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Perturbation Analysis

of Second-Order Cone Programming Problems

J. Frédéric Bonnans∗ & Héctor Ramı́rez C. †

Abstract

We discuss first and second order optimality conditions for nonlinear second-order
cone programming problems, and their relation with semidefinite programming prob-
lems. For doing this we extend in an abstract setting the notion of optimal partition.
Then we state a characterization of strong regularity in terms of second order optimality
conditions.

1 Introduction

Min
x∈IRn,sj∈IR

mj+1
f(x) ; gj(x) = sj , (sj)0 ≥ ‖s̄j‖, j = 1, . . . , J, (SOCP)

where f and gj , j = 1, . . . , J are C1 mappings from IRn into IR and IRmj+1, respectively.
We use the standard convention of indexing components of vectors of IRmj+1 from 0 to
mj , while vectors in IRn are indexed from 1 to n. Given s ∈ IRmj+1, we also denote
s̄ := (s1, . . . , smj

)⊤.
The second-order cone (or ice-cream cone, or Lorentz cone) of dimension m + 1 is

defined as
Qm+1 := {s ∈ IRm+1 ; s0 ≥ ‖s̄‖},

and the order relation ºQm+1
induced by Qm+1 is given by

s ºQm+1
0 iff s ∈ IRm+1, s0 ≥ ‖s̄‖.

The interior of this cone is the set of s ∈ IRm+1 such that s0 > ‖s̄‖. In that case we say
that s ≻Qm+1

0. We also denote Q := ΠJ
j=1Qmj+1. A second-order cone Q = Qm+1 can

be described as a linear matrix inequality by using the known equivalence (e.g. [1])

s ºQ 0 iff Arw(s) :=

(

s0 s̄⊤

s̄ s0Im

)

º 0, (1)
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where Im denotes the identity matrix in IRm×m, Arw(s) is the arrow matrix of the vector
s, and º denotes the positive semidefinite order, that is, A º B iff A, B are symmetric
matrices and A − B is a positive semidefinite matrix. We also denote the set of m + 1
by m + 1 symmetric matrices by Sm+1, indexed from 0 to m, equipped with the inner
product A ·B := Tr(AB) =

∑m

i,j=0 AijBij ; the subset of symmetric positive semidefinite

matrices is denoted Sm+1
+ . Finally, for two arbitrary vectors x and z of any dimension

we set x · z := x⊤z =
∑

i xizi the corresponding Euclidian inner product, and for an
arbitrary optimization problem (P) we denote by S(P ), F (P ) and val(P ) its solution set,
feasible set and optimal value, respectively. The equivalence (1) implies that (SOCP) is
SDP-representable, i.e., can be written as the nonlinear semidefinite problem

Min
x∈IRn

f(x) ; Gj(x) := Arw(gj(x)) º 0, j = 1, . . . , J. (SDP)

For a general view of semidefinite programming problems, see [18, 19]. A first objective
in this paper is to compare the linear second-order programming problem (see (LSOCP)
below) and its linear SDP-representation (see (LSDP) below) in terms of duality results.
We show that their dual problems are no longer equivalent, and some important notions as
the uniqueness of Lagrange multipliers (or equivalently, dual problems solutions) do not
simultaneously hold for both problems (LSOCP) and (LSDP). We perform this analysis
in an abstract framework. When specialized to second order cone problems, we recover
some of the results of Sim and Zhao [17]. Still our main result is the characterization
of the strong regularity property for SOCP problems in terms of second-order optimality
conditions. This is a well studied subject in nonlinear programming and the reader can
see two different approaches in the articles of Bonnans and Sulem [7], and Dontchev and
Rockafellar [9]. Nevertheless, it is still an open problem in a general conic optimization
framework, even in particular instances as semidefinite programming. Necessary and
sufficient second-order conditions to obtain the strong regularity property in SDP are
studied by the authors in [4].

The paper is organized as follows. Section 2 breaks into three subsections. In the first
one, we review the main duality results concerning the linear second-order programming
problem (LSOCP) and their comparison to linear SDP problems. Section 2.2 deals with
an abstract framework involving two equivalent linear conic optimization problems with
constraints in product form, that are related by a linear mapping (as in relation (1)).
It introduces a notion of optimal partition of active constraints. It allows us to deduce
several duality statements and related properties. Subsection 2.3 applies this abstract
framework to linear problems (LSOCP) and (LSDP). Section 3 we discuss briefly the
duality theory for nonlinear SOCP problems. Section 4 recalls some key notions as the
nondegeneracy condition and the reduction approach, mainly for their use in section 5
where is stated our main result: the characterization of the strong regularity property
for SOCP problems in terms of second-order optimality conditions. For this, we use the
concepts given in section 4 as well some suitable known theorems and SOCP techniques.
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2 Duality theory for linear SOCP problems

2.1 Dual linear SOCP problems

We assume in this section that f(x) = c · x and gj(x) = Ajx − bj , j = 1, . . . , J , where
c ∈ IRn and Aj are (mj + 1) × n matrices. In that case we speak of a linear SOCP
problem:

Min
x∈IRn,sj∈IR

mj+1
c · x ; Ajx − bj = sj , (sj)0 ≥ ‖s̄j‖, j = 1, . . . , J. (LSOCP)

The dual problem of (LSOCP) is given by

Max
yj∈IR

mj+1

J
∑

j=1

bj · yj ;

J
∑

j=1

(Aj)⊤yj = c, (yj)0 ≥ ‖ȳj‖, j = 1, . . . , J. (LSOCP∗)

Since both the primal and dual problems are convex, we have the following results of con-
vex analysis Rockafellar [14]. The weak duality inequality val (LSOCP) ≥ val (LSOCP∗)
holds, with the convention that the optimal value (val) of problem (LSOCP) (resp.
(LSOCP∗)) is equal to +∞ (resp. −∞) if this problem is infeasible. If the value of
(LSOCP) is finite, it is known that (LSOCP) is strictly feasible, i.e., there exists a point
x̂ such that Aj x̂ − bj ∈ int Qmj+1 for all j = 1, . . . , J , iff the set of solutions of the dual
problem is nonempty and bounded. In that case we have the strong duality property,
i.e., val (LSOCP) = val (LSOCP∗). A symmetric statement holds by permuting the words
“primal” and “dual” (we will see in lemma 2 a refinement of this statement). If the strong
duality property holds, then a pair of primal-dual solution (x∗, y∗) ∈ IRn × ΠJ

j=1IR
mj+1

is characterized by the following optimality system

A⊤y∗ = c, Ax∗ − b ∈ Q, y∗ ∈ Q, (Ax∗ − b) ◦ y∗ = 0, (2)

where we have defined A := (A1; · · · ; AJ) as the matrix whose rows are those of A1 to
AJ and whose columns ai are equal to vec(a1

i , . . . , a
J
i ), with aj

i the i-th column of Aj ,
b := vec(b1, . . . , bJ) and the operation ◦ (e.g. [1]) is given by

x ◦ s := Arw(x)s =

(

x⊤s
x0s̄ + s0x̄

)

, for all x, s ∈ IRm+1,

and for x, s in ΠJ
j=1IR

mj+1 we set

x ◦ s := vec(x1 ◦ s1, . . . , xJ ◦ sJ ).

We may write (Ax∗ − b) · y∗ = 0 instead of the last relation in (2), in view of the well
known property (e.g. [1, Lemma 15])

For all x, s ∈ Qm+1, x ◦ s = 0 iff x · s = 0. (3)

In fact it is easily checked that relations in (3) are satisfied iff x and s belong to Qm+1

and

Either x = 0 or s = 0, or there exists α > 0 such that s0 = αx0 and s̄ = −αx̄. (4)
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Similar duality results hold for the linear semidefinite problem, which can be written as

Min
x∈IRn

c · x ;

n
∑

i=1

xiG
j
i º Gj

0, j = 1, . . . , J, (LSDP)

where we have set

Gj
0 := Arw(bj) and Gj

i := Arw(aj
i ), i = 1, . . . , n. (5)

In this case, the dual problem of (LSDP) is

Max
Y j∈S

mj+1







J
∑

j=1

Gj
0 · Y

j ;

J
∑

j=1

Gj(Y j) + c = 0, Y j º 0, j = 1, . . . , J,







, (LSDP∗)

where the mappings Y ∈ Smj+1 → Gj(Y ) := (Gj
1 ·Y, ..., Gj

n ·Y )⊤ are the adjoint operators
of Gj , and a primal-dual solution (x, Y ) ∈ IRn × ΠJ

j=1S
mj+1 is characterized by

J
∑

j=1

Gj(Y ∗)j + c = 0, Gj(x) º 0, Y j º 0, Gj(x)Y j = 0, j = 1, . . . , J. (6)

In the sequel we denote G(Y ) :=
∑J

j=1 G
j(Y ∗)j .

