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Perturbation Analysis (PA) of  Discrete €vent Dynamic Systems 

(DtDS) enables parameter sensitivities of  DEDS to be obtained by 
observing a slngle sample path of  the system. Since the original 
paper in 1979 by Ho et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[40], the technique has evolved from a 
body of experimental results to a new theoretical area with a rig- 
orous basis. In particular, consistency and efficiency of  PA have 
been proved for certain systems, and several developments have 
greatly extended the domain of applicability of PA. The aim of this 
paper is to use a simple Gl/G/I system to give an introduction to  
PA and illustrate the basic theoretical issues involved in this tech- 
nique. After this we briefly cover the application of  PA to networks 
of queues, and then discuss some of  the recent extensions to PA. 
It is shown that many interesting open questions remain for PA, 
and areas for research are indicated. The paper i s  written for a broad 
audience and no  prior knowledge of  discrete event systems or 
queueing theory is assumed. It is also hoped that this paper wil l  
be sultable for introducing students and reseachers to the con- 
cepts of PA in  a comprehensive and unified way. 

I. INTRODUCTION 

To find out what happens to a system when you inter- 
fere with it you have to  interfere with it (not just pas- 
sively observe it)--G. E. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Box [3]. 

This quote by a world-renowned statistician is sound 
advice for most experimenters, and based on many 
”abuses”of regression analysis [3]. However, the above view 
is often extrapolated to allexperimental work. For example, 
in  the simulation community, until recently, it was believed 
that if you observed a simulation of a communication net- 
workwith link speed 0, then to predict what would happen 
with link speed of 0 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAO, you would have to do another 
simulation. In this paper we will discuss a body of tech- 
niques that, for a certain class of systems, can deduce the 
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outcome for the second experiment by simply “passively 
observing” the system during the first experiment.’ 

The importance of studying Discrete Event Dynamic Sys- 
tems (DEDS) has already been stressed in several compan- 
ion papers in this issue [35], [29], [21], [44], [70]. In the design, 
analysis, and operation of any system, whose performance 
(say Y )  depends on the value of certain decision parameters 
(say 0, a vector), any information about the gradient, dYld8 
can be very useful to both engineers and managers. Such 
information tells us the sensitivity of the performance to 
any decision variable, and hence gives directions for 
improving these decisions. It provides the marginal ben- 
efits of resources and so lets us trade off between resources. 
Sensitivity information also alerts us to critical decisions- 
those that significantly impact performance, or noncritical 
ones-those that do not matter very much. Combined with 
mathematical programming methods, gradient informa- 
tion creates powerful tools for system optimization. 

When studying a DEDS, analytical methods (e.g., flow 
models, Markov chains, and queueing theory) are typically 
the tools of first choice, since they usually provide insight 
and efficient analysis. However, as has been pointed out in 
several accompanying papers [35], [29], [52], [70], when it 
comes to detailed study of many of the DEDS in the modern 
world, we go beyond the limits of today’s analytical meth- 
ods. In such cases, one must resort to experimental 
approaches. Broadly speaking, we can classify these exper- 
imental approaches in two categories, which we shall call 
computer simulation and physical simulation. Since we are 
dealing with DEDS, the former i s  the domain of discrete 
event simulation, which involves Monte Carlo experimen- 
tation on a computer model. The latter includes doing 
experiments on a scale model of the system, or on a pro- 

’We  use the term “passively observing” in the same sense as in 
the above quote. That i s  t o  say, w e  may not disturb or affect the 
operation of the system; however, w e  are permitted t o  analyze any 
data that i s  available from observing the system. 
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totype of the system (prototyping), or on  the actual system 
itself (benchmarking). 

In this paper, we shall describe a recent methodology, 
called Perturbation Analysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(PA) of DEDS, which has the 
potential for being particularly efficient in  obtaining gra- 
dient information whenever experimental studies are con- 
ducted on a DEDS. (All of the experimental methods above 
qualify for the application of the method.) Precise state- 
ments will be given later, but loosely speaking, we can say 
that for a class of systems: 

i) gradient estimates have been obtained with signif- 
icantly fewer experiments; 

ii) “noise levels” in each estimate have been signifi- 
cantly lower; and 

iii) parameter optimization algorithms have been imple- 
mented with significantly faster convergence rates. 

Here ”significant” does not mean just an effect that i s  
experimentally ’‘noticeable’’-but rather, we will show 
examples where “significant” means zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof magni- 
tude or more improvement over conventional methods. In  
the scientific parlance, it i s  reasonable to consider such an 
advance as a “breakthrough” rather than just a marginal 
improvement in the state of the art. 

On  the other hand, the technique of PA i s  very young by 
scientific standards, and many open problems remain. The 
class of DEDS for which the behavior of PA i s  understood 
i s  sti l l  small; much work needs to be done, both in theory 
and in implementation, to  extend the technique to  every 
day ”real world” DEDS. Yet it is the potential of orders of 
magnitude increases in efficiency, as witnessed in the sys- 
tems described below, that prompts us to describe the PA 

approach toa broader audience, in the hopesof stimulating 
more work in this area. Eventually, one might envision that 
incorporating PA into experiments on a DEDS would be as 
routine as differentiation i s  for analytical studies. 

A. Overview of Paper 

The aims of this paper are i) to introduce the PA ideas to 
a broad audience, and so it assumes no prior knowledge 
of PA; ii) to  give an overview of the body of theoretical and 
experimental results available today, along with appropri- 
ate references; iii) to provide insight into the basics of PA 

as well as some of the resulting mathematical issues, all by 
means of a single-server queue example; iv) to provide an 
introductory,yetfairlycomprehensive, paperto be usedfor 
introducing students and researchers to  PA; and hopefully, 
if the above aims are achieved, v) to  stimulate a wider set 
of people to  develop the theory and algorithms for this still 
emerging area. 

In order to  accomplish these aims and also serve a broad 
audience, we have chosen to  introduce PA in a particular 
way. The entire development of PA in Section I l l  i s  done in 
practical terms (i.e., using ”physical” arguments) with no 
mention of probability. The probabilistic assumptions and 
implications are brought in later, in Section IV and beyond. 
The purpose of this i s  to  show the inherently simple and 
intuitive concepts behind PA. Also, concepts such as “per- 
turbation generation” and “perturbation propagation,” 
which are developed under more technical conditions in 
some papers, arise very naturally in our framework. 

In the next section, we will define our example system. 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI l l  will present the perturbation analysis of an 
experiment on this system, and lead to the infinitesimal PA 

(IPA) algorithm. Section IV  will bring in  specific probability 
structures and develop IPA for a simple queue. Section V 
then extends IPA to  queuing networks and more general 
DEDS. In  Section VI we show the failure of IPA in  certain 
systems and then introduce more advanced PA methods. 
Section VI1 compares PA with other gradient estimation 
techniques. In Section Vl l l  we discuss PA for discrete 
parameters. Finally, Section IX concludes with some gen- 
eral remarks and areas for research. 

While this paper i s  not intended to be an all-encom- 
passing survey of PAwork,wedogiveafairlyextensive bib- 
liography. Readers interested in pursuing the topic further 
should also see other recent papers (Ho [34], Suri [58], Suri 
and Zazanis [65], Cao [7])  which have quite up-to-date bib- 
liographies. 

I I .  A SIMPLE QUEUEING SYSTEM 

Now we will describe a simple system which will serve 
as the main example to illustrate ideas throughout this 
paper. Consider a link in a communication network. The 
function of this link i s  to  transmit any messages that arrive 
at i t s  origin node A, to  the destination node B. Messages 
arrive from external sources into a buffer at A. They are 
transmitted over the link and reach a buffer at B (see Fig. 
1). For the purpose of this simple example, we will assume 

Arr iv ing  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMessages F-o+yi* 
Fig. 1. 

Source Node Destination Node 

Link in a communication network. 

that the buffers are large enough and the link reliable 
enough that no messages are lost at either buffer or over 
the link. Also, there are no priorities among messages, so 
that they are transmitted using a first come, first serve (FCFS) 
order. 

