (3.14a)

= V/0of(V), (3.14b)
B- = V[f(V)r2 - M[f'(V)]-\ (3.14c)

B. Outer solution jrorn rj = 0 to tj = . The outer equations to order e were given
by (2.10). From (2.9c) we find

d/du0 = —(60f(u0)/u0)(d/dTi). (a)

Introducing u0 as an independent variable in (2.10) gives

dy, ^ 6t dy0 _ utf'(un) _ J/i _ ^ 1
du0 0» du0 u0 u0 f(,u0)

or

jl/V\ _ i | 6if'(uo) mn
du0 \uj u0f'(u0) e0 Uo '

Anticipating the determination of the constant of integration, we find the solution to be

^ ^ + k{u0) - k(U) (3.16)
Uo U

with

j / \ 1 , In (r - r,) , In (r - r2) , 0, 3 2 , s , ,k(r) = — - In r — -—r t- + -—# 4- + -r* - r — 2(1 + a)r + a In r
V' a 3r^r, - r2) T 3r2(r, - r2) T 0n ° v T ;

Here and r2 are the roots of /'(?•) = 0, i.e.

]•

1 + a ±(1 + a — cl)1
^12 — 3

From (2.10a) we find that the value of Ui is

u0u, =
f (Mo)

J-T - -1 = 77S [77-1 - 77 - fc(wo) + fc(t/)
J (Uo) WoJ / («o) L/ (Mo) (V

(3.17)

Matching. The choice of the constant of integration in (3.17) is determined by
matching. For y small the outer expansion is, according to (2.9c) and (3.16),

y ~ K0 + (Uv/00) + 0(v2) + t[M + 0(u)] + 0(e2). (3.18a)

For £ large the inner expansion is, according to (3.1) and (3.2),
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y ~ K0 + e[M + (UZ/Oo) + 0(exp -/if)] + 0(e2). (3.18b)

Thus the matching condition is fulfilled.
Note that vx did not play a role in the matching since it contributes only to the term

of order t. On the other hand, we see that the constant of integration in (3.16) occurs
also in the expression for Ui given by (3.17). If we match the inner and outer expansions
of u rather than of y then the formula for Vi must be used. The result is of course the
same, as is easily checked.

C. Inner solution for down jump at rj = r)d . Determination of vx and zx . We assume
that near 17 = r\d the inner expansions are

v = Vo(p) + (p) + 0(e2), (3.19a)

2 = 20(p) + eZi(p) + 0(e2) (3.19b)

with p determined by

«(p ~ Pd) = v ~ Vd ■ (3.20)

The constant pd will be determined by matching. According to (A. 19),

_ , s U exp ( — hp) + V /0 ni N
"»<") = 1 + expf-ip) ' (3 21a)

V2h = U - V. (3.21b)
The function z0 is constant z0 = K0 ■

Corresponding to (3.2) we find by integrating (2.18b)

60zj = — V2 In (1 + exp (hp)) + Up + 60M. (3.22)

The minus sign in the first term is due to the fact that we are dealing with a downj ump.
Note that now

2i(0) = M - v2 In 2/d0 . (3.23)

At the upjump K0 and M were given and used to determine d0 and . At the downjump
these latter constants are now given and determine K0 and M. Furthermore, at f = 0
we could arbitrarily specify the initial value. Now we have at p = 0

2®o(0) = U + V. (3.24)
However, we cannot prescribe a new initial value. Thus we have to adjust the value of
the parameter pd .

The function vl(p) is determined in the same way as i>i(£). Corresponding to (3.8)
we obtain

MP) - J' , (3.25a)

g(s) = [ exp (-M®o'W[ziW + ®i®o'W] dr + C. (3.25b)
Jo

The constant of integration C is determined by relations which correspond to (3.9),

gf(-co) =0, g(«>) = 0. (3.26)
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Determination of M. For the upjump M was given and 61 determined by (3.5).
The corresponding relation now determines M from 0! ,

0,M J exp (— d0s)v0'(s) ds

+ I' exp (—90s)v'0 (s)[609fio (s) + Us — V2 In (1 + exp (/is))] ds = 0 (3.27)

Determination of pd . By varying pd we translate the inner solution at rj = rjd along
the 7;-axis. Only in a special position will the inner solution match with the outer solution.
Using formulas analogous to (3.18), we find

„ [M M ,Pd = — ~ k(U) + k(U) (3.28)

where the function k is given by (3.16).
D. Outer solution from doumjump to upjump. We now study the outer solution

from the point where u0 = V to the point where u0 has regained the value V and a new
upjump to the value U takes place.