Note that a linear second-order cone programming problem as (LSOCP) satisfies the
strong duality property if both problems (LSOCP) and its dual (LSOCP∗) are feasible,
see Shapiro and Nemirovski [16], whereas this is no longer true for a linear semidefinite
programming problem, see [18, page 65].

2.2 An abstract framework

The aim of this section is to clarify some properties of optimization problems with con-
straints in product form, as well as relations between the dual solutions of (LSOCP)
and (LSDP). For this, we consider a general linear conic optimization problem with con-
straints in product form, i.e.,

Min
x∈IRn

c · x ; Ajx − bj ∈ Kj , j = 1, . . . , J, (COP)

where Kj are closed convex cones in IRqj . We set K := K1 × · · · × KJ , and define
A = (A1; · · · ;AJ ) as the matrix whose rows are those of A1 to AJ , and b := vec(b1, . . . , bJ)
so that (COP ) is equivalent to Minx∈IRn{c · x; Ax − b ∈ K}. The dual problem is

Max
y1,...,yJ

J
∑

j=1

bj · yj ;

J
∑

j=1

(Aj)⊤yj = c, yj ∈ K+
j , j = 1, . . . , J, (COP∗)

where the (positive) polar of a set C ⊂ IRm is defined as C+ := {y ∈ IRm; y · z ≥
0, for all z ∈ C}. If the primal and dual values are equal, a pair (x, y) of the primal and
dual problems is characterized by the optimality system

Ajx − bj ∈ Kj , yj ∈ K+
j , yj · (Ajx − bj) = 0, j = 1, . . . , J ; A⊤y = c. (COPOS)
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We denote by S(COPOS) the set of solutions of relations (COPOS). In the sequel we
introduce notions of componentwise strict feasibility and strict complementarity.

Definition 1. We say that strict primal (resp. dual) feasibility holds for j ∈ {1, . . . , J}
if there exists x ∈ F (COP ) such that Ajx − bj ∈ intKj (resp. y ∈ F (COP ∗) such that
yj ∈ intK+

j ).

Lemma 2. Let j be strictly primal (resp. dual) feasible. Then the set {yj ; y ∈ S(COP ∗)}
(resp. {Ajx − bj ;x ∈ S(COP )}) is bounded.

Proof. If j is strictly primal feasible, there exists ε > 0 such that s = Ax − b satisfies
sj + εB ⊂ Kj , or equivalently εB ⊂ sj − Kj . Let y ∈ S(COP ∗). Since yj ∈ K+

j , it

follows that ε‖yj‖ ≤ yj · sj . Using also yj′

· sj′

≥ 0, for all j′, we get

0 = x · (c − A⊤y) = c · x − y · Ax = c · x − b · y − y · s ≤ c · x − b · y − ε‖yj‖.

In other words, ε‖yj‖ ≤ c ·x− b · y = c ·x−val(COP ∗), which gives the desired estimate.
The proof for the dual statement is similar. ¥

One says (e.g., [6, Def. 4.74]) that the strict complementarity hypothesis holds for
problem (COP ) if there exists a pair (x, y) solution of the optimality system, such that
−y ∈ riNK(Ax−b), where NK is the normal cone of convex analysis. Since K is a closed
convex cone, we have for s ∈ K that

NK(s) = (−K+) ∩ s⊥, (7)

(where s⊥ denotes the set of all orthogonal vectors to s) and NK(s) = ∅ if s 6∈ K.
For problems with constraints in product form, it is worthwhile to introduce the

concept of componentwise strict complementarity hypothesis, which for each component
j means that there exists a pair (x, y) ∈ S(COPOS), such that −yj ∈ riNKj

(Ajx − bj).
We can extend and refine for this framework the notion of optimal partition, well

known for linear programming and monotone linear complementarity problems, see e.g.
[3, Section 18.2.4].

Lemma 3. If S(COPOS) is not empty, there exists a partition (B, N, R, T ) of {1, . . . , J}
such that, (i) The set B is the union of j such that there exists (x(j), y(j)) ∈ S(COPOS)
satisfying Ajx(j) − bj ∈ intKj, (ii) The set N is the union of j such that there exists
(x(j), y(j)) ∈ S(COPOS) satisfying yj(j) ∈ intK+

j , (iii) The set R is the union of j,

not belonging to B or N , such that there exists (x(j), y(j)) ∈ S(COPOS) with −yj(j) ∈
riNKj

(Ajx(j) − bj), and (iv) for all j ∈ T , every (x, y) ∈ S(COPOS) does not satisfy
strict complementarity for component j.

Proof. Let (B,N,R, T ) be defined as in the lemma; we have to check that this is a
partition. The definition of T implies that their union equals {1, . . . , J}, and by definition
of R and T , we have that (B ∪ N, R, T ) is a partition of {1, . . . , J}. It remains to
prove that B ∩ N = ∅. Since S(COPOS) is not empty, we know that S(COPOS) =
S(COP )×S(COP ∗). Therefore x̂ := |B|−1

∑

j∈B x(j) satisfy x̂ ∈ S(COP ). We see that

Aj x̂ − bj ∈ intKj , for all j ∈ B. Therefore any y ∈ S(COP ∗) is such that yj = 0, for all
j ∈ B. This proves that B ∩ N = ∅. ¥
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Remark 4. Note that, for monotone linear complementarity problems the optimal par-
tition is of the form (B, N, T ), since in that case a strictly complementary component
belongs either to B or N . Therefore the main novelty consists in introducing the set R.

Definition 5. Any pair (x, y) ∈ S(COPOS) satisfying the relations below is said to be
of maximal complementarity:

{

(i) Aix − bi ∈ intKi, ∀i ∈ B, (ii) yi ∈ intK+
i , ∀i ∈ N,

(iii) − yi ∈ riNKi
(Aix − bi), ∀i ∈ R.

(8)

Let x(j) and y(j) be as in lemma 3. We define

x̂ := (|B| + |R|)−1
∑

j∈B∪R

x(j); ŷ := (|N | + |R|))−1
∑

j∈N∪R

y(j).

Let us state some properties of the set of maximal complementarity solutions. We need
a preliminary lemma.

Lemma 6. Let K be a closed convex cone. Let si ∈ K, for i = 1, 2, −y1 ∈ NK(s1), and
−y2 ∈ riNK(s2). Given α ∈]0, 1[, set (s, y) := α(s1, y1)+(1−α)(s2, y2). If −y ∈ NK(s),
then −y ∈ riNK(s).

Proof. Since −NK(s) = K+ ∩ s⊥, we have that −y ∈ riNK(s) iff, for all z ∈ NK(s),
y ± εz ∈ K+ for small enough ε > 0. As K+ is a cone, y + εz ∈ K+ always holds.
Therefore we have to prove that for z ∈ NK(s), y − εz ∈ K+ for small enough ε > 0.
Using NK(s) = NK(s1)∩NK(s2), obtain z ∈ NK(s2), and hence, y2−ε′z ∈ K+ for some
ε′ > 0. Let ε := (1 − α)ε′. Then y − εz = αy1 + (1 − α)(y2 − ε′z) belongs to K+. The
conclusion follows. ¥

Lemma 7. (i) The pair (x̂, ŷ) is of maximal complementarity. (ii) Any pair (x̂, ŷ) ∈
riS(COPOS) (set equal to riS(COP ) × riS(COP ∗)) is of maximal complementarity.