Suppose now that we are interested in the “system time” 
for a message, and that one of our design parameters i s  the 
link speed. (System time is defined here as the time from 
arrival of a message at A to the time when it is completely 
received at B. This includes the time spent waiting in queue 
atA, plusthetimetaken forthe message togooverthelink.) 
For clarity of analysis, we prefer to deal with the inverse of 
link speed as our design parameter. Thus, while link speed 
might be specified in number of bits transmitted per sec- 
ond, we will use the link service time, or amount of time 
to transmit a bit. Wewil l  also assume that each message has 
a fixed length header appended to it before transmission. 
Our basic design parameters are then 

8 = link service time (s/bit) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H = header length (bits). (2.1) 

Again for clarity of later analysis we find it convenient to 
define 
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y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH0 = time to transmit header (s) (2.2) 

and we can equally well use zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 and y as decision parameters 
instead of 0 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH. Our design performance measure can 
now be defined precisely: it i s  the mean system time for a 
message arriving at the link when the system is in steady 
state.' Denote this mean value by T(0, y). 

Now we will observe an experiment on the system. The 
experiment begins at a time when the system i s  empty (i.e., 
there are no messages in the buffer or in transmission). It 
lasts until a (predefined) number N messages complete 
transmission. During this experiment, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L ,  = length of message i (bits). (2.3) 

We also find it useful to define the transmission time (or 
"service time") for message i, which from (2.1) and (2.3)will 
be 

X, = (H + L,)0 (2.4a) 

= y + L,0. (2.4b) 

Note that X, i s  not the system time-specifically, it does not 
account for any waiting time in the buffer. Indeed, let the 
system time for message i be t, (as observed from the exper- 
iment). Then a simple estimate of the mean system time of 
a message, for this design, i s  

(2.5) 

While more sophisticated estimates could be derived (e.g., 
by eliminating "transient" data), even this simple estimate 
has the property that (under fairly general conditions) ?(e, 
y, N )  converges to T(0, y) as N + m, and so it wil l suffice 
for this presentation. 

Our next task is to derive an estimate of the sensitivity 
of the system to the two parameters, namely to estimate 
dTid0 and dTidy. One conventional approach to estimating 
dTid0 would be to do a second experiment with a link ser- 
vice time of 0 + AB, to get a value f(O + AO, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN). Then 

i 1 [?(e + ~ 0 ,  7, N) - f ( 0 ,  7, N)]/A0 (2.6) 

would bean estimateof this sensitivity. (Again, many refine- 
ments are possible, e.g., using a symmetric difference esti- 
mate or common random numbers in a simulation, and so 
on. These concepts will be defined and discussed in later 
sections. The main point we have to make will be apparent 
just from the simple form f.) 

We now make two basic observations about i (which 
extend to most of the refined estimates too). i) i involves 
doing an additional experiment at 0 + A0. (If we prefer to 
get a symmetric difference estimate, two additional exper- 
iments would be required, one at 0 - AOand one at 0 + AO.) 
Similarly, to estimate dT/dy, we would require at least one 
additional experiment at y + Ay. In other words, conven- 
tional sensitivity analysis with respect to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK parameters 
requires at least K additional experiments. ii) The choice of 
A0 in (2.6) is difficult. Clearly if we choose A0 too large, then 
we may not get a good approximation to the gradient. 
Unfortunately, if we choose A0 too small, then f ,  being the 
difference of two "noisy" quantities divided by a very small 

'In ordertoavoid overlytechnical probabilisticstatementsat this 
stage, we will simply assume that the system does have a unique 
steady state and that this mean system time exists. 

number, will have a very large variance (i.e., be extremely 
"noisy"). Thus obtaining a reasonable estimate for dT/d0 
may require making N very large (details in Section VII). 

While many refinements can be made to improve (some- 
what) the accuracy of the above estimates, the basic 
problem is clear: sensitivity analysis of experiments can be 
tricky and require a large amount of experimental effort. 
In the remainder of this paper we will demonstrate how PA 
offers the possibility of overcoming both the above prob- 
lems (i.e., repeated experiments, and noisy derivatives) for 
the case of DEDS. 

Ill. INFINITESIMAL PERTURBATION ANALYSIS (IPA) 

PA derives its properties by exploiting the structure of 
DEDS. In order to understand how it works, we need to 
study a typical experiment in some detail. Then we will 
introduce the IPA algorithm. 

A. Detailed Evolution of a n  Experiment 

Fig. 2 depicts a short time period starting from the begin- 
ning of the experiment. Along the top of the figure, the 
downward arrows depict the instants of arrival of messages 
(MI denotes message i), and A, denotes the time between 
arrival of MI-, and MI (Al is from the beginning of the exper- 
iment). Along the bottom of the figure, we see the instants 
of departure similarly shown. The Y axis of the graph is the 
number of messages present (including the one being 
transmitted) at the source node. 

To understand the diagram in detail, let us trace through 
the time history shown (we will need this description to 
understand what follows). At time zero, the system is empty 
and remains so until A, when M, arrives. Since there are no 
other messages present, A, immediately starts to be trans- 
mitted with the total transmission time, as in (2.4), being X,. 
At time A, + A,, M, arrives and since M1 is in transmission, 
it must wait. Similarly for M,. At this point, three messages 
are present at the source node (see also the height of the 
graph). At time A,  + X1, M1 completes transmission and 
departs, M, begins transmission, M, i s  still waiting, and the 
graph has a height of two. The reader should now follow 
the graph and interpret it for the remainder of the diagram. 
In particular, note that the departure of M4 empties the sys- 
tem for an idle period of I ,  time units, and the arrival of M5 
terminates this idle period. The time from arrival of M, to 
departure of M, i s  called a busy period (BP) of the system. 

For later use, we derive a simple relation for any BP. (For 
the reasons mentioned in the introduction, we will carry 
out the analysis in Section I I I with no reference to any prob- 
ability distributions or assumptions. These will be brought 
into the analysis in Section IV.) Consider the first BP shown 
in Fig. 2. Let to denote the starting time of this BP (here to 
= Al). The arrival time of M1 must be to (by definition) and 
the departure time must be to + X1 (since M, does not wait). 
For MZ, the arrival time i s  to + A, and departure time is to 
+ X, + Xz. Continuing in a similar way, we find that the sys- 
tem time for M,(1 5 i 5 4) i s  

where the last sum i s  defined to  be zero if i < 2. Finally, the 
total of system times for all messages in the BP i s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

116 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 1, JANUARY 1989 



Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATime evolution of the experiment (nominal path). 

4 ,  4 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X I  - A,.  (3.2) 

, = 1 / = 1  , = I  / = 2  

This argument can be generalized to the mth BP (denoted 
BP,) which begins with message zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk ,  + 1 and lasts for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, 
messages. The total of system times will then be 

nm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI n, I 

c X k , , + /  - A k m , + / .  
, = I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ = 1  , = 1 / = 2  

(3.3) 

Finally, suppose that the Nth message completes trans- 
mission during the Mth BP.Theexperimentthen terminates 
and we use nM to denote the number of messages com- 
pletedduringthis lastBP(which isunlikethe preceding BPs 
since in general it will be truncated at the experiment ter- 
mination time). From this experiment, the average system 
time of a message will be 

B. Perturbation Analysis 

Consider now the following question: ” I f  the previously 
observed experiment had been conducted with the link ser- 
vice time set a t  19 + AO, what would have b e e n  the average 
system time of a message?” To answer this, without having 
to repeat the whole experiment, let us examine the sample 
path in detail. First note that MI would have a transmission 
time of (H + L,) (0 + AO) or an increase in transmission time 

AX, = (H + LJAO (3.5) 

over its previous value of X ,  = (H + L,)O. We can rewrite (3.5) 
as 

AX, = (AO/O)X,. (3.6) 

