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PERTURBATION ANALYSIS OF THE LIMIT CYCLE OF THE 
FREE VAN DER POL EQUATION* 

MOHAMMAD B. DADFARt, JAMES GEERt AND CARL M. ANDERSEN? 

Abstract. A power series expansion in the damping parameter E of the limit cycle U(t; E) of the free 
van der Pol equation Ul + E( U2 _1) U + U =0 is constructed and analyzed. Coefficients in the expansion 
are computed up to 0(E24) in exact rational arithmetic using the symbolic manipulation system MACSYMA 
and up to O(E163) using a FORTRAN program. The series is analyzed using Pade approximants. The 
convergence of the series for the maximum amplitude of the limit cycle is limited by two pairs of complex 
conjugate singularities in the complex e-plane. These singularities are the same as those which limit the 
convergence of the series expansion of the frequency of the limit cycle. A new expansion parameter is 
introduced which maps these singularities to infinity and leads to a new expansion for the amplitude which 
converges for all real values of E. Amplitudes computed from this transformed series agree very well with 
reported numerical and asymptotic results. For the limit cycle itself, convergence of the series expansion is 
limited by three pairs of complex conjugate branch point singularities. Two pairs remain fixed throughout 
the cycle and correspond to the singularities found in the maximum amplitude series, while the third pair 
moves in the E-plane as a function of t from one of the fixed pairs to the other. This moving pair of 
singularities dominate the fixed singularities for certain ranges of t and hence account for a nonuniformity 
in the convergence of the series. The limit cycle series is transformed using a new expansion parameter, 
which leads to a new series that converges for larger values of E. 

1. Introduction. We wish to study the limit cycle U(t; s) of the free van der Pol 
equation 

(1.1) U+E(U2_-1) +U=O0 

where the dots represent differentiation with respect to the independent variable, t. 
We shall do this by constructing and analyzing the power series expansion of U in the 
damping parameter E. We first wish to determine some of the analytical structure of 
U as a function of E and, in particular, to determine the locations of the singularities 
of U in the complex E-plane which are closest to the origin and, hence, limit the radius 
of convergence of the power series solution. Once the locations of these singularities 
have been determined, a new expansion of U can be constructed which will converge 
for larger values of E. 

This work is a companion paper to some- work reported previously by Andersen 
and Geer [1] (henceforth referred to as I) on the power series expansions of the 
frequency and period of the limit cycle of the van der Pol equation. In I, the power 
series expansions of the frequency v of the limit cycle U, as well as U itself, were 

* Received by the editors April 26, 1983, and in revised form September 29, 1983. Some of the 
computation for this work was performed on the MACSYMA symbolic manipulation system developed at 
the Laboratory for Computer Science, Massachusetts Institute of Technology, and supported in part by the 
National Aeronautics and Space Administration under grant NSG 1323, by the United States Department 
of Energy under grant ET-78-C-02-4687, by the Office of Naval Research under grant N00014-77-C-0641, 
and by the U.S. Air Force under grant F49620-79-C-020. 

t Department of Computer Science, Bowling Green State University, Bowling Green, Ohio 43403. 
t Department of Systems Science, Thomas J. Watson School of Engineering, Applied Science and 

Technology, State University of New York, Binghamton, New York 13901. The research of this author 
was supported in part by the National Aeronautics and Space Administration under NASA contract 
NAS1-14101 while the author was in residence at the Institute for Computer Applications in Science and 
Engineering, NASA Langley Research Center, Hampton, Virginia 23665. 

? Department of Mathematics and Computer Science, College of William and Mary, Williamsburg, 
Virginia 23875. The research of this author was supported by NASA Langley Research Center, Hampton, 
Virginia 23665. 
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882 M. B. DADFAR, J. GEER AND C. M. ANDERSEN 

computed up to a high number of terms. However, in I, only the series expansion of 
v was analyzed in detail. In particular, it was found that the convergence of the series 
for v was limited by a pair of complex conjugate branch point singularities in the 
complex E2-plane. These branch points, which were located at 2= R e iP, with 
R -3.42 and 8- 1.7925, appear to be the only singularities of v in the finite part of 
the E2-plane. Hence, when a new expansion parameter was introduced which mapped 
these singularities to infinity, the resulting expansion converged for all real values of 
E. The values of the period computed from a completed form of this new expansion 
compared very well with reported numerical results, as well as with the asymptotic 
formula for the period valid for large values of E. 

In ? 2 below, the problem of determining the limit cycle is formulated and the 
method we used to compute the power series expansions of v and U is described 
briefly. In ? 3, the series for the maximum amplitude of U, corresponding to U at 
t= 0, is analyzed using Pade approximants. It is found that the convergence of the 
series is limited by the presence of two pairs of complex conjugate branch point 
singularities in the complex E-plane, which correspond to the square roots of the 
singularities in the E2-plane found for the frequency series. One pair of these sin- 
gularities lies in the first and fourth quadrant, while the other pair lies in the second 
and third quadrant. A new expansion parameter is introduced in ? 4 which leads to 
an expansion for the amplitude that converges for all real values of E. Values of the 
amplitude computed from this series, and a modified version of it, are computed and 
found to compare very well with reported numerical results and also with values 
computed from the asymptotic formula for the amplitude valid for large E. 