Proof. (i) That Aj x̂ − bj ∈ intKj , for all j ∈ B, is a classical property. Similarly,
ŷj ∈ intK+

j , for all j ∈ N . Finally, that −ŷj ∈ riNKj
(Aj x̂ − bj), for all j ∈ R, is

consequence of lemma 6.
(ii) Let (x̂, ŷ) ∈ riS(COPOS), and (x̃, ỹ) ∈ S(COPOS) be of maximal complementarity.
Then there exists ε > 0 such that (x̂, ŷ)−ε(x̃, ỹ) ∈ S(COPOS). Set α = 1/(1+ε) ∈ (0, 1).
We may write

α(x̂, ŷ) = α[(x̂, ŷ) − ε(x̃, ỹ)] + (1 − α)(x̃, ỹ).

Similarly, setting ŝ := Ax̂ − b and s̃ := Ax̃ − b, we have that

α(ŝj , ŷj) = α[(ŝj , ŷj) − ε(s̃j , ỹj)] + (1 − α)(s̃j , ỹj).

We conclude by applying lemma 6 to the above relation. ¥

We now introduce another problem related to (COP ), having in mind the relations
between SOCP and SDP problems. Let K = K1 × · · · × KJ be another finite family of
closed convex cones in IRrj , j = 1 to J , and M j be rj × qj matrices such that

sj ∈ Kj iff M jsj ∈ Kj , j = 1, . . . , J. (9)
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Let M = (M1; · · · ; MJ) be the matrix whose rows are those of M j . Then (COP) is
equivalent to the linear conic problem

Min
x∈IRn

c · x ; M j(Ajx − bj) ∈ Kj , j = 1, . . . , J, (MCOP)

whose dual is

Max
z∈K+

J
∑

j=1

bj · M⊤zj ;

J
∑

j=1

(Aj)⊤(M j)⊤z = c; zj ∈ K+
j , j = 1, . . . , J. (MCOP∗)

If the primal and dual values are equal, a pair (x, y) of the primal and dual problems is
characterized by the optimality system

{

M j(Ajx − bj) ∈ Kj , zj ∈ K+
j , zj · M j(Ajx − bj) = 0, j = 1, . . . , J ;

∑J

j=1(A
j)⊤(M j)⊤zj = c.

(10)

We first state two lemmas that deal with properties that do not involve explicitly the
product form.

Lemma 8. The following relations hold: (i) MS(COP ) = S(MCOP ), M⊤K+ ⊂ K+,
and M⊤S(MCOP ∗) ⊂ S(COP ∗). (ii) If M⊤K+ is closed, then M⊤K+ = K+ and
M⊤S(MCOP ∗) = S(COP ∗). (iii) Closeness of M⊤K+ holds if M⊤ is coercive on K+,
i.e., if ‖M⊤z‖ ≥ c‖z‖ for all z ∈ K+. In that case, S(MCOP ∗) is bounded iff S(COP ∗)
is bounded.

Proof. (i) That MS(COP ) = S(MCOP ) is a consequence of (9). Since MK ⊂ K, any
z ∈ K+ is such that M⊤z ∈ K+. It follows from the expression of dual problems that
M⊤S(MCOP ∗) ⊂ S(COP ∗).
(ii) Assume now that K̂ := M⊤K+ is closed. Since we know that M⊤K+ ⊂ K+, we have
to prove the converse inclusion. If this is not true, then there exists y ∈ K+, y 6∈ K̂.
By the separation theorem there exists h ∈ K̂+ such that h⊤y < 0. That h ∈ K̂+ is
equivalent to Mh ∈ K, hence to h ∈ K; but since y ∈ K+, this contradicts h⊤y < 0.
This proves M⊤K+ ⊂ K+, from which M⊤S(MCOP ∗) = S(COP ∗) follows easily.
(iii) Finally, that the closeness of M⊤K+ is a consequence of coercivity of M⊤ is easy
and left to the reader, as well as the equivalence of boundedness of S(MCOP ∗) and
S(COP ∗). ¥

Lemma 9. Assume that M is one to one. Then the following holds. (i) The mapping M⊤

is onto, and M⊤ intK+ ⊂ intK+. (ii) If in addition M⊤K+ is closed, then M⊤ intK+ =
intK+ and M⊤ intS(MCOP ∗) = intS(COP ∗). (iii) Under the same assumptions as in
(ii) we also have that, for all s ∈ K, M⊤ ri(K+ ∩ (Ms)⊥) ⊂ ri(K+ ∩ s⊥).

Proof. (i) That the transposition of an injective mapping is surjective is well-known.
If z ∈ intK+, then there exists ε > 0 such that z + εB ⊂ K+ (where B denotes the
Euclidean ball). Since M⊤ is onto, M⊤B ⊃ αB for some α > 0, and hence, K+ ⊃
M⊤(z + εB) ⊃ M⊤z + εαB, which proves that M⊤z ∈ intK+.
(ii) Since M⊤ is onto, M⊤ intK+ is an open set. As M⊤K+ is closed, the closure of
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M⊤ intK+ is M⊤K+, and the latter is equal to K+ by lemma 8. This means that
M⊤ intK+ = intK+. The equality between M⊤ intS(MCOP ∗) and intS(COP ∗) is
proved in a similar manner.
(iii) We know that M⊤K+ = K+, and that for all x ∈ K+, z ·Mx = 0 iff (M⊤z) · x = 0.
It follows that M⊤(K+ ∩ (Ms)⊥) = (K+ ∩ s⊥).

Let z ∈ ri(K+ ∩ (Ms)⊥), and set y = M⊤z. Let y′ ∈ K+ ∩ s⊥. We know that there
exists z′ ∈ K+ ∩ (Ms)⊥ such that y′ = M⊤z′. Since z ∈ ri(K+ ∩ (Ms)⊥), there exists
ε′ > 0 such that z±εz′ ∈ K+∩ (Ms)⊥. It follows that y±εy′ ∈ K+∩s⊥. The conclusion
follows. ¥

We denote by (BCOP , NCOP , RCOP , TCOP ) and (BMCOP , NMCOP , RMCOP , TMCOP )
the optimal partitions of (COP ) and (MCOP ), respectively.

Lemma 10. Assume that M⊤K+ is closed, that M is one to one, and that

For all sj ∈ Kj ,M
jsj ∈ ∂Kj iff sj ∈ ∂Kj . (11)

Then the following relations hold between the optimal partitions of problems (COP ) and
(MCOP ):

BCOP = BMCOP , NCOP = NMCOP , RCOP ⊃ RMCOP , TCOP ⊂ TMCOP . (12)

In particular, the strict complementarity hypothesis holds for (COP ) if it holds for
(MCOP ).

Proof. That BCOP = BMCOP is an immediate consequence of (9) and (11). Applying
the first part of lemma 9(ii) to (Ki,Ki,M

i) we deduce that NCOP = NMCOP . Finally
that RCOP ⊃ RMCOP follows from lemma 9(iii) applied to (Ki,Ki,M

i). The relation
TCOP ⊂ TMCOP follows from the three others.

As a consequence, if TMCOP is empty then TCOP is also empty, which means that
the strict complementarity hypothesis holds for (COP ) if it holds for (MCOP ). ¥

2.3 Application of the abstract framework

We apply the results of the above section. Here Kj = Qmj+1, Kj := S
mj+1
+ , and

M jsj = Arw sj . Note that we can write

Arw(s) = (s0 − ‖s̄‖)Im+1 +

(

‖s̄‖ s̄⊤

s̄ ‖s̄‖Im

)

. (13)

This shows that for s ∈ Qm+1 \ {0}, Arw(s) is of rank m iff s ∈ ∂Qm+1, and of rank
m + 1 otherwise. In particular, Arw ∂Qm+1 ⊂ ∂Sm+1

+ , and Arw intQm+1 ⊂ intSm+1
+ .