Consider again the sample path shown in  Fig. 2. (We will 
call thisobserved sample path thenominalpath and theone 
for the case of 8 + A0 the perturbed path.) By hypothesis 
(i.e., by the way the above question was posed) the arrival 
pattern and message lengths (i.e., the A, and L, values) are 
defined to be the same for the case of 0 + AO. However, M, 
would take AX, longer to  leave the source node. Thus M2 
would wait AX, longer (than in  the nominal) to start its trans- 
mission, and then take AXz longer in transmission, thus 

leaving the system a total of AX, + AX2 later than in the nom- 
inal (see Fig. 3). In general, for any M, in the first BP, the 
increase in system time (compared to nominal) would be 

I 

At,  = AX/ (3.7) 
/ = 1  

and using (3.6) we can rewrite this as 

At, = (AB/@ c X, .  (3.8) 

Coming to M,, we need to proceed more carefully. At the 
departure of M, we distinguish between two possibilities. 
i) M4 still departs before M, arrives and the system goes idle 
as in the nominal path-this case is shown in  Fig. 3. ii) The 
accumulated delaysare such that M5arrives before M4 leaves 
and so the BP in the perturbed path does not terminatewith 
M4 but continues to M, and possibly beyond (see Fig. 4). We 
will now analyze these two cases. 

In case i) even in the perturbed path M 5  arrives at an idle 
system and so it will experience an increase in  system time 
of AXs. Arguing as before, M6 will experience an increase 
of AX5 + AX6. In  general then, message k, + 1 found the 
system idle in the nominal path, and if it finds the system 
idle in the perturbed path, then for message k, + 1 through 
k ,  + n, (i.e., those that formed BP, in the nominal) the 
increase in system time would be 

/ = I  

(3.9) 

Next, in case ii), let AS, be the amount of time by which 
BP, extends beyond the arrival of M5 (see Fig. 4). Then Ms 
will wait AS1 before starting service, and an additional AX, 
in transmission, so that 

Ats = AS1 + AX5 (3.10) 

and arguing as before, 

At6 = A s ,  + A x ,  + Ax6 (3.11) 

and indeed, 

At, = AS, + (AO/B) XI  / = 1  
(3.12) 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPerturbations 

for any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM, that belonged to BP, in the nominal path. To gen- 
eralize this, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAS,- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,(AO) be the amount by which BP,-, 
extends beyond the arrival of message k, + 1. Then 

, 
Afk , , ,+ !  = AS,-,(AO) + (ABM) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc Xk,+/, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 5 n,. (3.13) 

Here we explicitly indicate the dependence of AS,,_ on the 
size of the change AO, as we will need to discuss this below. 
Also note that the formula above is intended to include the 
case where BP,-, may have "pushed" BP,,. The value of 
A.S,_,(AO) included all effects of prior busy periods up 
through BP,,,-l. In fact, we shall now let (3.13) include case 
i) as well, by simply defining AS,_,(AO) to be zero in that 
case. 

Putting these arguments together, we can write an 
expression for the change in average system time of a mes- 
sage, due to the change AO, 

Ai(fl ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, N;  AO) = (IiN) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2; 

/ = I  

hf r i r n  

n = l  r = l  

, 
. A.S,,_,(AO) + (AO/O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX k , , , + ,  . (3.14) 

/ = 1  

Note that in the perturbed path the pattern of BPs may be 
quite different. However, for this set of N messages, (3.14) 
i s  exactly the change in the average Gystem time-no 
approximations have been made as yet. 

Define the following set of BPs 

B(AO) = {rrIAS"?-l(Ao) > 0 )  (3 15) 

that is,thesetofBPsthat"get pushed" bythe perturbation 
Again, this set depends on tlle size ot IO. Then (3.14) can 
be written 

where, for simplicity of notation, we have removed the 
arguments (0, 7) trom A i o n  the left-hand side (LHS). 

Considerthetollowingquantity, which occurswithin the 
first summation in (3.16): 

Fig. 4. Perturbations in the samplc path for case ii). 



This can be seen to  be a well-defined function of a given 
BP. We will use this below. 

Let us return to some basics for a moment. In the fol- 
lowing, assume that we are given a sufficiently long 
sequence of interarrival times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Al, A,, . . . } and mes- 
sage lengths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ L , ,  L,, . . .} ,  and that all experiments (for 
whatever values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, y, N )  are performed with this set of 
inputs A, L. There is nothing statistically wrong with this 
procedure if it i s  physically possible to  repeat the experi- 
ments this way, provided that the property l imN-m T(0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, 
N )  = T(0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy) holds over the sequence A, L for any of the cho- 
sen 8, y values. Indeed, in simulation where inputs can be 
controlled, this experimental design is called common ran- 
dom numbers (CRN) and often used with effect to reduce 
computation time [24], [54]. With thks experimental frame- 
work,thequantity[?(O + AO,y,N) - T(O,y,N)]/AOistheCRN 
finite difference estimate of the gradient. The way that PA 
poses its hypothetical question (“what would have hap- 
pened. . .”, see beginning of Section Ill-B) is clearly similar 
to the CRN approach. (However, the limiting properties are 
different as will be seen below.) 

Now in terms of our objective we are interested in esti- 
mating the sensitivity of T to 0, or formally, in the value 

dTld0 = l im [T(O + AO, y) - T(O, y)]/AO. 
A o - n  

(3.18) 

To relate the right-hand side (RHS) to experimental values 
7, we write it as 

dTldO = l im lim [?(e + AO, y, N )  - ?(e, y, N)I/AO 
3 0 - 0  N - m  

(3.19) 

which can also (by our definition of A?) be written 

dT/dO = lim lim A?(N; AO)/AO. (3.20) 

Now we will introduce the following assumption which 

Assumption (AI): The system being studied has the prop- 

A 8 - 0  N - m  

will be discussed in detail later. 

erty that 

lim lim (1/N) c nmAS,_,(A0) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. 
AO-0 N - m  mGB(A8) 

Under (AI), and from (3.20), (3.17), and (3.16) we get 

M 

l im lim ( I / N )  c Hm/B = dT1dO. (3.21) 

However, A0 has “canceled out“ of the LHS, so we can 
remove the first limit! Thus 

As-0 N - m  m = l  

M 

lim (1/N) c Hm/O = dT/dO (3.22) 

for systems which satisfy (AI). On  the LHS we have a quan- 
titywhich i) isdefined completely by observingthe nominal 
sample path alone-the H, values are easily computed (see 
below) while the nominal experiment is  evolving; ii) con- 
verges to  the true gradient dTldO as N goes to  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA03. This sug- 
gests that the following might be an experimental estimate 
of the gradient with respect to 8 from the nominal exper- 
iment alone: 

g&N) = (i7 H,,,>i,NO). (3.23) 

N - m  m = l  

Computationofg,(N) isextremelyeasyas seen in Algorithm 
1. 

Algorithm I :  Estimation of dT/dO during one experiment 
on a communication link. 

0) Initialize: J + 0; XSUM + 0; HSUM + 0; THETA + 

1) Update: At departure of next message (with ser- 
0 

vice time observed to be XJ), 
1.1) J + J+I 
1.2) XSUM + XSUM + X J  
1.3) HSUM + HSUM + XSUM 
1.4) I f  l ink i s  now idle then XSUM + 0 

2) Test: I f  J = N then go to OUTPUT else go to 
UPDATE 

3) Output: The IPAestimateof thegradient i s  HSUMi 
(N *THETA) 

Lastly, we consider the estimation of dT/dl.  Note that 

x, = y + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL ,O (3.24) 

so that with y + Ay  we would have an increase in each X, 
value of 

AX, = Ay. (3.25) 

In  this case, the analog of (3.7) and (3.8) would be 

At, = Ay 
, = 1  

= A y  1. (3.26) 

While we could write this as A y ,  we leave it in the above 
form to showthat forthiscase the estimation of thegradient 
just involves accumulating 1’s. The corresponding gradient 
estimate i s  

, = 1  

M n,n I 

&(N)  = ( c x c I+. (3.27) 

This estimate can be computed at the same time as the pre- 
vious one: Algorithm 2 shows simultaneous estimation of  
dT/dOand dTldywhileobservinga singleexperiment. (Note 
that for (3.27) to  be a good estimate a property simi!ar to (AI) 
would have to be satisfied with respect to they parameter.) 