The limit cycle itself is analyzed in ? 5 using Pade approximants for values of t 
between 0 and T, where T is the period of the limit cycle. We now find that there are 
three pairs of complex conjugate branch point singularities which lie about equidistant 
from the origin. For all values of t, two pairs of these singularities remain fixed in the 
E-plane at the same locations as the singularities for t =0 (i.e., for the amplitude 
series). At t = 0, the location of the third pair of singularities coincides with the location 
of the fixed singularities in the second and third quadrants. However, as t increases 
from zero, these singularities begin to move away from the fixed locations in the second 
and third quadrants toward the fixed locations in the first and fourth quadrants. In 
particular, they cross the imaginary axis in the complex E-plane when t = T/4 and 
arrive at the fixed locations in the first and fourth quadrants at t = T/2. This motion 
of the singularities repeats itself for T/2 t t-T Knowledge of the location of these 
singularities suggests a new expansion parameter and a transformation of the original 
series which will converge for larger values of E. This is done in ? 6, while our results 
are discussed in ? 7. 

The work described here is significant in that it is the first time (to our knowledge) 
that the perturbation expansion of the time or spacially dependent (i.e. primitive) 
solution to a nonlinear problem (u(t, E) for our case) has been analyzed in detail, 
instead of the expansion of a scalar or "constant" quantity associated with the problem 
(such as the frequency, for our case). This stands in contrast to much of the earlier 
work in this area. For example, the many problems cited by Van Dyke [6] examine 
only the series expansion of a "constant" associated with a problem, such as the drag 
on a sphere, and not the velocity field itself. In such problems, it is of interest to know, 
for example, if the primitive solution has the same radius of convergence in E as the 
scalar quantity. Also, one would like to know whether the singularities which limit the 
convergence of the scalar series are the same as those which limit the convergence of 
the primitive solution. In the problem we analyze here, we find that there is a unique 
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ANALYSIS OF THE LIMIT CYCLE OF THE FREE VAN DER POL EQUATION 883 

singularity (which we call the "moving" singularity) that limits the convergence of the 
perturbation expansion of the solution u(t, E) and this singularity is not present in 
the series expansion of the scalar quantity (i.e. the frequency expansion, which we 
analyzed in our first paper). In fact, in ? 5, we show that this "moving" singularity 
accounts for a nonuniformity in the convergence of the u-series, which cannot be 
explained in terms of fixed singularities alone. 

2. Power series expansion in E. We construct the power series expansion of the 
limit cycle of the free van der Pol equation (1.1) by first making the change of variables 

(2.1) x =t, 

where v = V(E) = 2Xr/ T(E) is the (unknown) frequency of the limit cycle and T(E) is 
its (unknown) period. We then let 

(2.2) u(x; E) = U(t; E), 

where u is now periodic in x with period 2X". In terms of u, (1.1) becomes 

(2.3) + r- + 

where the dots now denote differentiation with respect to x. In addition, we impose 
the phase condition that u have a maximum at x -0, i.e., 

(2.4) u (0, E) = O, u(O, E) = A(E) > 0. 

We now look for solutions for V(E), u(x; E), and A(E) in the form 
00 

(2.5) V(?) = + PE j?j 
j=l 

oo) 

(2.6) u(x; E) = E U(x)?E, 
j=O 

(2.7) A (E) =EajE?j 
j=O 

Here, each Vj and aj is an unknown constant, while the unknown functions uj(x) must 
be periodic with period 2,r. Substituting (2.5) and (2.6) into (2.3) and then (2.6) and 
(2.7) into (2.4), we are led to a sequence of linear problems from which the Uj can 
be determined recursively. In particular, demanding that each of the uj is periodic in 
x leads to the unique determination of the constants Vj and aj (see I, ? 2, for details). 
In this way we find 

P2i+1 = a2i+1 = 0, i = 0, 19 29 .. * * 

while the uj(x) have the form 

2i 2i+1 
U2i= E U2i,kcos((2k+1)x), u2i+l= E U2i+lksin((2k+1)x), i= 0, 1, 2,... 

k=O k=O 

where the Uj,k are certain constants. 
Through the use of the symbolic manipulation system MACSYMA we have 

determined the coefficients in the expansions of both v(E) and u(x, E) up to 0(s24) 
in exact rational arithmetic. The exact rational expressions for the coefficients Vj are 

This content downloaded from 129.1.62.221 on Tue, 05 Aug 2014 13:56:30 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


884 M. B. DADFAR, J. GEER AND C. M. ANDERSEN 

reported in I, while the first few terms in the expansions of A(E) and u are 

A = 2+ 1 ?2_ 1033 ?4+ 1019689 
86+ 

9835512276689 8 
96 552960 55738368000 157315969843200000 

(2.8) 
58533181813182818069 

_~~~~~~~~~ ?1 + o(E 1), 
7326141789209886720000000+ 2 

13. 1 \ 11 3 52 u=2cosx+ ?sinx-4sin3x) + (-cos x+8c2s3X--cos 5 

7 21 35 7 E + - 6sinx+-6sin3x- 5 sin5x+ 5 sin7x ?3 
(2.9) 

73__ 47 1085 2149_ 61_C9gX 4 + ( 122cosx- 1536cos3x+27648cos5x- 10592cos 7x + /o 
12288 1536 7648 110592 20480C0X 

+ O(8). 