Therefore (11) holds. Let us decompose any matrix Y ∈ Sm+1 as follows

Y =

(

Y00 Ȳ ⊤
0

Ȳ0 Ȳ

)

, (14)

where Y00 ∈ IR, Ȳ0 ∈ IRm and Ȳ ∈ Sm. We note that for any s ∈ IRm+1 we get

Arw(s) · Y = s0 Tr(Y ) + 2s̄ · Ȳ0. (15)
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It follows that Arw⊤ : Sm+1 → IRm+1 is nothing but

Arw⊤Y :=

(

Tr(Y )
2Ȳ0

)

. (16)

Consequently

M⊤(Y 1, . . . , Y J) = vec

((

Tr(Y 1)
2Ȳ 1

0

)

, . . . ,

(

Tr(Y J )
2Ȳ J

0

))

. (17)

Proposition 11. (i) We have that y is solution of (LSOCP ∗) iff there exists z solution
of (LSDP ∗) such that y = M⊤z. (ii) One of these dual problems has a bounded set of
solutions iff the other one has the same property. (iii) One of these dual problems has an
interior feasible point iff the other one has the same property. (iv) Problems (LSOCP )
and (LSDP ) have the same optimal partition.

Proof. Since Arw⊤ is coercive on Sm+1
+ , M⊤ is also coercive. By lemma 8, we have that

S(LSOCP ∗) = M⊤S(LSDP ∗) and S(LSDP ∗) is bounded iff S(LSOCP ∗) is bounded.
This proves points i) and (ii). Point (iii) is consequence of lemma 9(ii). We now prove
(iv). By lemma 10, BLSOCP = BLSDP , NLSOCP = NLSDP , and RLSOCP ⊃ RLSDP ;
it remains to prove that RLSOCP ⊂ RLSDP since (B, N,R, T ) is a partition. Let j ∈
RLSOCP . Then there is a pair (x, y) solution of (2) such that sj 6= 0 6= yj , and both sj and
yj belong to the boundary of Qmj+1. As observed after (13), this implies that Arw sj

is of rank mj , and hence, the corresponding set of normals is a half line (of rank one
semidefinite positive matrices, orthogonal to Arw sj). Since the corresponding multiplier
Y for problem (LSDP ) is such that 0 6= yj = Arw⊤ Y j , we have that Y j 6= 0, proving
that −Y j belongs to the relative interior of the normal cone (to the set of semidefinite
positive matrices) at Arw sj . ¥

The above analysis shows that strong duality holds for problem (LSOCP) iff it holds
for problem (LSDP). The next proposition states an interesting relation between the
solutions of (LSOCP∗) and (LSDP∗).

Proposition 12. Let the strong duality property hold for problem (LSOCP). Let I be
the set of indexes in 1, . . . , J such that there exists x∗ ∈ S(LSOCP) satisfying Ajx∗ 6= bj.
Then every Y ∈ S(LSDP∗) is such that, for some y ∈ S(LSOCP∗), the following relation
holds:

Y j = 0, if yj = 0; Y j = 1
2

(

‖ȳj‖ (ȳj)⊤

ȳj ȳj(ȳj)⊤/‖ȳj‖

)

, otherwise. (18)

Proof. Let j ∈ I, x∗ be the associated solution of (LSOCP), and let Y ∈ S(LSDP∗).
We claim that

Y j
00Ȳ

j − (Ȳ j
0 )(Ȳ j

0 )⊤ = 0, (19)

where Y j
00, Ȳ j and Ȳ j

0 are given by (14). Since Y j ∈ S
mj+1
+ , by Schur complement the

matrix Y j
00Ȳ

j − (Ȳ j
0 )(Ȳ j

0 )⊤ is positive semidefinite, and hence, it is enough to show that

Tr
(

Y j
00Ȳ

j − (Ȳ j
0 )(Ȳ j

0 )⊤
)

≤ 0. (20)
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By strong duality, any primal-dual solution (x∗, y∗) of (LSOCP) is solution of (2). Since
Ajx∗ 6= bj , the complementarity condition implies that any y ∈ S(LSOCP∗) satisfies
yj
0 = ‖ȳj‖. Taking yj = Arw⊤ Y j , we deduce Tr(Y j) = yj

0 = ‖ȳj‖ = 2‖Ȳ j
0 ‖, which

implies

Tr
(

Y j
00Ȳ

j − (Ȳ j
0 )(Ȳ j

0 )⊤
)

= Y j
00 Tr

(

Y j
)

− (Y j
00)

2 −‖Ȳ j
0 ‖

2 = −
(

Y j
00 − ‖Ȳ j

0 ‖
)2

≤ 0, (21)

proving (20) and therefore also (19). Combining (16) and (21), obtain

Y j
00 = ‖Ȳ j

0 ‖ = 1
2‖ȳ

j‖. (22)

Now, we distinguish two cases: a) If Y j
00 = 0, we obtain from (22) that Ȳ j

0 = ȳj = 0 and

then Tr(Y j) = yj
0 = 0. Hence, since Y j is positive semidefinite this implies Y j = 0. b)

Else if Y j
00 6= 0, we get directly from (19) and (22) that

Ȳ j = (Y j
00)

−1(Ȳ j
0 )(Ȳ j

0 )⊤ =
2

‖ȳj‖
(ȳj/2)(ȳj/2)⊤ = 1

2 (ȳj)(ȳj)⊤/‖ȳj‖,

which, combined with (22), allows to conclude the proof. ¥

3 Duality theory for nonlinear SOCP problems

The Lagrangian function associated with problem (SOCP) (stated in the introduction)
is L(x, y) := f(x) −

∑m

j=1 yj · gj(x), and the dual problem is

Max
y∈Q

inf
x

L(x, y), (DSOCP)

where we have set Q := ΠjQmj+1. If problems (SOCP) and (DSOCP) have the same fi-
nite value, then a pair (x, y) of primal and dual solution is characterized by the optimality
system

L(x, y) = min
x′

L(x′, y); gj(x) ∈ Qmj+1; yj ∈ Qmj+1; yj ◦ gj(x) = 0, j = 1, . . . , J.

(23)
The above statement is of special interest when problem (SOCP) is convex, i.e. (see e.g.
[6, Def 2.163]) if f(x) is convex, and the mapping g(x) is convex with respect to the set
Q′ := −Q. The latter means [6, Section 2.3.5] that

g(tx + (1 − t)x′) ºQ tg(x) + (1 − t)g(x′), for all x, x′ ∈ IRn and t ∈ [0, 1]. (24)

Since Q is in product form, this is equivalent to say that gj(x) is convex w.r.t. Qmj+1

for all j, that is, x → ‖ḡj(x)‖− gj
0(x) is convex for all j. This holds, for instance, if ḡj(x)

is affine and gj
0(x) is concave for all j.

The results of the previous sections have a natural extension to nonlinear second
order cone problems. Since, for smooth problems, Lagrange multipliers are solutions of
the dualization of the linearized problems we have that, for a nonconvex problem, there
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is a natural notion of optimal partition of constraints (B, N, R, T ). For convex nonlinear
second order cone problems, we can in the same way define the optimal partition of
constraints (B, N, R, T ), defined as follows. The set B is the union of j such that there
exists x ∈ S(SOCP ) satisfying gj

0(x) > ḡj(x), the set N is the union of j such that there

exists y ∈ S(DSOCP ) satisfying yj
0 > ‖ȳj‖, the set R is the union of j, such that there

exists x ∈ S(SOCP ) and y ∈ S(DSOCP ) satisfying gj(x) 6= 0 6= yj , and for all j ∈ T ,
x ∈ S(SOCP ) and y ∈ S(DSOCP ), either gj(x) or yj is equal to 0, or both are zero,
and neither gj(x) or yj belong to the interior of Qmj+.

Remark 13. For second order cone problems we can even partition T as T0, TP and TD,
with T0 the set of j for which, if x ∈ S(SOCP ) and y ∈ S(DSOCP ), then gj(x) = 0 = yj,
TP is the set of j ∈ T such that there exists x ∈ S(SOCP ) with ‖gj(x)‖ > 0, and TD

is the set of j ∈ T such that there exists y ∈ S(DSOCP ) with ‖yj‖ > 0. It is easy to
see that such a refined partition is invariant under the reformulation as a semidefinite
programming problem.