Algorithm2: Simultaneous estimation of dTld8 and dTidy 
during one experiment. 

m = 1  , = I  j = l  

0) Initialize: 

1) Update: 

2) Test: 

3) output:  

J + 0; XSUM + 0; JSUM 0; HSUM + 0; 
GSUM + 0; THETA + 0 
At departure of next message (with ser- 
vice time observed to be XJ); 
1.1) J + 1 
1.2a) XSUM + XSUM + X J  
1.2b) JSUM + JSUM + 1 
1.3a) HSUM HSUM + XSUM 
1.3b) GSUM + GSUM + JSUM 
1.4) I f  l ink i s  now idle then XSUM + 0 

and JSUM + 0 
I f  J = N then go to OUTPUT else go to 
UPDATE 
The IPA estimate of dT/dO i s  HSUM/ 
(N *TH ETA) 
The IPA estimate of dTldy i s  GSUMIN 
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Thetwoestimatesabove,&(N)and&(N) are infinitesimal 
PA(1PA)estimatesand ascan beseenfromAlgorithm2 their 
computation is quite simple. We conclude by motivating 
the term i no logy " i n f i n i tesi mal. " Cons ider agai n the sample 
path in Fig. 2. We will argue informally, but a precise state- 
ment of assumptions and a formal derivation (for a general 
DEDS) can be found in Suri zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[58]. For a given experiment 
(which has been observed) there must exist an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE > 0 such 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, > E for all m (I, i s  the "idle time" between BPs, and 
by definition BPs must be separated). Now let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

nm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y ,  = c X k m + , ,  and K = max Y,. (3.28) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

, = 1  m 

For the case where 0 i s  changed, the amount a BP i s  length- 
ened in the perturbed path is YmAO10 (provided that no BPs 
coalesce). Now choose 6 < d / K .  Then for all A0 < 6 we have 

Y,A0/0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 KAOIO < K610 < E < I,. (3.29) 

So that indeed no BPs will coalesce for such A0. Hence 
AS,(A0) will be zero for all m and from (3.16) and (3.23) we 
see that 

g&N) = Af(N;  A0)/A0, for A0 < 6. (3.30) 

Inotherwords, the IPAestimateequals the finitedifference 
estimator for all A0 "sufficiently small." 

At this point one might be tempted to make the following 
(erroneous) argument: "Since the gradient can be obtained 
as the limit (as A0 -+ 0)  of CRN finite difference estimates, 
and since (after A0 drops below 6) the IPA estimate equals 
theCRN finitedifferenceestimate,sothe IPAestimate must 
behave like the CRN finite difference estimate. In partic- 
ular, as we use larger values of N, the IPA estimate will con- 
verge to dTld0." The fallacy in this argument is to do with 
the subtleties of changing the order of two limits. The cor- 
rect definition of the gradient, as seen in (3.19), involves 
letting N go to  infinity first, and then letting A0 go to zero. 
In the "erroneous argument," we have chosen a finite N, 
and then let A0 + 0 for this fixed N. After that, we have let 
N -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA03. So we have reversed theorder of the limits required 
in the definition (3.19). If we try to fix this argument by let- 
ting N + wfirst,weencounteradifferent prob1em.A~ more 
and moreBPsareobserved, it is  l ikelythattherewill besome 
observations of smaller and smaller values of I, (this argu- 
ment can be rigorously stated, see Section IV). Thus as N 
+ w the value of E (above) may become arbitrarily small. 
The corresponding value of 6 above must then also become 
arbitrarily small, and this is the origin of the "infinitesimal" 
terminology. In the limit, there may be no 6 > 0 that sat- 
isfies the above requirements, so that we cannot generate 
a limiting sequence in A0 for which (3.30) holds. 

On the other hand, changing the order of limits i s  not 
necessarily wrong: often it may be admissible, and indeed, 
in many other analysis situations it i s  used with effect. So 
the keyquestion here is:when isthechangeof limitsadmis- 
sible? Whenever i t  is, we have the possibility o f  simple a n d  
efficient estimation o f  certain types o f  parameter sensitivi- 
ties. 

We consolidate the ideas in this section by the following 
statement, made with respect to the 0 parameter (an anal- 
ogousonecould be madefory). Forclarity,weadd theargu- 
ment Bo to AS,-, below, to indicate the nominal parameter 
at which AS,-, i s  calculated. 

Proposition 3.1: For a single server queueing system, let 
0- '  be the speed of the server. For an experiment on the 
system, let f(0, N )  be the average system time observed over 
N customers, and define T(0)  = l imN-m f ( 0 ,  N) .  If 

i) T(0)  and dTld0 exist in a neighborhood of Bo 
ii) lim,o-o limNdm (IIN) n,AS,-,(O0, A0) = 0 

then the IPA estimate g&N) generated by Algorithm 1 has 
the property that at 0 = Bo 

N - m  lim g&N) = dTId0 

(in other words Algorithm 1 provides a consistent estimate 
of the gradient while observing only one experiment). 

The above proposition i s  stated so as to show the depen- 
dence of IPA's behavior on the limiting behavior of the 
AS,-, quantity. However, we can also write the condition 
for consistency of IPA in a "raw" form as the exchange of 
two limits. From the discussion surrounding (3.30), we see 
that the LHS of (3.22) can be written as 

A ~ ( N ;  AB) 
l im l i m p  

N - m A 0 - 0  A0 
(3.31) 

which i s  the value to which the IPA estimate will converge. 
ThevaluedTldOon theother hand, isdefined by(3.20).Thus 
we have this alternative statement. 

Corollary 3.1: For the system in Proposition 3.1, IPA will 
provide a consistent estimate of the gradient if the system 
satisfies 

A f ( N ;  A8) A f ( N ;  At)) 
lim lim ~ - - lim lim ~ . (3.32) 

M - O N - ~  A0 N - ~ A O - O  A0 

As already mentioned, the description in this section has 
proceeded with no reference to  any assumptions about the 
probabilistic structure of the system. This is entirely inten- 
tional since PA i s  based on sample-path arguments and the 
intuitive ideas about it do not require specific probabilistic 
structures. However, in order to see whether a particular 
PA algorithm will work for a given system, we need to bring 
in specific assumptions for that system. Thus the natural 
place for the probability to be brought in is after the basic 
sample path arguments. As an example, for IPA applied to 
a single server queue, the critical question is: for what 
classes of queues do the conditions i) and ii) in Proposition 
3.1 hold? This and related questions will be the subject of 
the next section. 

IV. IPA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFOR A GI/G/I QUEUE 

We now study the IPA algorithm of the preceding section 
applied toaGI/G/ l  q~eue.~Thedevelopment in this section 
i s  based on Suri and Zazanis [65] and Zazanis and Suri [68]. 
Although no knowledge of queueing theory i s  presumed, 
this section requires more familiarity with probability than 
the earlier part of the paper. 