Any variable k which differs from ^ by a constant may be used as an outer variable.
It is convenient to let k bear the same relation to p as -q does to £. Thus we define

k = ep = t] — r)d + tpd \ (3.29)

We assume outer expansions of the form

u ~ floM + eitiW + ■ • • , y ~ j/oM + eyi(K). (3.30a, b)

The computations proceed as in Sec. 3B and we find

-^ = a In ^ - 2(1 + a){ua - V) + f(u02 - T~2), (3.31a)
u0

/ (^o)
»]■1 - % - k(u0) + k(V) I , (3.31b)

L /(a„) V

y0 = f(U o), (3.32a)

y1 = u0[(M/V) + fc(fl„) - k(V)], (3.32b)

In (3.31a) the branch of the solution for which U0 is negative must be chosen.
E. Inner solution for upjump between V and U. Let k„ be the value such that

fioW = V. (3.33)

At this point the outer solution has a discontinuous upjump to the value U. We define
an inner variable a by

t(a — <ru) = k — k„ (3.34)

To express periodicity in a convenient form we impose a special condition on cru .
We require that, to first order, the inner solution around a = k„ be

Inner solution = v0(<r), (3.35)
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where v0 is exactly the same function which was used to express the inner solution
t'o© around -q = 0.

Using the same methods of matching we find

°"iu — @0 ^ " -J + k(V) +J- k(V) (3.36)

Period. From the definitions of the variables we find

eij = ea + T0 + tT ^ (3.37a)
where

To = va + k„ , 7\ = — (pd + <ju). (3.37b, c)

From the construction we conclude

The period of the motion, measured in the 77-scale, is T„ + e7\ + 0(e2) (3.38)

The constants in (3.38) may be evaluated from the following formulas: -qd is given
by (2.34). The function u0 is given by (2.11a) and lies in Region IV of Fig. 2.1. The
constants K, U and V are given by (A.23). pd and <r„ are determined from (3.28), (3.26);
(3.16) and (3.27). ku is found from (2.38) by replacing u0 by V and replacing rj by ku + r/d

4. Progressing waves with low velocity. We shall study a pulse traveling with a
velocity which is o(l). By checking various possibilities one finds that only the following
assumptions about the form of the expansions yield reasonable results.

Inner expansions. We retain £ as an inner variable and assume

z — Ve Zi(£) + • ■ ■ 1 (4.1a)

v = v0(Q + Vi(Q + ' •' > (4.1b)

The equation for v0 is thus

To next order we have

— \/e Oi + • ■ • . (4-lc)

d\/d£0 - ](v0) = 0. (4.2)

e^dzi/dQ = v0 , (4.3a)

^5 - f'(v0)Vl = 61 ̂  + 2, (4.3b)

Outer expansions. As outer variables we 110 longer use 77, as in the case of 0 = 0(1),
but f defined by

r = V€ (4.4)
We assume the expansions

2 = V«2/i(f) + ■ • ■ , v = Veu^) + • ■ ■ . (4.5a, b)

The equations are then

au! + yi = 0, e^dyjdt) = ux (4.6a, b)
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Inner solutions. The solution for v0 is given by (A..31). To find t>: we proceed as in
Sec. 3A. The homogeneous equation corresponding to (4.3b) has dv0/dii as a solution.
This has two consequences. 1) We may use the method of variation of parameters.
This, followed by use of an integrating factor, reduces the solution to a problem of
quadrature. 2) An orthogonality condition must be imposed on the right-hand side of
(4.3b). This, together with integration of (4.3a), gives a formula for dx which also may
be verified from matching conditions.

However, before carrying out this program we list some integrals which will be
needed later.

Evaluation of Integrals. The following method, illustrated by the first example
below, will be helpful in evaluating various integrals.

\/2 J (v0')2 = J v0g(v,0) dv0

= + | [(fo - b)g(vo) - (b2 - 2a) In \g(v0) + v„ - &|]

- —\ [-by/2a - (b2 - 2a) In (6 - V2o)] (4.7)
O ^

Here g is a polynomial and 6 is a constant, both defined by (A.2Sb). For £ < 0 the positive
square root should be used in evaluating g. We note that at £ = 0, v0 is vm as given by
(A.29) and g(v0) = 0. Standard methods gives formulas for £ > 0.