4 Nondegeneracy Condition and Reduction Approach

We recall the basic concepts of the reduction approach, see [6, Sec. 3.4.4].

Definition 14. Let X and Y be two finite dimensional spaces. Let K ⊆ X and K̂ ⊆ Y

be closed, convex sets. We say that the set K is reducible to K̂ at s∗ ∈ K if there exist
a neighborhood V of s∗ and a smooth mapping φ : V → Y such that: i) for all s ∈ V ,
s ∈ K iff φ(s) ∈ K̂, and ii) Dφ(s∗) : X → Y is onto. If the set K is reducible to K̂ at
all s∗ ∈ K, we just say that the set K is reducible to K̂. If in addition φ(s∗) = 0, and K̂
is a pointed cone, we say that K is cone reducible.

For our purposes, a smooth mapping will be a twice continuously differentiable (C2)
mapping. For problems with constraints in product form, i.e. K = K1 × · · · × KJ , the
reduction approach has the following obvious decomposition property: cone reducibility
holds whenever it holds for each set Kj , j = 1 to J .

Lemma 15. The second-order cone Qm+1 is cone reducible at every point ŝ ∈ Qm+1,
in the following way: (i) If ŝ = 0, take K̂ = Qm+1 and φ(s) = s, (ii) If ŝ0 > ‖¯̂s‖, take
K̂ = {0} and φ(s) = 0, (iii) If 0 6= s̄0 = ‖s̄‖, take K̂ = IR− and φ(s) = ‖s̄‖ − s0.

Definition 16. Consider an arbitrary problem (P) Minx∈X{f(x) ; g(x) ∈ K}, where f, g
are smooth functions, X, Y and Z are finite dimensional spaces and K ⊆ Y is a closed
convex cone, reducible to a closed convex cone K̂ ⊆ Z at g(x∗) ∈ K by a mapping φ. We
say that x∗ is nondegenerate (with respect to the reduction given by φ) if the derivative
DA(x∗) of the function A := φ ◦ g is onto.

This notion, introduced in [5], generalizes to problems with general constraints the
corresponding concept used in linear or nonlinear programming. Note that there are
other definitions of nondegeneracy, e.g. [1, Def. 18] and references therein. In the case
of second order cones all these definitions are essentially equivalent.

One of the main implication of nondegeneracy is stated in the next proposition, proved
in [6, Prop. 4.75].
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Proposition 17. Consider the problem (P) given in definition 16. Let x∗ be a solution
of (P) and suppose that the set K is reducible to a pointed closed convex cone K̂ at
the point g(x∗). If x∗ is nondegenerate then there exists a unique Lagrange multiplier
y∗ associated. Conversely, if the pair (x∗, y∗) is strictly complementarity, and y∗ is the
unique Lagrange multiplier associated with x∗, then x∗ is nondegenerate.

Proposition 18. Let x∗ be a solution of the second-order problem (LSOCP) with J = 1.
Set s∗ = Ax∗ − b and m = m1. Then, x∗ is nondegenerate if and only if one of the
following conditions holds: a) s∗ ∈ int Qm+1, b) s∗ = 0 and the matrix A is onto, c)

A⊤Rm(Ax∗ − b) 6= 0, where Rm :=

(

1 0⊤

0 −Im

)

.

Proof. The result is a direct consequence of lemma 15. ¥

We extend the above result to the case J > 1.

Proposition 19. Let x∗ be a solution of the second-order problem (LSOCP), and set
sj = Ajx∗ − bj. Set I∗ = {1 ≤ j ≤ J ; sj ∈ int Qmj+1}, Z∗ = {1 ≤ j ≤ J ; sj = 0}, and
B∗ = {1 ≤ j ≤ J ; sj ∈ ∂ Qmj+1 \ {0}}, where ∂ Qmj+1 is the boundary of Qmj+1. Then,
x∗ is nondegenerate if and only if the following conditions holds: The matrix A whose
rows are the union of those of Aj, for j ∈ Z∗, and the vectors rows (Ajx∗ − bj)⊤Rmj

Aj,
for j ∈ B∗, is onto.

Proof. This is once again a consequence of lemma 15. Indeed, for Aj(x) := φ(gj(x)) =
φ(Ajx − bj), where φ is the reduction map of lemma 15, its derivative at x∗ is given by

DAj(x∗) =
{

0, if j ∈ I∗; Aj , if j ∈ Z∗; −(sj
0)

−1(Ajx∗ − bj)⊤Rmj
Aj , if j ∈ B∗

}

.

So, the derivative DA(x∗) of function A := (A1; . . . ;AJ ) is onto iff the matrix A is onto.
¥

Remark 20. We recover the result of [1, Thm 20]. Obviously, if (A1; · · · ;AJ ) is onto,
then any feasible point is nondegenerate.

For problem (LSOCP), the Lagrange multipliers y∗ are the solutions of (LSOCP∗),
so, if x∗ is nondegenerate then proposition 17 says us that the dual problem (LSOCP∗)
has a unique solution y∗. On the other hand, we know from proposition 11 that any
Y ∗ ∈ S(LSDP∗) is such that y∗ = Arw⊤Y ∗ ∈ S(LSOCP∗). By proposition 12, if
Ajx∗ 6= bj for all j, uniqueness of solution of (LSOCP∗) implies uniqueness of the solution
of (LSDP∗). Yet it may happen that S(LSDP∗) is not a singleton, even when x∗ is
nondegenerate for problem (LSOCP), as the next example shows.

Example 21. Consider just one block J = 1. Let A = I3 ∈ IR3×3 the identity matrix,
m = 2, b = 0 and c = (1, 0, 0)⊤. It follows that x∗ = 0 is the unique solution of (LSOCP)
(and then of (LSDP)), which is actually nondegenerate, and y∗ = (1, 0, 0)⊤ is the unique
solution of (LSOCP∗). Using proposition 11(i) and (16), and since Ax∗ − b = 0, we
see that Y ∈ S(LSDP∗) iff Y º 0, Tr(Y ) = 1 and Ȳ0 = 0. For instance, y∗(y∗)⊤ and
Y ∗ = 1

3I3 belong to S(LSDP∗).
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5 Strongly Regular Solutions of SOCP

In this section we consider the problem (SOCP) defined in the introduction as follows:

Min
x∈IRn,sj∈IR

mj+1
f(x); gj(x) = sj ºQmj+1

0, j = 1, . . . , J, (SOCP)

where f : IRn → IR and gj : IRn → IRmj+1 are smooth functions (at least C2). The
first-order optimality system is

DxL(x∗, y) = Df(x∗) −
J

∑

j=1

Dgj(x∗)⊤yj = 0, (25a)

gj(x) = sj ºQmj+1
0, yj ºQmj+1

0, sj ◦ yj = 0, j = 1, . . . , J, (25b)

where L : IRn × IRm+1 → IR is the Lagrangian function of problem (SOCP)

L(x, y) := f(x) −
J

∑

j=1

yj · gj(x). (26)

If (x∗, y∗) satisfies (25), then x∗ will be called a critical or stationary point of (SOCP).
Let us recall the definition of strongly regular solutions [13]:

Definition 22. We say that (x∗, y∗) is a strongly regular solution of KKT-conditions
(25) if there exists a neighborhood V of (x∗, y∗) such that for every δ := (δ1, δ2) ∈
IRn × ΠJ

j=1IR
mj+1 close enough to 0, the “linearized” system:

D2
xxL(x∗, y∗)(x − x∗) − Dg(x∗)⊤(y − y∗) = δ1, (27a)

g(x∗) ◦ y + Dg(x∗)(x − x∗) ◦ y = δ2 ◦ y, (27b)

g(x∗) + Dg(x∗)(x − x∗) − δ2 ºQ 0, y ºQ 0, (27c)

has a unique solution (x, y) = (x∗(δ), y∗(δ)) in V , which is a Lipschitz continuous map
of δ.

It can be shown that the strong regularity condition implies Robinson’s constraint
qualification condition:

There exists h∗ ∈ IRn such that g(x∗) + Dg(x∗)h∗ ∈ intQ, (28)

which coincides with the Slater (or primal strict feasibility) condition for linear problem
(LSOCP). This condition is discussed in [6, Section 2.3.4].