A. Development of Algorithm 

A sample path for this queue i s  obtained by specifying 
two sequences of i.i.d. (independent and identically dis- 

'This notation means the interarrival times have a general dis- 
tribution but are independent of each other (GI), the service times 
have a general distribution (G) and there i s  one server (1)-see for 
example Kleinrock [45] for further explanation of such notation. 
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tributed) random variables: {Al,A2,A3, . . . } isthe sequence 
of interarrival times and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Xl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXI, X3, . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe }  the sequence of 
service times (see Fig. 2). We assume that the r.v. (random 
variable) XI depends on a parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, the nature of this 
dependence being specified later. We are interested in the 
mean system time of a customer, in  steady state, which we 
denote T(B), and we are also interested in the sensitivity of 
this to 0, i.e., dT(B)/dO. Let t,(O) be the system time of the i th  
customer (as explained in Sections II and Ill). We will also 
assume that the system i s  stable, i.e., €XI < €A,. These 
assumptions imply that the system is ergodic and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N 

l im (I/N) C t, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn e )  a.s. (4.1) 
N - m  r = 1  

(a.s. denotes "almost surely" or with probability 1). This 
equation means that, in practical terms,wecan estimate the 
value of T(0) by a sufficiently long experiment. To see this, 
let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N 

i ce ,  N )  = (IN) C t,(e). (4.2) 
r = l  

Then ?(e, N )  satisfies 

lim ice, N )  = T(e) a.s. (4.3) 
N - m  

or in experimental terms, the longer the experiment, the 
more accurately ?estimates T, so that Tcan be considered 
a reasonable experimental estima!or for T. Equation (3.4) 
shows the explicit dependence of Ton the A,, XI, and N val- 
ues. 

Now we develop the IPA algorithm for this system. Let 

(4.4) 

be the change in service time due to  a change AB in the 
parameter. Similarly let At,@, AO) denote the corresponding 
change in system time. Then from the arguments in Section 
Ill, specifically those leading up  to  (3.13) we have 

AX,@, As) = X,(O + Ab') - XI (@ 

I 

A t k m + r  = ASm-, + C AXkm+, i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 n,. (4.5) 
/ = 1  

(We have dropped the arguments (0, AO) in  At, and 
to  simplify notation.) Analogous to  (3.14) then we also have 

A i @ ,  N; Ae) = ( I IN) c ASm-1 + (4.6) 
m = l  1=1 nm [ ,I, 

Now define, in  the usual way 

dX,ldO = l im [ X I @  + AO) - X,(O)]/AO = l im AX,lAB (4.7) 

which limit we assume, for the moment, exists. We will also 
need a minor re-statement of assumption (AI) in proba- 
bilistic terms as follows. 

Assumption (A7'):The system being studied has the prop- 
erty that (AI) holds as. 

In  addition, we also need some technical conditions on 
the service time r.v.'s. One possible approach i s  to  use the 
concept of "uniformlydifferentiable a.s."as defined by Cao 

Assumption (A2): The r.v.'s XI@) are uniformly differen- 
tiable a.s. at 0. 

Readers not familiar with this concept may regard it sim- 
ply as a condition that ensures that the dX,ldB values are 

A 8 - 0  A 8 - 0  

[41. 

sufficientlywell-behaved for almost all outcomes of X,. With 
these assumptions, 

dTldB = l im lim A?@, N; AB)lAB a.s. 
Al l -0  N - m  

M nm I 

= lim lim ( I /N) c AXkm+,/AB 
AO-0 N - m  m = l  1 = 1  / = I  

M nm I 

= l im (1/N) C c dXkm+,ldO. (4.8) 

Here, in the second step, the ASm-, term dropped out 
because of (AI). In  the last step, it i s  easily verified that the 
uniform differentiability condition (A2) enables the limit 
with respect to  AB to  be performed first. (This was pointed 
out to the author by Chen [19].) Now if we define 

N - m  m = l  , = I  / = I  

nm I 

, = I  / =1  
h, = ,C .c dXk,+,ldB (4.9) 

we have 

M 

l im ( I /N) C h, = dTld0 a.s. (4.10) 
N-CC m = l  

so that the value 

M 

g(N) = (UN) h, (4.1 1) 
m = l  

i s  a reasonable estimator of the gradient of T with repect 
to B. All we need to  do, in  order to  makeg computable from 
a single sample path, is to  discuss how dX,ld0 may be esti- 
mated from the observation XI;  we do this next. 

B. Sample Gradient of a Random Variable 

A concept that i s  central to  the PA approach is deter- 
mining the effect on the value of a r.v. when one of its 
parameters i s  changed. In  order for PA to  be performed cor- 
rectly, it is necessary to formalize some dependencies that 
are not explicitly considered in other treatments of DEDS. 
Specifically, we shall see how dX,/dO can be expressed in  
terms of XI and B. This section is based on  the Appendix of 
Suri [58]. However the remarks here wil l be brief and infor- 
mal; the reader should see [58] for details. 

In  engineering systems the parameterization of an r.v. 
usually models some physical relationship in  a system. In  
such cases, formalizing the dependency is clear. For 
instance, in the communication network model of Section 
Il,we had,from thephysicsofthesystem,thatX, =&',where 
Y, = H + L,, see (2.4). In  such cases, 8 i s  said to  be a scale 
parameter of the distribution of XI, and by straightforward 
differentiation we get dX,/dB = VI which can be written 

dX,ldB = X,lO (4.12) 

a relationship that i s  true whenever 0 is a scale parameter. 
As a second common situation, let X I  = 0 + Y, in which 

case 0 i s  called a location parameter. (In the communication 
network example, y was a location parameter of XI,  see 
(3.24).) Again by differentiation we get 

dX,ldB = 1 (4.13) 

if 0 i s  a location parameter. 
What (4.12) and (4.13) mean i s  that the value of dX,/dO i s  

"observable" from the values of XI and 0 (trivially so in the 
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location parameter case), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 that a second experiment at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 0  is not required to estimate dX,idH. (In tact, onecan see 
the heart of the idea of IPA right here! For these cases, the 
gradient of an r.v. can beestimated just from an observation 
on the r.v. Howeverthis i s  just 1PAtorar.v.; IPAtorasystem 
requires determining how zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa11 these dX,idH values interact 
through the system and affect the tinal performance.) 

While location and scale parameters can be used to pa- 
rameterize quite general distributions, several commonly 
used cii5tributions are described by such parameters. A few 
examples are: 0 is a scale parameter of the exponential dis- 
tribution with inean 0; it i s  a location parameter of any nor- 
mal distribution with mean 8 and any uniform distribution 
with mean 0. 

For many ot the common distributions, even i f  a param- 
eter is not immediately a location or scale parameter, it can 
be made so by an appropriate transtormation. A rather sim- 
ple exdmple is where an exponential distribution i s  char- 
acteri7e.d by its rate A.  In this case the parameterization 0 
= l h  makc5 0 a scale parameter. Another common case i s  
the normal distribution. Let the r.v. X have the distribution 
N(u, 0') .  Then the r.v. Y = X - p will have a as a scale param- 
tJtrr. S o  dYldo = Yin. Also, X = Y + p so that dX/do = 

dYidn = Y / n  = (X - p) ia .  The tinal expression gives the deriv- 
ative in terms ot X a n d  its parameters, as desired. Similarly, 
i i  X is unitormly distributed in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ p  - 6, p + 61 we can derive 
dXidd ( X  - p ) / &  

In more gcneral cases, it is possible i o  derive an expres- 
sion tor dXid0 using results from [58]. As examples, if F(x;  
H! 15 the cumulative distribution function of X(8)  then under 
ccrtain conditions elaborated in [58] 

F - ' ( F ( X ;  0); 0 + A0) -- X 
= (4.14) 

dX 
d0 i,i-.lI A0 

Under those tondltions the llmlt exists and the R H S  can be 
seen to  depend only on X and 8 Under additional condi- 
tion5 on the smoothness ot F. we can write 

dxido = - (aFiao) i (aFiax) (4.15) 

wherethe RHS is evaluated at X, 0. Again thisgivesastraight- 
torward way of expressing dXid0 in terms of X and 8. The 
purpose ot this section i s  to justify the following assump- 
tion. 

Assumption (A.3): The r.v.'s X , ( @  have the property that 
dX,/d0 can be expressed as $(X,, 8) .  