Similarly

J v02 d£ = V2 [g(v0) + b In |g(i>0) + v0 - b\] — y/2 [y/2a + b In (6 — V2a)] (4.8)

fljZi = J v0 d% = a/2 In |g(y0) + vQ — 6| — V2 In (b — V2a) (4.9)

Inner solutions (continued). The orthogonality condition discussed above gives us

2 f-n V° ^ 2 \/2a — 2b In a (b + ~\/2aV72

= f^= = '
<4.10)

The positive value of the square root should be used for d1 .
The formula for z1 has already been given by (4.9). In this formula we have assumed

z,(— oo) = 0. Since v„ is positive, we must then have Zi(°°) > 0. This will be discussed
further in connection with matching.

The computation of Vi proceeds as in Sec. 3.A. We obtain

ds-7psv^r (4-n)
J (vm) £

where

" -'® f. [(S7w ~ /d

F(s) = 6>i J [v „'(r)]2 dr-jj KM]2 dr + Zi(s)»o(s)
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and vm is the maximal value of v0 , as defined by (A.29). The constants of integration
have been chosen so that matching is possible. In particular, we have F(«>) = 0, which
is equivalent to (4.10). One also finds

9\/2
*>i(—°°) = 0, «,(+<*>) = -——In a, (4.12a, b)

CI u i

».(0) = , F(0) = 2l(0K • (4.12c)

To the expression for vx as given by (4.11) we may add a c2v</(£), c2 = arbitrary constant-
This, however, is obtained from the solution for v0 if we replace £ by £ + e1/2c2. Actually,
there is a class of solutions for v(£), all obtainable from any one of them by a translation
of the £-axis. For convenience of calculation we have chosen the origin of the £-axis
such that j>0(0) = vm and Vi(0) has the value given by (4.12c).

Outer solutions. The function v0 is everywhere positive. Its integral from £ = — °°
to £ = oo is A{ order unity. Thus, if z(— oo) = 0, then, according to (2.14b), z(ra) =
0(\A) if we base our computations on v0 . Since, for the pulse we must have z(°o) = 0
we need additional terms to correct the error. Adding V&i is not sufficient to solve the
problem since fi(oo) ^ 0. We therefore introduce an outer solution for £ large which
matches with the inner solution for moderate values of £ and which behaves correctly
at £ = + oo. The equations are (4.6) which have the solutions

Vi = —fia exp (—f/aflj), (4.13a)

Ui = /3 exp (—f/a0,). (4.13b)

We shall show that matching requires the constant of integration /J to be

0 = — (2V2/a0O In a. (4.14)
As £ tend to infinity a/^i tends to -\A/0i /-<=" v0 cl£ = (V« 2V2/0i) In a. As f tends to
zero Veji tends to the same value if (4.14) is assumed. Thus the choice of 0 is correct.

Appendix. Phase-plane analysis of the inner equation.2 The equation for the
leading term of an inner solution was given in Sec. 2 to be (2.16a). Omitting the subscript
zero we write this equation as

v" - 6v' - f(v) - K = 0 (A. la)

where

f(v) = v(v — a)(v — 1). (A. lb)

Here "prime" denotes differentiation with respect to £. The analysis here is of course
valid if £ is replaced by any of the other inner variables used in Sec. 3.

Assume that at some value of tj the outer solution changes discontinuously from y_
to v+ . Matching then requires that the corresponding inner solution approach these
values at — oo and + oo respectively. This means that in the phase-plane of (A.l) the

2 A phase-plane analysis of (A.l) was given in [19]. The present analysis is, however, more complete.
It is also written from the point of view of perturbation analysis. Thus, for every solution of (A.l) we
consider whether it can be matched with a corresponding outer approximation.
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♦ f

Fig. Al. The cubic function/(v) with critical points at V, W, and U.

solution must go from one singular point to another. The importance of studying (A.l)
in the phase-plane is thus clear.

Being a cubic, the function j(v) is symmetric about its reflection point (yinf , /inf),
where

fim = (1 + a)/3, /int = ittCI + a)(l - 2a)(a - 2). (A.2a, b)

To see this we transfer the origin to this point by the translation

<f> = / — /int ; <0 = v — Win, (A.3a)

and verify that

u>) = —¥>(w). (A.3b)

To find the singular points of (A.l) we need to know the solutions of the algebraic
equation, V, W, U:

/(») + K = 0, V < W < U. (A.4)
For K positive this corresponds to shifting the w-axis downward to the broken line in
Figure Al. The intersection of the curve of f(v) with the new «-axis then gives three
roots.