In this section we characterize the strong regularity in the context of problem (SOCP)
by using second order optimality conditions. This characterization is a consequence of a
well developed theory in a general conic optimization framework given by problem (P )
stated in definition 16. Note that the strong regularity condition (definition 22) can be
written in this general framework as

D2
xxL(x∗, y∗)(x − x∗) − Dg(x∗)⊤(y − y∗) = δ1, (29a)

(g(x∗) + Dg(x∗)(x − x∗) − δ2) · y = 0, (29b)

g(x∗) + Dg(x∗)(x − x∗) − δ2 ∈ K, y ∈ K−. (29c)
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In order to establish our main result we will recall some key notions and theorems. For
instance, a useful definition involved in this section is the following uniform second order
growth condition [12]. For this, we define a family of perturbation of (P), denoted (Pu),
as follows

Min
x∈X

{f(x, u) ; g(x, u) ∈ K}, (30)

where X, Y and U are finite dimensional spaces, u ∈ U (perturbation space) is the
perturbation parameter and the functions f(x, u) : X×U → IR and g(x, u) : X×U → Y are
at least twice continuously differentiable and satisfy f(·, 0) := f(·) as well as g(·, 0) := g(·).

Definition 23. Let x∗ be a stationary (or critical) point of problem (P). It is said that the
uniform second order growth condition holds at x∗ if there exist α > 0 and a neighborhood
N of x∗ such that for any u ∈ U (perturbation space) close enough to 0 and any stationary
(or critical) point x∗(u) ∈ N of the perturbed problem (Pu), we have that

f(x, u) ≥ f(x∗(u), u) + α‖x − x∗(u)‖2, ∀x ∈ N , g(x, u) ∈ K. (31)

We say that the second order growth condition holds at x∗ if (31) holds for problem
(P), that is, there exist α > 0 and a neighborhood N of x∗ such that condition (31) is
satisfied at u = 0 and x∗(0) = x∗.

We need the next result, obtained in [6, Th. 5.24], that states a first characterization
which is valid in a general context.

Theorem 24. Let x∗ be a local solution of problem (P) and y∗ its corresponding Lagrange
multiplier. Suppose that K is reducible to a pointed closed convex cone K̂ ⊆ Z at the point
g(x∗). Then (x∗, y∗) is a strongly regular solution of the Karush-Kuhn-Tucker conditions
if and only if x∗ is nondegenerate (definition 16) and the uniform second order growth
condition holds at x∗.

Theorem 24 means that we can completely characterize the strong regularity condition
by giving sufficient and necessary conditions to obtain the uniform second order growth
condition, under a nondegeneracy hypothesis. Unfortunately, such a characterization (in
terms of derivatives of data at the nominal point) is known only in very specific examples
as for nonlinear programming problems with C2 data, see e.g. Bonnans and Sulem [7]
and Dontchev and Rockafellar [9] and their references. For conic optimization problems,
such a characterization is not known. In fact the (non uniform) second order growth
condition itself can be characterized essentially in two situations. The first is when the
cone is second order regular, see Bonnans, Cominetti and Shapiro [2], and the second is
when reduction to a pointed cone holds. We will apply this second approach later in this
section. Let us denote by Λ(x∗) the set of Lagrange multiplier associated with x∗ for
problem (P), i.e., y∗ ∈ Λ(x∗) iff DxL(x∗, y∗) = 0 and −y∗ ∈ NK(g(x∗)) (the normal cone
to K at g(x∗)), where L(x, y) := f(x) − y · g(x) is the Lagrangian function of problem
(P). We define the tangent cone to the set K ⊆ Y at the point y ∈ K as

TK(s) := {d ∈ Y : s + td + o(t) ∈ K, ∀t > 0}, (32)

and the critical directions cone at x∗ for problem (P) as follows

C(x∗) := Df(x∗)⊥ ∩ Dg(x∗)−1TK(g(x∗)) (33)
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or equivalently, if Λ(x∗) is not empty, say contains some y∗:

C(x∗) := {h ∈ X : Dg(x∗)h ∈ TK(g(x∗)) ∩ (y∗)⊥}.

Lemma 25. Consider the second order cone Q := Qm+1 and let s ∈ Q. Then,

TQ(s) =







IRm+1, s ∈ intQ,
Q, s = 0,
d ∈ IRm+1 : d̄ · s̄ − s0d0 ≤ 0, s ∈ ∂Q \ {0}.







(34)

Proof. The cases when s ∈ intQ and s = 0 follow directly from the definition of TQ(s)
and the fact that Q is a cone. Suppose then that s ∈ ∂Q \ {0}, that is, s0 = ‖s̄‖ 6= 0.

Since the set Q can be written in the form Q = {s ∈ IRm+1 : φ(s) ≤ 0}, where
φ(s) := ‖s̄‖ − s0 is a convex differentiable function at all s such that s̄ 6= 0, by [6, Prop.
2.61] the tangent cone TQ(s) is given by

TQ(s) = {d ∈ IRm+1 : φ′(s; d) ≤ 0}.

Therefore, we conclude by noting that the directional derivative φ′(s; d) when s̄ 6= 0 is
equal to φ′(s; d) = Dφ(s) · d = s̄ · d̄/‖s̄‖ − d0, and using 0 6= s0 = ‖s̄‖. ¥

Corollary 26. Let x∗ be a stationary (or critical) point of problem (SOCP) and y ∈
Λ(x∗). Given h ∈ IRn, denote dj(h) := Dgj(x∗)h, as well as sj = gj(x∗). Then, the
critical directions cone C(x∗) is given by

C(x∗) =























h ∈ IRn : for all j = 1, . . . , J,
dj(h) ∈ TQmj+1

(sj), yj = 0,

dj(h) = 0, yj ∈ intQmj+1,

dj(h) ∈ IR+(yj
0,−ȳj), yj ∈ ∂Qmj+1 \ {0}, sj = 0,

dj(h) · yj = 0, yj , sj ∈ ∂Qmj+1 \ {0}.

(35)

Proof. Since the constraints are in product form, the critical cone has the following
decomposition property:

C(x∗) =
{

h ∈ IRn; dj(h) ∈ TQmj+1
(sj), dj(h) · yj = 0, j = 1, . . . , J

}

. (36)

It suffices to establish the equivalence between the relations in (35) and (36) concerning a
given j. The case when yj = 0 is obvious. If yj ∈ intQmj+1, then sj = 0 (by (25b)), and
hence, TQmj+1

(sj) = Qmj+1, concluding that TQmj+1
(sj)∩ (yj)⊥ = Qmj+1 ∩ (yj)⊥ = {0}

and the result follows.
Suppose now that yj ∈ ∂Qmj+1 \ {0}. If sj = 0 then, TQmj+1

(sj) = Qmj+1 again.

Using (3), we obtain after elementary computations that Qmj+1 ∩ (yj)⊥ is the set of dj

satisfying dj
0(h) = ‖d̄j(h)‖ as well as d̄j(h) ∈ IR−ȳj . If sj 6= 0, we obtain by similar

computations that TQmj+1
(sj) ∩ (yj)⊥ is the set of dj satisfying d̄j(h) · s̄j − sj

0d
j
0(h) = 0.

The conclusion follows. ¥
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For the second-order analysis we need the notion of (outer) second order tangent set
at s ∈ K in the direction d ∈ TK(s), defined as follows

T 2
K(s, d) := {w ∈ Y ; ∃tn ↓ 0 s.t. s + tnd + 1

2 t2nw + o(t2n) ∈ K}. (37)

Let us characterize this set when K = Q.