We then constructed a FORTRAN program (using floating-point arithmetic) which 
evaluated the various coefficients up to terms which are O(8163). (See I, ? 2, for some 
details which expedited the computations.) In particular the coefficients ao, a2,.*. , a98 
computed from this program are listed in floating point form in Table 1. 

Using some of the same ideas as in I for the frequency series, we now wish to 
investigate the convergence of the series (2.6) and (2.7). In particular, we wish to 
determine the locations of the singularities of u(x, 8) in the complex 8-plane which 
are closest to the origin, and, hence, which limit the convergence of these series. 

3. Analysis of the amplitude series. We begin our analysis of the limit cycle by 
considering the series for the maximum amplitude A(?). Using the phase condition 
(2.4), it follows that A(E) = u(0, 8), or 

(3.1) A(?)= E a2,82', wherea21=u2j(0). 
j=0 

Values of A(E) determined by (3.1) for 8 between 0 and about 2 are indicated by the 
dotted line in Fig. 1. Clearly, the series diverges for 8 close to 2. The root test on the 
coefficients a2j provides the estimate that the radius of convergence Ro of the series 
(3.1) is approximately 1.86. 

In order to investigate the convergence of the amplitude series more closely, a 
sequence of [N/N] Pade approximants were constructed from the Taylor series 
expansion (3.1) for N = 20, 24, 28, . . , 64. The location of the zeros and poles of the 
approximants in the complex 8-plane were determined for each value of N. Since 
A(8) is a real function of 8, any of the zeros or poles which did not lie on the real 
axis had to appear in complex conjugate pairs. In Fig. 2, we have shown the location 
of the zeros and poles for the [48/48] Pade approximant which lie in the upper half 
E-plane. The pattern of nearly overlapping zeros and poles in Fig. 2 is similar to the 
pattern observed in the analysis of the series for V(E) in I and indicates the presence 
of two pairs of branch point singularities located at 

(3.2) E = ?Ro eiio RO-1.85, I80-0.8970. 

Thus, we see that the convergence of the series (3.1) is limited by the presence 
of two pairs of complex conjugate singularities located (approximately) at the points 
indicated by (3.2). These singularities also provide an estimate of the radius of 
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TABLE 1 
The coefficients aj. 

j aj 

0 .2000000000000000000000000000D +01 
2 .1041666666666666666666666667D-01 
4 -.1868127893518518518518518550D-02 
6 .1829420265767379482657264681D-04 
8 .6252074907901755591368089714D-04 

10 -.7989632673966515320067624716D-05 
12 -.2189064228056858268565719872D-05 
14 .6788919544595683082507878164D-06 
16 .4898549810605054217263420959D-07 
18 -.4647022113222002938983247375D-07 

20 .2255473504412209108124923232D-08 
22 .2731951082006211951714547135D-08 
24 -.4652509830097006092236158866D-09 
26 -.1297746287822718370089231457D-09 
28 .4708595922064213677321962184D-10 
30 .3487493870792913004766338003D-11 
32 -.3732111817634004227319748112D-11 
34 .1943252115223049791622979950D-12 
36 .2458007694080866824617131646D-12 
38 -.4352603129565672049761052122D-13 

40 -.1280424855985861445787477879D-13 
42 .4756220989424199139000255790D-14 
44 .3786887176341065017941607400D-15 
46 -.4017644262218452857375675723D-15 
48 .2019321904821584372579786473D-16 
50 .2794375863326511190959233507D-16 
52 -.4935965643050148484969066886D-17 
54 -.1531839527673392059947190463D-17 
56 .5655400842937914902618359951D-18 
58 .4870627697603956399462256948D-19 

60 -.4964803930073463897595063956D-19 
62 .2317473810569203996526550456D-20 
64 .3574630974677649035422762246D-20 
66 -.6204378348446459588385954659D-21 
68 -.2030308157846223288300541515D-21 
70 .7366516047524752120471500726D-22 
72 .6858589016559903374861711748D-23 
74 -.6648782931924194018968477892D-23 
76 .2810917947653522342427510213D-24 
78 .4910354149106339448267249306D-24 

80 -.8312152138347605741759594449D-25 
82 -.2867538117024518768030884688D-25 
84 .1017007716880446220569768394D-25 
86 .1021238904641620465001263825D-26 
88 -.9384885053671857224232492601D-27 
90 .3512375544271382331382237982D- 28 
92 .7074331033577236403705433853D-28 
94 -.1162685794002263659230791159D-28 
96 -.4228793130239495409192460070D-29 
98 .1461762114850712338416032999D-29 
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A 

(3.1) 

2.03i Pade [48/48] 

Zonneveld 

2.02-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~U 
2.01 - 

2.00- 

0 2 4 6 8 

FIG. 1. Maximum amplitudes A(E) of the limit cycle calculated from (3.1) (dotted line) and the [48/48] 
Pade approximant (solid line) for 0 ' E C 9. The heavy dots are the values of amplitude computed using purely 
numerical methods by Zonneveld [7]. 