The matching condition requires that (A.4) have two, and hence three real roots.
This requires K to be restricted to the range

/min < -K < /n,ax ■ (A.5)

Actually, as shown by (2.28), the conditions of matching with the outer solution restrict
the useful range still further. Explicit formulas for V and W in terms of U are

V = i(l + a - U - B), W = 4(1 + a - U + R), (A.6a, b)
with

R2 = (l - 0)2 + 2(1 + a)U - 3U2, R > 0. (A.6c)

There is obviously a one-to-one correspondence between the values of the largest root
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U in the range for which R is real and 0 and K in the range (A.5). In this range any
one of the quantities K, U, V, W determines the others uniquely.

Local solutions near singular -points. To analyze (A.l) we will consider the equivalent
system of first-order equations

dv/d£ = w, dw/dt; = div + (v — V)(v — W)(v — U) (A.7a, b)

where, for the time being, 6 is just some arbitrary nonnegative constant, and /(F) =
/(IF) = /([/) = —K, V < IF < U. The singular points in the (v, w) plane are (F, 0),
(IF, 0), and (U, 0).

If we linearize (A.l) at (F, 0) we obtain, with v* = v — V,

dv*/d£ = w, dw/dt, = Ow + (F — W)(V - U)v* (A.8a, b)
Solutions will be linear combinations of exp (a&), where

g±[0* + 4(W- V)(U - F)]I/2 „
ai = 2 j J ~~ ? (A9)

Since (W — V){U — V) >0 the roots a,- are real and distinct: «i < 0 < a2 ■ Hence
(F, 0) is a saddle point with the two asymptotes having slopes a, and a2 . We note that
dai/dd > 0, da2/dd > 0, i.e. ai and a2 are increasing functions of d.

Similarly for the point (IF, 0), the characteristic roots /3 are

= 0 ±[fl2 - 4(IF - V)(U - W)]1/2 (A 1Q)

For 62 < 4(IF — V)(U — IF) we have a spiral point except for d = 0 when it is center.
For d2 = 4(IF — V)(U — IF) we have an improper node with all trajectories entering
the singular point at the same slope, ((IF — V)(U — F))1/2. For d1 > 4(TF — V)(U — IF)
we have a node with two characteristic directions having slopes 02 > Pi > 0.

At (U, 0) the characteristic roots y are

e ±[e2 + rn - V){U - IF)]1/2
7/ = 5 (A.ll)

The roots y; are real and 71 < 0 < y2 . Hence (U, 0) is also a saddle point with the two
asymptotes having slopes 71 and y2 . The singularities at (F, 0) and at (U, 0) are thus
of the same type (Fig. A.2). Note that dyi/dd > 0, dy2/dd > 0.

dv
W= df

Fig. A2. Local solutions at (V, 0) and (U, 0).
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Global solutions through (V, 0) and (U, 0). We look for solutions which pass through
both (V, 0) and (U, 0). We write (A.l) as

w(dw/dv) = 9w + (v — V)(y — W)(v — U) (A. 12)

and try to find polynomial solutions w(v). Such a solution must be of the form w =
\(v — V)(U — v), where

X = ±1/V2, 9 = \G(U), G(U) = U + V — 2W. (A. 13a, b)
As pointed out in Sec. 1, we may assume without loss of generality that 9 > 0.
From the symmetry of the curve f(v) about its inflection point it follows G(U) is

zero when —K has the value fin! . If we shift the line / = —K upward in Fig. A1 the
roots U and W come farther apart, the roots V and W come closer and the value of U
increases. Thus

G(U) increases monotonically with — K and with U. (A. 14)

We distinguish three cases:

Case I : —K > /inf , G(U) > 0, (A. 15a)

Case II : —K < /inf , G(U) < 0, (A.15b)

Case III: —K = /inf , G(U) = 0. (A.15c)
These cases will be discussed in detail below.

Case I. Since by assumption 9 > 0, X must be given the positive values in (A. 13a).
Hence

V2w = (v - V)(U - v), V29 = G(U). (A.16a, b)
Integration gives

»«> - ^iTexp^)7 • ^ " <U * F»' (A17)
Strictly speaking, in (A. 17) ^ should be replaced by £ + C, C = constant of integration.
However, the constant of integration corresponds to a shift of the origin of the inner
variable; this shift is discussed in Sec. 3. This solution can be matched with an outer
solution which has a discontinuous increase from V to U, at jj = i)Q . We call the solution
(A. 17) an upjump at 7j0 .