Lemma 27. Let s ∈ Q = Qm+1, and d ∈ TQ(s). Then,

T 2
Q(s, d) =







IRm+1, d ∈ intTQ(s),
TQ(d), s = 0,
{w ∈ IRm+1 : w̄ · s̄ − w0s0 ≤ d2

0 − ‖d̄‖2}, otherwise.
(38)

Note that the last case in (38) is when s ∈ ∂Q \ {0} and d ∈ ∂TQ(s), the latter being,
by lemma 25, equivalent to d̄ · s̄ − s0d0 = 0.
Proof. The first two cases follow directly from the definitions of second order tangent
set, and the fact that Q is a cone. Suppose now that s ∈ ∂Q \ {0} and d ∈ ∂TQ(s). As
in lemma 25, since Q has the form Q = {s ∈ IRm+1 : φ(s) ≤ 0}, where φ(s) := ‖s̄‖ − s0,
by [6, Prop. 3.30], the set T 2

Q(s, d) is given by

T 2
Q(s, d) = {d ∈ IRm+1 : φ′′(s; d, w) ≤ 0},

where

φ′′(s; d,w) := lim
t↓0

φ(s + td + 1
2 t2w) − φ(s) − tφ′(s; d)

1
2 t2

is the (parabolic) second order directional derivative of φ. But φ is twice differentiable at
all s such that s̄ 6= 0 which implies that (e.g. [6, Eq. 2.81])

φ′′(s; d,w) = Dφ(s)w + D2φ(s)(d, d) =
s̄ · w̄

‖s̄‖
− w0 +

‖d̄‖2

‖s̄‖
−

(d̄ · s̄)2

‖s̄‖3
, (39)

and the desired result follows using s0 = ‖s̄‖ and d0s0 = d̄·s̄ (the latter being consequence
of lemma 25 and the fact that d ∈ ∂TQ(s)). ¥

Roughly speaking, the characterization of the second order growth condition (defi-
nition 23), established in [2, Th. 3.2], assumes a notion of set regularity on K, called
second order regularity, that holds under the hypothesis that the set K is reducible to a
cone K̂ (e.g. [6, Prop.3.136]). The result presented below is a simplified version of this
characterization. (cf. [6, Th. 3.137].)

Theorem 28. Let x∗ be a feasible point of problem (P) satisfying Robinson’s constraint
qualification condition

0 ∈ int{ g(x∗) + Dg(x∗)X − K} (40)

Suppose that the set K is reducible to a closed convex cone K̂ at the point g(x∗).
Then, the second order growth condition holds at x∗ iff the next second order condition
holds:

sup
y∗∈Λ(x∗)

D2
xxL(x∗, y∗)(h, h) − σ(−y∗; T 2) > 0, ∀h ∈ C(x∗) \ {0}, (41)

where σ(· ; T 2) denotes the support function of the set T 2 := T 2
K(g(x∗), Dg(x∗)h).
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In the case of problem (SOCP) (i.e., K = Q), the set T 2 := T 2
Q(g(x∗), Dg(x∗)h)

can be written in the product form T 2 = T 2
1 × . . . × T 2

J such that each T 2
j is given by

formula (38) where Q = Qmj+1, s = s∗j and d = dj(h). We have set s∗ := g(x∗) and
d(h) := Dg(x∗)h. Since −y∗ ∈ NQ(s∗)∩d⊥, we always have that y∗·w ≥ 0, for all w ∈ T 2.
So, formula (38) implies that 0 ∈ T 2 and hence σ(−y∗; T 2) = 0, except in the case when
s∗j ∈ ∂Qmj+1 \ {0} and dj(h) ∈ ∂TQmj+1

(s∗j) \ {0}, for some index j ∈ {1, . . . , J}.

Dealing with the latter case means, thanks to (38), to maximize −(y0w0 + ȳ · w̄) over
the set of w satisfying w̄ · s̄ − w0s0 ≤ d2

0 − ‖d̄‖2, where we have considered the notation
y = y∗j , and s and d given above, with j given by the case. Since ȳ = −(y0/s0)s̄, we
have that −(y0w0 + ȳ · w̄) = (y0/s0)(w̄ · s̄ − w0s0). It follows that

σ(−y∗; T 2) =
∑

j∈J

(y∗j
0 /s∗j

0 )(dj(h)20 − ‖d̄j(h)‖2), (42)

where J is the set of index j s.t. s∗j ∈ ∂Qmj+1 \{0} and dj(h) ∈ ∂TQmj+1
(s∗j)\{0}. On

the other hand, we know that Q is reducible, (cf. lemma 15), so we can apply theorem
28 to problem (SOCP) and state the following theorem.

Theorem 29. Let x∗ be a feasible point of the problem (SOCP) satisfying Robinson’s
constraint qualification condition (28). Then, the second order growth condition holds at
x∗ iff the following second order condition holds:

sup
y∈Λ(x∗)

D2
xxL(x∗, y)(h, h) + h⊤H(x∗, y)h > 0, ∀h ∈ C(x∗) \ {0}, (43)

where the critical directions cone C(x∗) is established in (35), and the n × n matrix

H(x∗, y) is defined by H(x∗, y) =
∑J

j=1 H
j(x∗, yj), where for sj = gj(x∗), j = 1 to J ,

Hj(x∗, yj) := −
yj
0

sj
0

Dgj(x∗)⊤Rmj
Dgj(x∗) = −

yj
0

sj
0

Dgj(x∗)⊤
(

1 0⊤

0 −Imj

)

Dgj(x∗), (44)

if sj ∈ ∂Qmj+1 \ {0}, and Hj(x∗, yj) := 0 otherwise.

In the next theorem we give a characterization of the strong regularity condition.

Theorem 30. Let x∗ be a local solution of problem (SOCP) and y∗ its corresponding
Lagrange multiplier. Then, (x∗, y∗) is a strongly regular solution of optimality conditions
(25) iff x∗ is nondegenerate (definition 16) and the next second order condition holds at
x∗:

Q0(h) := D2
xxL(x∗, y∗)(h, h) + h⊤H(x∗, y∗)h > 0, ∀h ∈ Sp(C(x∗)) \ {0}. (45)

Proof. a) We establish some preliminary results. By theorem 24 we know that (x∗, y∗)
is a strongly regular solution of (25) iff x∗ is nondegenerate and the uniform growth
condition holds at x∗ for problem (SOCP). So, under the nondegeneracy hypothesis,
we just need to prove that second order condition (45) is equivalent to the uniform
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growth condition. It is not difficult to check that, under this hypothesis, the linear space
generated by the critical cone has the following expression:

Sp(C(x∗)) =















h ∈ IRn : for all j = 1, . . . , J,
dj(h) = 0, yj ∈ intQmj+1,

dj(h) ∈ IR(yj
0,−ȳj), yj ∈ ∂Qmj+1 \ {0}, sj = 0,

dj(h) · yj = 0, yj ∈ ∂Qmj+1 \ {0}, sj ∈ ∂Qmj+1 \ {0},

(46)

where throughout this proof we will denote by yj the j-th vector block of y∗. (In partic-
ular, there is no condition on dj(h) if yj = 0.)
b) Let us prove that the uniform growth condition implies (45). Consider the vector
space E defined by

E :=







h ∈ IRn : for all j = 1, . . . , J,
dj(h) = 0, yj ∈ intQmj+1,
dj(h) · yj = 0, yj ∈ ∂Qmj+1 \ {0}.

(47)

(Again, there is no restriction of dj(h) if yj = 0.) We have that Sp(C(x∗)) ⊂ E. The key
idea is to consider a perturbed version of problem (SOCP) in such a way that x∗ is still
a local solution with the same Lagrange multiplier y∗, but with a bigger critical cone,
equal to E. This perturbed problem is of the form

Min
x∈IRn

f(x) ; gj(x, u) := gj(x) + uδj ºQmj+1
0, j = 1, . . . , J, (SOCPu)

where for all j, ej
1 denotes the first element of the natural basis of IRmj+1, u > 0 is the

perturbation parameter, and

δj =







ej
1 if yj = 0,

(yj
0,−ȳj) if sj := gj(x∗) = 0, yj ∈ ∂Qmj+1 \ {0},

0 otherwise.