Im (E) 

* 
-- 

X r, ,/ R0~ ~~R 

Re (E) 

FIG. 2. The zeros (dots) andpoles (x's) in the upper half complexe-plane of the [48/48] Padeapproximant 
to the amplitude series A(E) in (3.1). The distance of the singularities from the origin is denoted by Ro and 
the angle of the singularity, measured from the positive real axis, is denoted by g3. Here RO = 1.85 and 

f30 = 0.8970. 

convergence Ro, which is consistent with the estimate obtained from the root test. We 
note that these singularities are very close to (most probably equal to) the singularities 
found in the series expansion of Z(E) in I. (In I, the singularities of P(E) were found 
in the form E 2= Rei', or e=?R1/2 ei/2 with A1/2 (3 42)1/2 1849 nd 
1.7925/2 = 0.89625. These values are close to those given in (3.2).) In Fig. 1, we have 
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indicated by the solid line the amplitude predicted by the [48/48] Pade approximant 
for values of E between 0 and 9. We note that the Pade approximant agrees well with 
the series (3.1), where it converges, and also agrees well with some values for the 
amplitude computed by purely numerical methods. (These numerical methods will be 
discussed in more detail in the next section.) 

4. Transformation of the amplitude series. We can now use the information 
obtained in the previous section to introduce a new expansion parameter which will 
lead to a new series representation for A(E), which will converge for larger values of 
E. To do this, we introduce a new expansion parameter 6=8(e), defined by the 
transformation 

(4.1) 8 (E) (R 4-2R 2E2 
cos 2380+ ?4}1/49 

where Ro and 180 are given (approximately) by (3.2). The transformation (4.1) has 
the properties that the origin remains fixed (i.e., 8(0) = 0), the singularities ?R0 e"1Po 
in the e-plane are mapped to infinity in the complex 8-plane (i.e., 18(+R0 e?Io)I = O) 
and the real axis in the E-plane is mapped onto the portion of the real axis in the 
8-plane between -1 and +1 (in particular, as E->+ao, 8 +1-). In addition, it is a 
simple task to invert the transformation (4.1) to express E as a function of 8. 

Using the definition (4.1), we recast the series (3.1) for A(E) into a series in 
powers of 8 of the form 

cs 00 

(4.2) A(?) = a2jis= a 2j 2i, 
j=O j=O 

where the new coefficients a2i can be expressed in terms of the coefficients a2j and 
the transformation (4.1) in a straightforward manner. Since the singularities at 
?R0 e+'Po appear to be the only singularities of A(s) in the finite part of the s-plane, 
we expect that the series (4.2) will converge for all values of 8 with 181 < 1. On the 
other hand, since A(E) has an essential singularity at E equal to infinity (see [2], for 
example), we would not expect the series (4.2) to converge for values of 8 with 18 1> 1. 

To investigate this point quantitatively, we performed a Pade analysis on the series 
(4.2) using the coefficients a2p. The zeros and poles of the Pade approximants again 
formed patterns indicating branch point singularities (in the complex E-plane), this 
time lying on the real and imaginary axes at distances from the origin slightly greater 
than one. (For example, for the [48/48] approximant, the closest zero-pole pair was 
on the imaginary axis at a distance of 1.015 from the origin.) Thus, it appears that 
the radius of convergence for the series A(8) is nearly one. The root test on the 
coefficients a2j gives a result consistent with the value of one. We have used the series 
(4.2) to compute values of A for selected values of s between 1 and 100, which 
correspond to values of E for which good numerical results are available (see, e.g., 
Zonneveld [7]). The results are presented in the third and fourth columns of Table 2 
and show that the series (4.2) agrees well with the numerical results, with a maximum 
error of about 0.79% at E = 100. In Fig. 3, we have plotted A(8) using (4.2) (dotted 
line) for 8 close to one. Note that the vertical scale in Fig. 3 is 100(A -2), and, hence, 
the agreement between A(8) and the numerical results is better than might be indicated 
at first glance. 

We can now use some information about the asymptotic behavior of the amplitude 
as E -*oX to improve the convergence of our series for A(8) near 8 = 1 (i.e., for large 

This content downloaded from 129.1.62.221 on Tue, 05 Aug 2014 13:56:30 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


888 M. B. DADFAR, J. GEER AND C. M. ANDERSEN 

TABLE 2 
Comparison of the amplitudes computed from equations (4.2) and (4.4) with the numerical amplitudes 

reported by Zonneveld [7]. The percentage differences are enclosed in parentheses. 