In terms ot implementing the IPA algorithm, this assump- 
tion assures us that dX,/dO can be observed on the nominal 
sample path. (In thecaseotsimulation, thereare someother 
implications too, see [57], [581.! There is  another property 
here that may be useful in practical implementations. In 
many instances, the actual torm of the distribution function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
F ( x ;  8 )  for the r.v. X I ( @  need not be known. For instance, if 
0 is a scale parameter (which we might know from the phys- 
ical properties, e.g., for the communication network), then 
dX,id0 = X,/0, and by implementing IPA we can do a sen- 
sitivity analysis without having to assume any distribution 
ior X,. (In tact, even it the assumption that 0 is a scale param- 
eter is invalid, PA may still provide reasonable gradient esti- 
mates [13].) In the case of a location parameter, dX,idO = 1 
and we do not even need to know the value of 0 in order 
to do the sensitivity analysis! Readers interested further in 
this subject of differentiability of a r.v. should see the ideas 

in [58], [65], [57] for the PA view, and also a recent report by 
Glynn [28]. 

C. Statement of Algorithm 

Assumption (A3), along with (4.9) and (4.11) leads to Algo- 
rithm 3 which i s  an IPA algorithm for estimating d7id8 for 
a Gl/G/ l  queue from a single experiment. To understand 
Algorithm 3, simply replace Step 1.2) in Algorithm 1 with the 
more general Step 1.2) seen in Algorithm 3, where PSI(. ,  8 )  
i s  a function that returns the value $(., 8 ) .  

Algorithm 3: Estimation of d7idH from single sample path 
of GI/G/1 queue. 

0) Initialize: 
1) Update: At departure of next customer (with ser- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ + 0; XSUM + 0; HSUM + 0 

vice time observed to be XJ): 
1.1) J - J + 1 
1.2) XSUM + XSUM + PSI(XJ, THETA) 
1.3) HSUM + HSUM + XSUM 
1.4) I f  server i s  now idle then XSUM + 

0 
2) Test: I f  J = N then go to OUTPUT else go to 

UPDATE 
3) Output: The IPAestimateofthegradient is HSUMI 

N 

Readers familiar with experimental approaches such as 
discrete event simulation will immediately see possibilities 
for reduction of bias in the above estimate (e.g., by elim- 
inating the initial transient). Since the estimates obtained 
by PA are just some functions of experimental observa- 
tions, the usual statistical techniques can be applied to get 
confidence intervalsfor thegradient or to reduce initial bias. 
These include independent replications, batch means, and 
regenerative methods [24], [54], [22]. Use of a regenerative 
technique i s  particularly appropriate with any PA algorithm 
since regenerative methods develop interval estimates 
using only one sample path. Indeed Suri and Zazanis [65] 

present several numerical examples showing gradient esti- 
mates, along with 95-percent confidence intervals, obtained 
from a single sample path by using an IPA algorithm along 
with regenerative techniques. 

D. Consistency of IPA for the GI/G/I Queue 

We will consider now, more precisely than before, the 
conditions underwhich the IPA algorithm provides "good" 
estimates, in a sense to be defined here. Following the ter- 
minology of statistics we say the estimate g ( N )  in (4.11) is 
strongly consistent if 

lim g ( N )  = d7id8 a.s. (4.16) 
N - m  

and we say it i s  asymptotically unbiased i f  

l im Eg(N) = dTid0. (4.17) 

These are the minimal properties that we should expect for 
agood estimator since (speaking in informal terms here) the 
former ensures that thevariance of the estimator decreases 
with the length ot the observation and the latter ensures 
a similar decrease in bias. 

Onewaytostudythe propertiesofthe IPAestimatewouId 
be to investigate the conditions under which (A I ' )  holds. 
An alternative, direct way i s  to look at g(N)  itself. After all, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I - m 
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g ( N )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis  afunction of theX,values, albeit acomplicated func- 
tion. As a first step we might look at analytically tractable 
systems and see if for such systems the properties of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( N )  
can also be deduced. This approach was taken by Suri and 
Zazanis [65] for the M/G/I  queue. The interarrival times for 
this system are exponentially distributed. In [65] it was 
proved that, for a fairly general class of service time dis- 
tributions, the IPA estimate g(N)  is indeed strongly con- 
sistent and asymptotically unbiased. An IPA estimate of the 
gradient with respect to the rate parameter of the arrival 
distribution was also derived in  [65] and this too was shown 
to be strongly consistent and asymptotically unbiased. 

While the proof in [65] i s  too involved to discuss here, we 
will discuss a simpler case. A corollary given in [65] i s  that, 
for a customer entering an M/G/l  queue in steady state, the 
IPA value of the gradient of this customer’s system time i s  
an unbiased estimate of dT/dO. We will prove this for a sim- 
pler system, the M/M/I queue. The proof here is based on 
a more general approach developed by Zazanis [69]. How- 
ever, we use a simplified version of his proof as we need 
only a subset of his results. 

An M/M/I queue is described by exponentially distrib- 
uted interarrival times with rate A (i.e., mean 1/11, and by 
exponentially distributed service times with mean zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. The 
traffic intensity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp for this system i s  given by p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXO. We 
assumep < 1. LetBbether.v.forthedurationofanarbitrary 
BP. Some standard results from queueing theory are (see 
e.g., [45]): T(O) = O / ( l  - p ) ,  EB = O / ( l  - p ) ,  and EB2 = 202/(1 
- p)’. Differentiation gives dT/dO = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1/(1 - P ) ~ ,  the “true 
value” of the gradient. Also, since O is a scale parameter of 
X,, dX,/dO = X,/O. 

Now consider a customer arriving at this queue in steady 
state, and let this customer be the j th  customer in this BP. 
Then the IPA value of the gradient for this customer i s  (see 
arguments in Section I l l )  

g = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf: dX,ldO = (110) 5 X,. (4.18) 

Now consider the term E { = ,  X,. From Fig. 2, we see that 
this i s  the total time since the beginning of the BP until the 
departure of customerj (e.g., t r y j  = 3 and look at M3). From 
the point of view of customerjwe can decompose this total 
time intor,, the age of the BP when customer j arrived, plus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t,, the system time of customer j .  Thus 

g = (z, + t , ) /O.  (4.19) 

We wish to evaluate Eg and see if it equals dT/dO. We can 
write 

1 = 1  r = l  

Eg = (Ez, + Et,,/O. (4.20) 

Now Et ,  i s  simply the expected system time of an arbitrary 
customer, so it just equals T(O). Next consider €2,. When this 
customer arrived at the queue, it must have found the server 
either idle or busy: denote these two possible events by I 
and b (respectively), and their probabilities by p f  and Pb. 

Then 

€2, = E[z,(llpf + E[z,Iblph. (4.21) 

If the server was idle, z, is identically zero, so we only need 
to consider the final term above. Since exponential arrivals 
take a “random” look at the system (see [45]), P b  i s  just the 
utilization of the server, which isp, and E[z,lb] i s  the average 
age of a BP seen by a random arrival into the BP. From a 

standard result in renewal theory [45] this average age is 
EB2/2EB. Thus 

Ez, = pEB2/2EB. (4.22) 

From these arguments and (4.20) we have 

Eg = [pEB2/2EB + T(O)]/O. (4.23) 

Substituting values for the M/M/ I  queue in the RHS we get 

Eg = [pO/(1 - p)2 + O/(l - p)]/O 

= 1/(1 - p ) 2  (4.24) 

which indeed i s  the value of dT/dO given above, and so the 
unbiasedness is proved. A more sophisticated extension of 
this argument is used by Zazanis [69] to consider IPA for 
higher moments of the system time. 

Although the ”direct” proof above, and the more general 
onefortheM/C/ l  queuein[65],are reassuringthat IPAgives 
good estimates, these proofs do not give any insight as to 
“why“ IPAworks. Also, thewhole purpose of PA i s  to  tackle 
systems that arenotanalyticallytractableand which require 
experimental methods. Nevertheless the results for simple 
systems have their place. First, if we are to  prove consis- 
tency of PA algorithms for general DEDS we should at least 
be able to show it for some simple systems, so such proofs 
can beconsidered afirst step in  thisdirection. Second,from 
a historical perspective, the early PA papers encountered 
criticism that thealgorithms might not converge to the true 
gradientvalues. Atthat timeonlyexperimental resultswere 
available and these were not considered to be sufficient 
“proof.” Hence the first analytical results on simple queues 
and simple queueing networks (e.g., [36], [65], [q) did much 
to convince the research community that IPA could work 
at all. The attention has now shifted to understanding why 
it works when it does, and for what class of systems IPA will 
work. We will now cover these questions. 