(48)

This means that, if yj = 0, the constraint gj(x) ºQmj+1
0 is made inactive (in a neigh-

borhood of x∗), and if sj = 0 and yj ∈ ∂Qmj+1 \{0}, then the constraint gj(x) ºQmj+1
0

is still active, but at a point different from 0 where the set of tangent directions to Qmj+1

is a half space. The point (x∗, y∗) is still solution of the optimality system of (SOCPu).
It is easily seen that the expression of the critical cone for problem (SOCPu) at the point
(x∗, y∗) is given by (47).

Define
I := {1 ≤ j ≤ J ; gj(x∗) = 0, yj ∈ ∂Qmj+1 \ {0}}.

Let H(x∗, yj , u) denote the matrices in the expression of second order conditions, for the
perturbed problem. We have that H(x∗, yj , u) = H(x∗, yj) for all j 6∈ I, whereas for
j ∈ I we obtain

Hj(x∗, yj , u) =
1

u
Ĥj(x∗, yj), where Ĥj(x∗, yj) := −Dgj(x∗)⊤

(

1 0⊤

0 −Imj

)

Dgj(x∗).

(49)
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Set
Q1(h) :=

∑

j∈I

h⊤Ĥj(x∗, yj)h =
∑

j∈I

(

‖d̄j(h)‖2 − (dj(h)0)
2
)

. (50)

Note that, if h ∈ E, then since dj(h) · yj = 0 and yj
0 = ‖ȳj‖:

|dj(h)0| = |d̄j(h) · ȳj |/yj
0 ≤ ‖d̄j(h)‖, (51)

with equality iff dj(h) ∈ IR(yj
0,−ȳj). Combining with (50), we obtain that, for all h ∈ E,

Q1(h) ≥ 0, and that Q1(h) = 0 iff h ∈ Sp(C(x∗)).
We see that the uniform second-order growth for the perturbed problem implies

Q0(h) +
1

u
Q1(h) > 0 for all h ∈ E \ {0}, (52)

for u small enough. This implies that Q0(h) > 0, for all h ∈ E such that Q1(h) = 0.
Therefore, the uniform second-order growth condition implies (45).
c) Conversely, assume that the second order condition (45) holds. If the uniform second
order growth condition at x∗ is not satisfied, then there exists a family of perturbed
functions f(x, u) and g(x, u) such that, for some sequences un → 0, there exist (xn, yn)
solution of the optimality system (25) of the perturbed problem satisfying xn → x∗,
hn → 0 in IRn, with hn 6= 0, such that xn +hn is a feasible point of (Pun

) (cf. (30)) (that
is, g(xn + hn, un) ∈ Q) and they also satisfy that

f(xn + hn, un) ≤ f(xn, un) + o(‖hn‖
2). (53)

The nondegeneracy condition being stable under small perturbations, for large enough n,
there exists a unique Lagrange multiplier yn associated with each stationary (or critical
primal) point xn of (Pun

), and since xn → x∗, we have that yn → y∗.
Extracting if necessary a subsequence, we may assume that hn/‖hn‖ converges to

some h∗ 6= 0. Let us check that h∗ ∈ Sp(C(x̄)). Since gj(xn + hn, un) ∈ Qmj+1 we have
that

gj(xn + hn, un) = gj(xn, un) + Dxgj(xn, un)hn + o(‖hn‖) ºQmj+1
0. (54)

Since gj(xn, un) and (yn)j are orthogonal this implies

(yn)j · Dxgj(xn, un)hn + o(‖hn‖) ≥ 0. (55)

Dividing by ‖hn‖, setting dj(h∗) := Dgj(x∗)h∗, and passing to the limit, obtain yj ·
Dgj(x∗)h∗ ≥ 0 for all j. Passing to the limit in (53) and combining with (25a), we obtain

0 ≥ ∇f(x∗) · h∗ = y · Dg(x∗)h∗ =
∑J

j=1 yj · Dgj(x∗)h∗. We have proved that

dj(h∗) · yj = 0, j = 1, . . . , J. (56)

Consider the case when yj ∈ intQmj+1. Since yj
n → yj , we have that gj(xn, un) = 0 for

large enough n. Let ε > 0 be such that yj + 2εB ⊂ Qmj+1. Then for all unit vector z,
yj

n + εz ∈ Qmj+1 for large enough n. Computing the scalar product of (54) by yj
n + εz,
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and passing to the limit as was done before, obtain (yj + εz) ·Dgj(x∗)h∗ ≥ 0. Using (56),
since this is true for any unit norm z, we get

dj(h∗) = 0, for all j; yj ∈ intQmj+1. (57)

Now in the case when yj ∈ ∂Qmj+1 \ {0} and gj(x∗) = 0, we have that gj(xn, un) ∈
∂Qmj+1 for all n large enough (otherwise we obtain from complementarity condition
that yj

n = 0 for some sequence yj
n → yj 6= 0). Let us set gj

n := gj(xn, un) and dj
n :=

Dxgj(xn, un)hn. Of course dj
n → dj(h∗) := Dgj(x∗)h∗. By the very definition of Qmj+1,

condition (54) can be equivalently written as follows

(gj
n)0 + (dj

n)0 ≥ ‖ḡj
n + d̄j

n‖ + o(‖hn‖).

Since gn ∈ ∂Qmj+1, that is (gj
n)0 = ‖ḡj

n‖, we obtain that

(dj
n)0 ≥ ‖ḡj

n + d̄j
n‖ − ‖ḡj

n‖ + o(‖hn‖) ≥ ‖d̄j
n‖ + o(‖hn‖).

Hence, by dividing by ‖hn‖ and tending n → +∞, we deduce that dj(h∗) ∈ Qmj+1 =
TQmj+1

(gj(x∗)). This together with relations (56)-(57) proves that h∗ ∈ Sp(C(x̄)).

We now use the same reduction argument as in lemma 15. It suffices for indexes in

I := {1 ≤ j ≤ J : gj(x∗) 6= 0 6= yj}. (58)

to change the formulation of corresponding constraint of the perturbed problem, that
is, gj(x, u) ºQmj+1

0, into φ(gj(x, u)) ≤ 0, where φ(s) := ‖s̄‖ − s0. The corresponding

component of Lagrange multiplier is yj
0 (see the discussion of relation between Lagrange

multipliers before and after reduction in [6, Section 3.4.4], especially equation (3.267)).
We have that, for each feasible point of the perturbed problem (Pun

), and denoting by
yn the Lagrange multiplier associated with xn,

∑

j 6∈I

(yn)j · gj(x, u) +
∑

j∈I

(yn)j
0φ(gj(x, u)) ≥ 0. (59)

Writing this inequality at point (xn +hn, un) and noticing that equality holds at (xn, un)
in view of the complementarity conditions, obtain

∑

j 6∈I

(yn)j · (gj(xn + hn, un) − gj(xn, un))

+
∑

j∈I

(yn)j
0(φ(gj(xn + hn, un) − φ(gj(xn, un)) ≥ 0.

(60)

Adding it to (53), in order to get a difference of Lagrangian functions, and after a second-
order expansion (using the fact that the derivative of Lagrangian function w.r.t. x, at
(xn, un), is zero), it follows that

D2
xxf(xn, un)(hn, hn) −

∑

j 6∈I

(yn)j · D2
xxg(xn, un)(hn, hn)

−
∑

j∈I

(yn)j
0D

2
xxφ(gj(xn, un))(dj

n(hn), dj
n(hn)) ≤ o(‖hn‖

2),
(61)
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where dj
n(hn) := Dxgj(xn, un)hn. Using the expression of the expansion of φ, computed

in (39), and passing to the limit in n, obtain Q0(h
∗) ≤ 0. Since h∗ ∈ Sp(C(x∗)) \ {0},

this contradicts (45). The conclusion follows. ¥

Remark 31. A related result is [6, Thm 5.25], where it is proved that a necessary con-
dition for uniform quadratic growth, assuming uniqueness of the Lagrange multiplier, is
that the Hessian of Lagrangian function is positive definite over the space spanned by ra-
dial critical directions. By contrast, our result is a characterization involving additional
terms in the quadratic form, and space spanned by all critical directions. There is also a
second part in [6, Thm 5.25] that involves the space spanned by all critical directions, but
under a certain “strong extended polyhedricity condition” that is not satisfied here.
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