Numerical 
? e amplitudes Amplitudes from (4.2) Amplitudes from (4.4) 

1 0.51334687 2.00862 2.00861986 (0.0000) 2.00861986 (0.0000) 
2 0.82838459 2.01989 2.01989138 (0.0001) 2.01989138 (0.0001) 
3 0.93362980 2.02330 2.02330520 (0.0003) 2.02329950 (0.0000) 
4 0.96740216 2.02296 2.02302754 (0.0033) 2.02277836 (0.0090) 
5 0.98093575 2.02151 2.02189578 (0.0191) 2.02072554 (0.0388) 
6 0.98751267 2.01983 2.02083574 (0.0498) 2.01827716 (0.0769) 
7 0.99117650 2.01822 2.02001617 (0.0890) 2.01597957 (0.1110) 
8 0.99342421 2.01675 2.01940835 (0.1318) 2.01399777 (0.1365) 
9 0.99490355 2.01544 2.01895729 (0.1745) 2.01233709 (0.1540) 

10 0.99593011 2.01429 2.01861788 (0.2149) 2.01095469 (0.1656) 
11 0.99667240 2.01326 2.01835800 (0.2532) 2.00980079 (0.1718) 
12 0.99722702 2.01236 2.01815547 (0.2880) 2.00883125 (0.1754) 
13 0.99765264 2.01156 2.01799502 (0.3199) 2.00801004 (0.1765) 
14 0.99798658 2.01084 2.01786599 (0.3494) 2.00730865 (0.1756) 
15 0.99825355 2.01020 2.01776079 (0.3761) 2.00670472 (0.1739) 
16 0.99847042 2.00962 2.01767398 (0.4008) 2.00618069 (0.1711) 
17 0.99864904 2.00909 2.01760155 (0.4237) 2.00572273 (0.1676) 
18 0.99879794 2.00862 2.01754053 (0.4441) 2.00531985 (0.1643) 
19 0.99892340 2.00819 2.01748865 (0.4630) 2.00496326 (0.1607) 
20 0.99903011 2.00779 2.01744419 (0.4808) 2.00464585 (0.1566) 
30 0.99957293 2.00516 2.01721316 (0.6011) 2.00273757 (0.1208) 
40 0.99976056 2.00379 2.01713138 (0.6658) 2.00187300 (0.0957) 
50 0.99984699 2.00296 2.01709337 (0.7056) 2.00139359 (0.0782) 
60 0.99989383 2.00240 2.01707268 (0.7328) 2.00109396 (0.0652) 
70 0.99992204 2.00201 2.01706019 (0.7518) 2.00089125 (0.0559) 
80 0.99994033 2.00172 2.01705207 (0.7659) 2.00074619 (0.0486) 
90 0.99995286 2.00150 2.01704651 (0.7767) 2.00063792 (0.0431) 

100 0.99996183 2.00132 2.01704253 (0.7856) 2.00055442 (0.0383) 

values of E). As E -> cc, we know (see [5], for example) that 

(4.3) A = 2-ae -4/3_16 
log- e+ 1 (3-1 + 2 log 2-8 log 3)e2+ O(e8/3), 

where a -2.3381 is the highest zero of the Airy function and 8- 0.1723. Since 
= 1 + CE-2 +0(E-4) , as Es-co, the form of (4.3) suggests that we write A(8) as 

00 

(4.4) A(8) = 2+ (1 -_,2)2/3 Z b2182j, 
j=O 

where the constants b2, can be determined from the coefficients a2i. We note that the 
representation (4.4) has the properties that A = 2 when 8 = 0 or 8 = 1 (i.e., when E = 0 
or E = CO) and also that, as 8 -- 1, or E -- oO, the asymptotic form of (4.4) agrees with 
the form of the first two terms in (4.3). 

Amplitudes computed from (4.4) are listed in the fifth column of Table 2 for 
values of e between 1 and 100. We see that, for values of E greater than 8, the series 
(4.4) agrees more closely with the numerical results than does the series (4.2). In 
Table 3 we have compared values of the amplitude computed from the series (4.2) 
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00000 (4.4) % %%@00*0 

1.5 \ \7 Numerical 
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\\ \\ 
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0.5 \ - 

0 . 
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FIG. 3. Amplitudes A(E) computed using the transformed series (4.2) (dotted line), the series (4.4) 
(dashed line), and the asymptotic formula (4.3) (light dashed line), all expressed as functions of 3 given by 
(4.1). The numerical results of Zonneveld [7] are indicated by the heavy dashed line. 

TABLE 3 
Comparison of the amplitudes computed from equations (4.2) and (4.4) with the asymptotic formula 

(4.3). The percentage differences are enclosed in parentheses. 