Wewill illustratewhy IPAworks forthe M/M/I queue. The 
argument here will be informal, with the aim being mainly 
to provide insight. Supposea BP has n customers in it. Con- 
sider the same BP with parameter 0 + AO. From the argu- 
ments in Section 111-8, the nth customer will leave the sys- 
tem an amount of time (AOlO) X, later than in the 
nominal.Call thisvalueAY.The probabilitythatthisBP now 
coalesces with another BP i s  the probability of an arrival 
occurring within this AY period, which is AAY + o(AY). If 
such an arrival occurs, then each customer in this second 
BP (or rather, what was a second BP in the nominal) will be 
delayed by an amount AS, as explained in Section Ill-B, in 
addition to  the amount calculated by the IPA algorithm. If 
I, is  the idle time between the two BPs (e.g., see Fig. 2), then 
AS1 = AY - 11, so that AS, < AY. Thus the expected effect 
per customer in the second BP due to the coalition of the 
BPs i s  

[AAY + o(AY)]AS, 

< [AAY + o(AY)]AY 

= o(AY). (4.25) 

Since AY = (E;=, X,)AO/O, we see that the expected effect 
i s  o(A0). For gradient calculations we only need to account 
for effects of the same order as AO. In  informal terms then, 
the effect that IPA ignores in its calculations i s  indeed 
“ignorable” for the purposes of gradient estimation. Alter- 
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natively one can see this as an explanation of why Assump- 
tion (AI') holds for this system. 

We should immediatelycaution the reader that while the 
above argument is intuitive, it i s  not rigorous. Specifically 
it ignores the question of the boundedness of the sum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Cy=,  X, and its square zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(AY2)  and on a more subtle level it 
ignores the fact that the effect zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAS, on the second BP may 
cause that to coalesce with a third, and so on. Nevertheless 
this approach can be made rigorous: see the Appendix of 
Heidelberger etal. [33] for the hlIGIl case, and Zazanis and 
Suri [68] for the Gl iGI l  case. 

The preceding paragraphs contain the fundamental 
insight about IPA in any system. Essentially, the IPA algo- 
rithm neglects certain occurrences (such as the coalescing 
of BPs) during its calculations. The net impact of these on 
the performance measure i s  given by the product of two 
quantities: the probability of such an occurrence, and the 
amount it affects the performance. If this product turns out 
to be of o(AO), then IPAwill give a consistent estimate of the 
gradient. Understanding this elementary principle leads to 
a "core" understanding of IPA. More precise treatments of 
this point can be found in Cao [4] and Heidelberger et a / .  

Wl. 
We will now re-state an analog of Corollary 3.1 in prob- 

abilistic terms. Our approach in Section Ill-Awas motivated 
by an argument developed on one sample path, and this 
led to limits with respect to N --t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. We can, however, state 
the basic conditions for consistency of IPA with respect to 
Expectation instead. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt (0)  be the system time for an arbi- 
trary customer arriving at a system in steady state. For 
ergodicsystems,thelimitingaverageovercustomers in one 
sample path (i.e., N ---* in our case) equals the expected 
steady state value, so that for such systems T(0), the limiting 
sample path value in Proposition 3.1, equals Et(0). Thus we 
can write dTIdO as 

(4.26) 

O n  the other hand, IPA calculates the values dtJd0, where 
the t, are customer values as in (2.5), and in steady state for 
the above customer it would calculate the value dt/dO. As 
before, ergodicity implies that the limiting average of 
dt,ld0 will be EdtIdO. So IPA wil l be consistent if 

(4.27) 

Again, we see that consistency of IPA i s  related to changing 
the order of limits (Expectation i s  basically an integration 
operation, which is defined as a limit). Often in the liter- 
ature one sees (4.27) as a condition for consistency of IPA 
rather than the statement in Corollary3.1. Since most of the 
systems we deal with are ergodic, (4.27) can be seen as just 
a re-statement of Corollary 3.1 where the limit with respect 
to N has been replaced by the Expectation. 

v. IPA F O R  QUEUEING NETWORKS .AND GENERAL SYSTFMS 

So farwe have illustrated the main ideasof IPAviaasingle 
server queue model of a communication link. Now we will 
look at IPA for more general systems. First a simple pro- 
duction line, with just two machines, will be analyzed. Then 
we will consider a general network of servers. Finally, we 
will consider a general discrete event system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A. /PA for a Simple Production Line 

We will now give an example from manufacturing. The 
development here is based on the early work of Ho, Eyler, 
and Chien [41]. Consider the production line in Fig. 5. Server 

Ruffer [S i re  8 )  a T w  Machine Machine hro;ghput 

Uninterrupted 
Supply zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

of 

Parts 

Fig. 5. A simple production line. 

1 (S,)isamachinewhosecycletimedependsonaparameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O1. We assume (for simplicity of the example) that S1 has an 
uninterrupted supply of parts to work on. After Si finishes 
its work cycle on a part, it places the part in the buffer. The 
second machine SL picks one part from the buffer, works 
on it for a cycle time (which depends on a parameter O ? )  and 
then releases it to a finished goods area. The size of the 
buffer i s  B. If the buffer is full when S ,  completes a part then 
the part stays at S,, which is then unable towork on another 
part and is said to be blocked. (This is the transfer-blocking 
definition. There i s  an alternative, service-blocking, more 
common in communication networks, see Suri and Diehl 
[61] for a discussion.) Si remains blocked until S, finishes 
its current cycle, releases its part, and takes the next part 
from the buffer, thereby releasing a buffer space. We will 
assume here that all transfers take place in a negligible 
amount of time, and that the finished goods area always has 
room for parts (i.e., S, is never blocked). The performance 
measure of interest for this system is its steady state 
throughput (number of parts produced per unit time), 
denoted 7(01, 0 2 ) .  

We will now define an experiment on this system. The 
experiment begins with no parts in Si ,  S,, or the buffer. It 
ends when the Nth part is completed by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS?. Let T be the 
length of time of such an experiment. Then the experi- 
mental estimate of the throughput is 

(5.1) 

While improved experimental estimates could be defined, 
e.g., toeliminatethe initial transient, thiswill suffice for our 
current purposes. Under mild conditions that are usually 
satisfied in practice, this estimate will satisfy 

. i (B , ,  H I ,  N) = NIT. 

as desired for a good experimental estimate (see discussion 
in Section 1 1 ) .  

As before, in order to understand IPA for this system, we 
need to look at a typical sample path and understand the 
basic "dynamics" in this system. Such a path is shown for 
N = 10 in Fig. 6. (N = 10 i s  chosen for illustration. In practice 
one might need N of the order of 10' or even 1O'to make 
(5.1) reasonable.) The values X, and Y, denote the cycle times 
of SI and SL for the i th part. The vertical axis represents the 
total number of parts at S, and in the buffer. (The reader can 
think of the first unit in the graph's height representing a 
part at SI  and the remaining units indicating parts present 
in the buffer.) The buffer size is 5 = 2 for this example. We 
will denote the i th part by P,. At the start of the experiment 
SI begins a cycle on P, and Sz is idle (dashed lines in figure). 
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I t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANominal sample path for the production line. 