Case II. Here 9 > 0 requires that X be given the negative value in (A. 13a). Similar
to Case I we find

V2 w = -(v - V)(U - v), V2 9 = —G(U), (A.18a, b)

v(P) = u exP (~^) + F. (A 19)
{k) 1 + exp (-hQ ( j

This solution represents a downjump. It is the inner solution corresponding to a dis-
continuous decrease from U to V in the outer solution.

Before discussing Case III we shall investigate the uniqueness of the solutions
obtained and also how several upjumps and downjumps can be fitted into the same outer
solution.



396 CASTEN, COHEN AND LAGERSTROM

Uniqueness. We have seen that if w is a polynomial in v then there is one and only
one solution going from F to U (Case I) or from U to F (Case II). If we remove the
restriction that tobea polynomial, we may ask whether the value of 9 is still uniquely
determined by U and whether there are several solutions for the same 9. The answer
is given by

No solutions exist for 6 ^ 9C = \G(U). (A.20)
For 9 = 9C one and only one solution exists. (A.21)

Proof. It is obviously sufficient to discuss Case I only. By "solution" we then mean
a solution of (A. 12) which goes from F at £ = — <» to £/ at £ = + 00 • The value of U
must be chosen such that G(U) > 0. Now let 9 > 6C . We note that at any point (v, w),
w 0, dw/dv is an increasing function of 9. Since the slopes at (F, 0) and (U, 0) for
trajectories entering or leaving those points are increasing functions of 9, we have a
phase plane diagram that looks like Fig. A3. In order for the trajectory for 9 > 9C to
pass through (F, 0) and (U, 0) it would have to cross the trajectory for 9 = 9C and, at
the point of crossing, the slope of the trajectory for 6 > 9C would be less than the slope
of the trajectory for d = 9C , which is a contradiction. Similarly, for 9 < 9C we would
get a contradiction if we assumed a trajectory passing through (F, 0) and (U, 0). This
proves (A.20).

Assume now 9 = 9C . From Fig. A2 we see that there are only two solutions leaving
(F, 0). These are determined by the two asymptotes shown with arrows in the outgoing
direction. The asymptote with w > 0, dw/dv > 0 corresponds to the polynomial solution.
The other asymptote has w < 0, dw/dv > 0. As seen from (A.7), these conditions must
then hold for the entire range of the corresponding solution which hence never can reach
(U, 0). This proves (A.21).

Relations between jumps in the same solution. Assume that an outer solution has a
discontinuity at r/ = rji with limiting values F and U and an other discontinuity at
rj = t]2 with limiting values F and U. Each discontinuity corresponds to either an up-
jump or a downjump as described by Case I or Case II above. We know that U deter-
mines F and that U determines F. Is there any relation between U and U? Such a
relation is imposed by the obvious consistency requirement that both jumps correspond
to the same wave velocity 9. This gives immediately

If two upjumps (downjumps) occur in the same solution the limiting

values are the same. (A. 22)

Fig. A3. Polynomial solution for 6 = dc .
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Proof. Since both jumps occur in the same direction, equality of wave velocity
demands that G(U) = G(U). Since G is a monotonely increasing function of U the only
solution of this equation is U = U which proves the theorem.

Assume now that the two jumps have different directions. The solution of this case
depends on the following algebraic lemma.

Lemma: Let K be in the range /int < — K < /max and let the roots (A.23)
of f(v) + K = 0 be F < W < U. Then there exists a unique R in the range
/min < —K < /inf such that, if V, W, U are the roots of f(v) + R = 0 then

G(U) = -G(fj), (a)
R is determined by

R + /inf = —K — jM , (b)

and the following relations hold:

vM - V = U - vin, , (c)

Vint — V = U - vin{ , (d)

- w = W - vin, . (e)

Prooj. The definition of R by (b) states that the lines j — —K and / = —R are
located symmetrically above and below the line / = /inf (see Fig. A4). Relations (c),
(d) and (e) are then immediate consequences of the symmetry of the cubic (see A.3).
These relations and the definition of G(U), (A. 16^ then prove (a^. The R is^unique.
If R has the same property as R then G(U) = G(U), hence U = U and R = K.