Asymptotic 
8 6 amplitudes Amplitudes from (4.2) Amplitudes from (4.4) 

10 0.99593011 2.01421561 2.01861788 (0.2186) 2.01095469 (0.1619) 
20 0.99903011 2.00783934 2.01744419 (0.4784) 2.00464585 (0.1591) 
30 0.99957293 2.00519750 2.01721316 (0.5992) 2.00273757 (0.1227) 
40 0.99976056 2.00381131 2.01713138 (0.5647) 2.00187300 (0.0967) 
50 0.99984699 2.00297119 2.01709337 (0.7051) 2.00139359 (0.0788) 
60 0.99989383 2.00241306 2.01707268 (0.7321) 2.00109396 (0.0659) 
70 0.99992204 2.00201806 2.01706019 (0.7513) 2.00089125 (0.0563) 
80 0.99994033 2.00172529 2.01705207 (0.7657) 2.00074619 (0.0489) 
90 0.99995286 2.00150050 2.01704651 (0.7767) 2.00063792 (0.0431) 

100 0.99996183 2.00132306 2.01704253 (0.7855) 2.00055442 (0.0384) 
500 0.99999847 2.00017833 2.01702623 (0.8423) 2.00006490 (0.0057) 

1,000 0.99999962 2.00007301 2.01702752 (0.8476) 2.00002575 (0.0024) 
10,000 1.00000000 2.00000355 2.01702555 (0.8511) 2.00000120 (0.0001) 

00 1.00000000 2.00000000 2.01702555 (0.8513) 2.00000000 (0.0000) 

and (4.4) with the four term asymptotic formula (4.3) for A(E). The differences 
between the amplitudes computed from (4.2) and the asymptotic formula (4.3) steadily 
increase as E increases, approaching a maximum error of about 0.85% at infinity. 
However, when (4.4) is used, these differences readily decrease, the agreement being 
perfect (by design) at 8 = 1 (i.e., infinite E). In Fig. 3, we have also plotted the values 
of 100(A- 2) using (4.4). Again, the close agreement as 8 -> 1 among the values for 
the amplitude computed from (4.4), (4.3), and the numerical results can be clearly seen. 
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5. Analysis of the limit cycle series. We now investigate the convergence of the 
limit cycle series (2.6) for values of x between 0 and iT. (Since each Uk (X + 'T) = -Uk(x) 

for all x, the behavior of the convergence of the series for x between ir and 2 ir will 
be the same as the behavior for x between 0 and Ir.) In Fig. 4, we show the phase 

U U 

(a) (b) 

u u 

(c) (d) 

FIG. 4. Phase plane plots for the limit cycle u(x, t) computed using the first 100 terms of the series (2.6) 
with E = 0 (a), E = 1 (b), E = 1.5 (c), and ? = 1.6 (d). 

plane plots of the limit cycle, using the first 100 terms in (2.6) for E = 0, 1.0, 1.5, and 
1.6. The plots for E = 1.0 and 1.5 are smooth and agree very well with similar plots 
computed by purely numerical means. However, for E = 1.6, we notice that, while 
most of the cycle is smooth and, in fact, agrees very well with the true cycle, portions 
of the curve in the second and fourth quadrant have developed oscillations which are 
not present in the actual limit cycle. These oscillations become more pronounced as 
E is slowly increased above 1.6, although certain portions of the curve still remain 
smooth. For E = 1.8, however, the limit cycle computed from (2.6) is completely 
meaningless. 

The nonuniform behavior of the convergence of the series representation of the 
limit cycle suggests that its radius of convergence may vary with x. In particular, the 
portions of the phase plane plots where the (artificial) oscillations appear correspond 
to values of x near ir/2 and 3ir/2. This suggests that the radius of convergence of 
(2.6) may be somewhat smaller for values of x near ir/2 and 3ir/2 than for other 
values of x. 

In order to investigate this behavior more carefully, we performed a Pade analysis 
on the coefficients uj(x) for values of x between 0 and r, in increments of ir/50. For 
values of x between 0 and about ir/4, the analysis indicated the presence of only the 
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Im (E) 
(a) (b) 

Re (E) 

(c) (d) 

FIG. 5. The location of the zeros (dots) and poles (x's) in the upper half complex E-plane of the [24/24] 
Pade approximant to the series (2.6) for x = IT!50 (a), x = 13T 1/50 (b), x = 18 fT/50 (c), and x = 24T 1/50 (d). 

same two pair of complex conjugate branch points which were present for the amplitude 
series, i.e., for x = 0 (see Fig. 2). In Fig. 5a,b, we show the location of the zeros and 
poles of the [24/24] Pade approximant which lie in the upper half complex plane for 
x = sI/50 and x = 13X/50. As x was increased to values greater than r/4, however, 
something quite different and very interesting happened. It appears that, as x increases 
above r/4, a "new" singularity leaves its position in the second quadrant and moves 
toward the imaginary axis. In Fig. 5c,d we show the zeros and poles of the [24/24] 
Pade approximant for x = 18X/50 and x = 24X/50, which clearly indicate the presence 
of this "moving singularity," while also indicating that there is still a singularity which 
remains fixed in the second quadrant. At x = r/2, the moving singularity crosses the 
imaginary axis. As x increases above r/2, the moving singularity enters the first 
quadrant, and moves toward the position of the "fixed singularity" in that quadrant. 
At about x = 3Xr/4, it appears to coalesce (at least approximately) with the fixed 
singularity and remains there for x between 3X/4 and v. As x varies between v and 
2i, the phenomena described above exactly repeats itself, with a singularity again 
moving from the second to the first quadrant. Of course, a similar phenomenon is 
happening simultaneously in the lower half plane. 