From the algebraic Lemma we prove
If an upjump from V to U corresponds to a wave velocity 6 there is a (A.24)
unique downjump from U to V which gives the same wave velocity.
Relations (A.23) hold between the parameters of the two jumps.

Proof. We determine U from U as in (A.23). Relation (A.23a) then states that
the wave velocities are the same. Uniqueness follows from monotonicity of G(U).

Global solutions from (F, 0) to (F, 0). As K tends to — /in( the value of 6, as com-
puted above, tends to zero. However, as discussed in Sec. 2, the limiting solution has
no meaning. Suppose now instead we put 9 equal to zero in (A.la) and look for global
solutions different from those studied above. The equation (A.l) is now

Fig. A4. Values of K giving same wave velocity.
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w(dw/dv) = j(v) + K. (A.25)
Hence

w'* = a^ vs + av2 + 2Kv + C. (A.26)

The constant of integration is determined from

iv(V) = 0. (A.27)

The singular points in the phase-plane are as described earlier. Since 9 = 0, W is a
center. We consider the solution passing through the point (F, 0) and corresponding
to the asymptote with dw/dv > 0, w > 0. The solution curve must lie below the curve
going from (F, 0) to (E7, 0), w > 0, obtained when 6 = dc (cf. proof of (A.21)). It thus
has to cross the w-axis for v < U. However, for V < v < W, iv = 0, solutions cross the
y-axis in the upward direction. Furthermore, the solutions do not go to (IF, 0), since
this is a center, and not to (U, 0) because of the uniqueness of 0C (we assume —K ^ /inf ,
so that 9C > 0). Thus the solution crosses the y-axis for W < v < U. The slope at the
crossing is infinite and the solution is symmetrical about the v-axis. Thus, qualitatively,
the solution is the closed curve in Figure A5.

We shall only study the case K = 0 and hence F = 0, U = 1. The general case may
be studied in a very similar way by introducing v* = v — F. Then j(v) + K, has a zero
at v* = 0. For K = 0 (A.26) reduces to

■to2 = %v2g'\v) (A. 28a)

cf{v) = v2 — 2bv + 2a, b = §(1 + a). (A.2Sb)

The maximum value of v occurs at the smallest root of g(v) = 0 and is

vm = b - (62 - 2o)1/2. (A.29)

The symmetry of the solution is best exhibited if we require

v = vm at J = 0. (A.30)

From (A.28) we find f as a function of v by integrating

1 , (g{v) + V2a b \ y/'la1 - - VJ VZ> (A.31)

Fig. A."). Qualitative picture of solutions for 0 = 0.
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for £ < 0. Inverting we obtain

„ 4a(b2 - 2a)1/2 exp (Va£) 
((62 — 2a)'/2 exp (s/aQ + b)2 — 2a

This formula is valid for all values of £ and has the symmetry

v(Q = »(-€)■ (A.33)

Completion of phase-plane analysis. We shall now complete the phase-plane analysis
of (A.l), and in particular find more global solutions going from one singular point to
another. However, none of these can be matched with an outer solution. This follows
from the discussion of the outer solution in Sec. 2. Thus it is shown that, except for the
global solutions discussed earlier in this Appendix, there are no other solutions of (A.l)
which can be used as inner solutions in an asymptotic analysis of the original problem
(2.1). Though the results are negative, it is necessary to carry out the analysis in order
to show that we have found all solutions of (A.l) which are useful for our purpose.
However, since the formulas derived below will not be used we shall omit many details
in the proof.

Completion of classification of bounded solutions. We shall prove the following
statements about solutions to (Al) for G(U) > 0, i.e. for (U + V)/2 > W:

(a) For 6 = 0 there are no solutions going from one singular point to another other
than that which goes from (F, 0) to (F, 0).

(b) For 9 > 0 the only bounded solutions go from one singular point to another.
(c) For 9 > 0 there is a solution going from (W, 0) to (F, 0).
(d) For 6 > 9C there is a solution going from (IF, 0) to (F, 0); for 0 < 9 < 9C there

is no solution going from (W, 0) to (U, 0).
(e) For d > 0 there is no solution going from a singular point back to itself.
Proof: Since we will only be interested in bounded solutions of (A.l), we need not

consider those solutions which enter or leave (F, 0) for v < F or those which enter or
leave (JJ, 0) for v > U.