Thus, it appears that the limit cycle series (2.6) has three pairs of complex conjugate 
singularities in the complex E-plane, two pairs remaining fixed as x varies, while the 
third pair moves as a function of x. We have illustrated this schematically in Fig. 6, 
indicating in the upper half complex E-plane the location of the fixed singularities and 
also the approximate location of the moving singularity for various values of x. 

From a knowledge of the location of these singularities, we can estimate the radius 
of convergence R of the series (2.6). In particular, the radius of convergence will be 
just the distance from the origin to the closest singularity. For 0-' x -/4 and 
3Xv/4_ x v x, when the moving singularity coincides (at least approximately) with the 
fixed singularities, the Pade analysis gives R 1.88. However, for V/4 < x < 3XV/4, the 
moving singularity becomes the dominant singularity, moving closer to the origin than 
the fixed singularities. Thus, R decreases for v/4- x v/2, reaching a minimum of 
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Im (E) 

A/ -- - 

Ro< 

FIG. 6. Schematic diagram of the upper half complex E-plane indicating the location of the fixed sin- 
gularities (*) and the path taken by the moving singularity as x varies between 0 and ir. The heavy dotted 
line indicates a portion of a circle about the origin, of radius Ro, which corresponds to the radius of convergence 
of the series (2.6) at x = 0. 

about 1.65 at x = r/2, and then increases to about 1.88 at x = 3Xr/4. (We compared 
the values for R we obtained from the Pade analysis with values of R computed using 
the root test and found the results to be consistent.) We have plotted R as a function 
of x in Fig. 7a. As mentioned earlier, the smaller radius of convergence of the series 
(2.6) for x near r/2 accounts for the presence of the oscillations in certain portions 
of the phase plane plots in Fig. 4. In particular, for E = 1.6 (Fig. 4d), the oscillations 
occur for values of x near r/2 (and 3 X/2), indicating that this value of ? is close to 
the radius of convergence in this region. However, for x not near V/2 or 3XV/2, ? = 1.6 
is far enough from the radius of convergence to render the first 100 terms in (2.6) 
(used to calculate the plots in Fig. 4) a good approximation to the true solution. 

In Fig. 7b we have plotted the angle /3 as a function of x. Here /3 is the angle 
which the moving singularity makes with the positive real axis. Although we have not 
been able to determine with any great certainty what the moving singularity is "doing" 
for 0- x r/4, there is some evidence that it may possibly be spiraling out from its 
location at x = 0. One piece of evidence to support this conjecture is the little "bump" 
in Fig. 7b near x = r/4, as well as smaller oscillations for x < r/4 which are too small 
to show up on the figure. Similar, but less pronounced, oscillations occur near x = V/4 
in the plot of R (x). Of course, similar oscillations occur near x = 3XV/4, indicating that 
the singularity may spiral into its location at x = X in the first quadrant. However, 
since we are dealing with very small oscillations and since we have two pairs of 
singularities coalescing, our numerical results are not accurate or stable enough to 
make any definite statement about this conjecture. 

6. Transformation of the limit cycle series. Using our knowledge of the location 
of singularities of the limit cycle in the complex E-plane, it is possible to introduce a 
new expansion parameter which will allow us to recast the original series (2.6) into a 
form which will converge for larger values of E. To do this, we let E = ? Ro e",90 be 
the locations of the fixed singularities and E = R e"19 be the locations of the moving 
singularities. Here Ro 1.85 and /3o 0.8970, while R and /3 are functions of x, as 

This content downloaded from 129.1.62.221 on Tue, 05 Aug 2014 13:56:30 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


ANALYSIS OF THE LIMIT CYCLE OF THE FREE VAN DER POL EQUATION 893 

R 

1.9 

(a) 1.8 -R (x) 

1.7- 

0 i/4 XT/2 3X/4 X 

2.5 

2.0} 

(b) 1.5- 

1.0 

0 rr4 X/2 317r/4 x 

FIG. 7. Plots of the distance R = R (x) of the distance of the moving singularity from the origin (a) and 
the angle ,B = ,B(x) the singularity makes with the positive real axis (b) as functions of x for 0 x ir. 

indicated in Fig. 7. If we now define 

(6.1) w = W() = 
{(R4 -2R2 cos 2,02+ E4)(R2 -2 R cos 3E + E 2)} 1/6 

we see that w(O) = O, I w I -1 as |E| ooo, and I w| oo as E approaches any one of the 
six singularities of u. Using (6.1), we can recast (2.6) intc the form 