(a): We have seen previously that for d = 0 there is a solution going from (F, 0)
to (F, 0). Since (W, 0) is a center, the only other possibility for a solution to go from
one singular point to another is for a solution leaving (U, 0) for v < U to come back
to (U, 0) for v < U (cf. Fig. A5). However, this solution must cross the i>-axis in the
upward direction. While the solution is beneath the w-axis, it moves to the left, and the
only possible place for an upcrossing is between (F, 0) and (W, 0). Since this solution
cannot cross the solution going from (F, 0) to (F, 0), it cannot get to the w-axis between
(F, 0) and (TF, 0). Thus this solution is confined to be below the v-axis. Statement (a) is
thus proven.

(b): We shall first show that for 9^0, there are no periodic solutions. We write
(A.7) as the vector equation

Gt«) - F<»< »>
where F = (^j with Fx = w and F2 = 9w + (v — V)(v — W)(v — U). Since divF =

dFi/dv + dF2/dw = M 0, then by a theorem of Bendixson, (A.7) cannot have any
periodic solution for M0. (The fact that div F ^ 0 for any v and w implies that there
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8-0

Fig. AO.

is no closed curve having the property that the vector F is tangent to the curve at every
point on the curve.)

Since there are no periodic solutions, there can be no limit cycles, and thus every
solution confined to a bounded region for t > t0 (t < t0), for some t0 , must approach
a singular point as t —> <» (f —> -co). (The only other possibility is that the solution
approach a solution going between singular points, which, by inspection of the direction
field of (A.7), cannot happen.)

(c): From Fig. A6 we see that the solution entering (V, 0) from w < 0 is, for large £,
inside the solution going from (F, 0) to (F, 0) for 6 = 0. As we follow the solution back
for decreasing £, it is seen that this solution must remain inside. Thus the solution
must have come from (17, 0).

(d): For 8 > dc , we see from Fig. A7 that a solution entering (U, 0) from v < U
has to be confined below the solution going from (F, 0) to (U, 0) for 8 = 6C , above the
v-axis between (W, 0) and (U, 0), and above the solution going from (IF, 0) to (F, 0).
Thus the solution must have come from (W, 0).

For 6 < dc , we see from Fig. A8 that a solution could not go from (IF, 0) to (U, 0)
as it would have to intersect the solution from (F, 0) to (U, 0) for 6 = 6C , which it
cannot do.

(e): Since solutions always leave (W, 0), there are no solutions from (W, 0) back to
itself.

Since no solution for d > 0 which is outside the solution from (F, 0) to (F, 0) for
6 = 0 can get inside (cf. Fig. A7), there can be no solution from (F, 0) back to itself.

Since there is no way for the solution leaving (U, 0) for v < U to cross the v-axis
in the upward direction, there can be no solution from (U, 0) back to itself. (The solution
from (U, 0) cannot get inside the solution from (F, 0) to (F, 0) for 6 = 0.)

Fig. A7.



AN APPROXIMATION TO THE HODGKIN-HUXLEY THEORY 401

Fig. A8.

For G(U) = 0 all but statement (a) are true. In this case statement (a) should be
replaced by: for 0 = 0 there are no solutions going from one singular point to another
other than a solution which goes from (F, 0) to (U, 0) and a solution which goes from
(U, 0) to (F, 0). (This is just limiting case III discussed earlier: K = — /inf ,0 = 0.)

To obtain solutions of (A.l) for G(U) < 0, i.e. for (U + F)/2 > W, we note the
following. Eqs. (A. 10) are invariant under the transformation w —» — w, v —> U + F — v,
W —> U + F — IF. Thus we can obtain all solutions of (A.l) for G(U) <0 by taking
all solutions for G(U) > 0 and reflecting them about both the v-axis and the line v =
(U + F)/2, i.e. the line through the midpoint of the interval [V, U].

We can summarize the above by stating that the only solutions of (A.l) that go
from one singular point to another are those which go from:

(i) F -> F for 8 = 0, G(U) > 0,
(ii) U —> U for 0 = 0, G{U) < 0,

(iii) W -> F for 6 > 0, G(U) > 0,

for 6>—)-G(U), G(U) < 0,

(iv) IF -> U for d > G(U), G(U) > 0,
V-i

for d > 0, G(U) < 0,

(v) F U for 6 = -tt G(U), G(U) > 0,
v-

(vi) U -* F for d = —■T7 G(U), G(U) < 0.
v ^
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