00 00 

(6.2) U(X; u)= U(x)E=E Uj(X) WI, 
j=O j=O 

where the functions Uj can be determined in a straightforward manner. We performed 
a root test on the coefficient Uj for values of x between 0 and XT and found in each 
case an estimated radius of convergence very close to one. We also performed a Pade 
analysis of the coefficients Uj and found again a constant radius of convergence very 
close to one. In particular, for each value of x, the Pade analysis indicated singularities 
of u in the complex w-plane very near w = ? 1. These singularities are related, of 
course, to the essential singularity of u at ? equal to infinity. 
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To obtain some phase plane plots using the transformed series (6.2), we found it 
more convenient to use a transformation which is simpler (but less accurate) than 
(6.1). (For practical computations, the use of (6.1) requires the recomputation of the 
series coefficients Uj for each value of x used, since R and /3, and hence w(E), depend 
on x.) Instead of (6.1), we used the transformation 

(6.3) w = W( { = {(Ro- 2Ro cos 2,3o 2+ 4)(R 
2 + ?)}1/6 

where Rm = min R (x) -1.65. Here w has the same mapping properties as w, except 
that it maps the moving singularity to infinity only when it is closest to the origin, i.e., 
when x = r/2. Thus, the region in the E-plane containing the singularities is mapped 
out away from the origin, but not all the way to infinity. The advantage of (6.3), of 
course, is that it is independent of x and needs to be inverted only once during the 
computations to express E as a function of w. 

Using (6.3), we recast the series (2.6) into a form similar to (6.2), with w replaced 
by w. A Pade analysis of this transformed series revealed that it has a minimum radius 
of convergence of about 0.953, which corresponds to a radius of convergence in the 
8-plane of about 3.97. In Fig. 8, we show the phase plane plots of. u using this 
transformed series for 8 = 1.65 and 8 = 3.5. 

(a) (b) 

FIG. 8. Phase plane plots of the limit cycle of the Van der Pol oscillator using the transformed series (6.2), 
with w replaced by wv given in (6.3), for E = 1.65 (a) and E = 3.5 (b). 

7. Discussion. The method of analysis we have presented here is an interesting 
combination of the methods of regular perturbation analysis and classical analysis, 
with both symbolic and numerical computation used to carry out the details of the 
methods. As we mentioned in I, the importance of the role of symbolic computations 
in this analysis should not be underestimated. Among other advantages, it allowed us 
to find certain patterns and forms of the solutions which greatly facilitated the construc- 
tion of an efficient numerical FORTRAN program to carry the computations further. 
Also, the coefficients in the various expansions obtained by symbolic computation, 
being in exact rational number form, allowed us not only to check the results of our 
FORTRAN program but also to estimate the magnitude and effects of roundoff errors 
in our numerical computations. 
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As far as the practical application of our results is concerned, it is interesting to 
note that we have been able to present formulas for the frequency and limit cycle 
function, valid for large values of E, by knowing only the approximate locations of the 
singularities of the functions involved. In particular, we have obtained our results 
without having to investigate the nature (or type) of the singularities that occur (e.g., 
we have not had to determine whether we have an algebraic or logarithmic singularity 
or a singularity of some other kind). In this sense, the methods we have used are quite 
powerful, especially in that all we really needed to know to make them work was a 
knowledge of the approximate location of the singularities, and not their exact location. 
It is interesting to point out, however, that the location of the singularities for this 
problem, being off the real axis, is in sharp contrast to the location of the singularities 
for "most" other physical problems which have been analyzed by similar methods (see 
e.g., Van Dyke [6]). 

It is also important to point out that the analysis of the u-series has indicated the 
presence of a pair of singularities (i.e., the "moving" singularities) which are not 
present in series expansion of the frequency series. These "new" singularities not only 
limit the convergence of the u-series but also account for the nonuniformity in the 
convergence, which could not be explained in terms of the singularities in the frequency 
series alone. Thus, our results seem to indicate that it may be incorrect (or at best 
misleading) to assume that the convergence of the series expansion of the primitive 
solution to a problem (e.g. u(t, E) here) will be "the same as" the convergence of the 
series for a "constant" associated with it (e.g., the frequency). 

As far as the nature of the singularities is concerned, however, we have applied 
the method of analysis given by Hunter and Guerrieri [3] to the frequency series we 
developed in I and to the maximum amplitude series u(O; E), discussed in ?? 3 and 4, 
which were both essentially series in powers of _2. The result of this analysis indicated 
that the singularities in these cases are algebraic singularities with an exponent of +2, 
i.e., square root singularities. However, the method of [3] does not work well when 
more than one pair of complex conjugate singularities are about at equal distance 
from the origin, as in the case of the series (2.6) for x> 0, and hence we have no 
definite knowledge of the nature of the singularities for u when x > 0. 
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