AfterX, timeunitsP,goestoS,whichworkson i t for  Y,time 
units and P1 leaves. S1 is s t i l l  busy with P2 so S2 goes idle 
again. Eventually S1 completes its cycle on P2 which goes 
to S2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASl then also completes P3 but since S2 is st i l l  working 
on P2, P3 is placed in the buffer. Similarly P4 i s  also put in 
the buffer. The total height of the graph i s  now 3 (one part 
at S2 and two in the buffer) and the buffer i s  full. When S1 
completes P5 it cannot move the part out and i s  now blocked 
(see crosses after X5 in the figure). Finally S2 completes its 
cycle on P2 (endpoint of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY2). Now a number of events occur 
in negligible time (in our model) sowe need to follow them 
carefully: P2 leaves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,; P3 immediatelygoes into&; P4 moves 
down one position in the buffer; P5 moves out of S1 and into 
the buffer (see downward arrow at the end of the crosses); 
and lastly, S1 i s  now "unblocked" and starts working on P6. 
Thevertical double line inthegraphatthistimeinstant indi- 
cates that the buffer contents dropped to one momentarily 
and then rose back to  two. The reader should now follow 
and understand the sample path through to  the end of the 
experiment at time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. 

Let us now develop an IPA algorithm to estimate dddOl 
for this system. Let AX, = Xj(O1 + AO,) - X,(O,) denote the 
changeincycletimesatS1duetoachangeAO1 intheparam- 
eter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAel. The perturbed sample path i s  shown in Fig. 7. P1 
leaves S1 at time AX1 later, S2 starts on P, at time AX1 later 
works for a time Y, (which i s  unchanged), and thus P, leaves 

S2 at time AXl later compared with the nominal. (In the fig- 
urewe have not drawn the perturbed path but, rather, indi- 
cated the changes from the nominal path.) S1 starts on P, 
at time AX, later and takes an extra amount of time AX2, so 
P2 leaves S1 at time AX, + AX2 later. S2 thus starts on P2 at 
time AX, + AX2 later. In a similar way, we follow the per- 
turbed path through to P5 which finishes i t s  cycle at S1 AX, 
+ . . .  + AX, later. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANow a n  interesting interaction occurs. 
The buffer i s  still full so S1 gets blocked (as in the nominal). 
S2 finishes P2 at time AX1 + AX2 later than the nominal, so 
S1 gets unblocked at time AX, + AX2 later than the nominal. 
So we see that while P, started i t s  cycle at S1 at time AX, + 
. . . + AX, later, P6 starts its cycle just AX, + AX2 later. The 
dynamics of the system are becoming noticeable through 
thetracking of these perturbations. The reader should now 
track the perturbations through to the end of the experi- 
ment and verify that the perturbation in total experiment 

This isagood timetoclarify an assumption implicit in the 
above paragraph. We are assuming (as i s  standard in IPA) 
that the perturbations are small enough so that the order 
of events does not change. In the above, we assumed that 
since P, got blocked in the nominal, it also got blocked in 
the perturbed path. (For an actual finite perturbation that 
is large enough, P2could complete at S2 before Ps completes 
at S1 and so P5 would no longer be blocked and the dynam- 

time i S  A T  = AX1 f AX2 + Ax6 + Ax,. 

Fig. 7. Perturbations in the sample path for the production line. 

SURI: PERTURBATION ANALYSIS 125 

_ -  



icsabovewould not becorrect.) Forthe IPAalgorithm below 
we assume specifically that if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, finds S, idle (or is blocked 
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASz, respectively), then that remains the case in the per- 
turbed path too. 

With the above assumption, stating the IPA algorithm 
becomes particularly simple. Let AC, and ACL be accu- 
mulators associated with S ,  and SL. At a given time instant, 
the value of AC, represents the perturbation at S, for the last 
part that left S,. (In Fig. 7, the arrows ( - 1 )  show the values 
of AC, and AC,.) Since we are perturbing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO,, the first rule 
is that at the completion of service of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPI at S,, AC, i s  incre- 
mented byAX,.Thesecond ruleisthat if P,findsS,idle,then 
AC2 gets the value of AC, (see PI, P,, and P, in Fig. 7). The 
final ruleisthat if, bydepartingfromSL,PkunblocksS,,then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AC, gets the value of AC2 (as when P, leaves S2 in Fig. 7). 
These three rules are all that is necessary for gradient cal- 
culation with respect to O,! 

At the end of the experiment (when the Nth customer i s  
served), let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA T  = AC2. AC, is the sum of a selected subset 
of AX, values, say for I E 1. Assume also that (A3) holds (see 
Section IV-B). In that case, let 

From (5.1), since N is fixed by definition of the experiment, 
we have 

This shows that, if we directly accumulate $(X,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO ) ,  instead 
of AX, in the first rule above, and call these new accumu- 
lators A, and A,, then at the end of the experiment the value 
-(N/T')A, will be the IPA estimate of diid0,. The above 
development is summarized in Algorithm 4. 

Algorithm 4: Gradient calculation for a simple produc- 
tion line. 

0) Initialize: 
1) Update: 

2) Test: 

3) output:  

A, + 0; AL + 0; THETA1 + 9, 
Whenever a part (say P,) completes service, 
check these conditions: 

If P, completed service at S,  then 
A, + A, + PSI(X,, THETAI) (XI i s  ser- 
vice time of P,) 

ii) it P, leaves S ,  and terminates an idle 
period of S, then 
A, + A, 

iii) If P, leavesS,and terminatesa blocked 
period of S ,  then 

i) 

A, + A? 
If 5, has completed N parts then go to 
OUTPUT, else go to UPDATE 
Let T be the total time since the start of the 
experiment. The IPA estimate of d7idO is 
- (NIT~A, 

B. IPA for A General Network with Finite Buffers 

Consider a general network of service stations with a sin- 
gle server at each station. Customers may go from any sta- 
tion to any other station, and each station may have a finite 
buffer size. IPAwas extended to such networks by Ho, Cas- 
sandras, and Cao in various early papers [38], [12], [36]. The 
interesting observation we will now make i s  that the pre- 

vious section has given us all the analysis needed to develop 
IPA for this general network. To see this, note that the only 
times when perturbations "propagate" from one server to 
another are when idle or blocked intervals are terminated 
by a customer moving from one server to another. The fact 
that there are only two servers in tandem is not necessary 
to the argument; the customer could have moved from any 
server to any other server. Thus we can generalize and still 
succinctly state the propagation rules ii) and iii) in Algo- 
rithm 4 as follows (below S ,  and Sk are any two servers and 
A,, Ak are the accumulators associated with them): I f  a cus- 
tomer leaving S ,  terminates an idle or blocked period of Sk, 
then 

Ak + A,.  (5.5) 

(The reader should checkthat theabovecorrectlytranslates 
to ii) and iii) in Algorithm 4.) 

In a general network it i s  possible to arrive at a condition 
called a "chain" of blocking, where, say, Sk i s  blocked by 
S,,  and then in turn the buffer at Sk gets full and it ends up 
blocking S,. In this case when the customer (say C )  leaves 
S,, wewill haveAktA,(bythe preceding rule). Immediately 
after this a customer (say D) will be "unblocked" at Sk and 
will leave for SI. This customer D leaving Sk will unblock S,, 
so we will have A, + Ak (again by the preceding rule). Thus 
when there is a chain of blocking, no change i s  required 
in the rule but we just need to implement the propagation 
for each unblocked server in turn. (In fact as we see from 
this example all blocked servers in the chain will end up 
getting the value of A,, where S ,  i s  the server at the begin- 
ning of the chain.) 

We can also generalize condition i) of Algorithm 4 to esti- 
mate d7/dO, (instead of d7/dOl), for a stated j ,  by changing 
the statement of condition i) to: If a customer completed 
a service of duration X at S, then 

A, A, + $ , K  01) (5.6) 

where the subscriptjon $ denotes the fact that this function 
may be different for the service time distribution at each 
server (this i s  shown as an additional argument to the"PS1" 
function in the algorithm below). 

As a final, and rather powerful generalization we note 
that for a network with K servers it is just as easy to state 
the algorithm to compute all K gradients (d7/dO,, . . . , 
dddo,) at the same time. First, we generalize the accu- 
mulators to be a two-dimensional array: A,, will be the accu- 
mulator at server i for  thegradient calculations with respect 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,. Second, for a general network we need to know where 
to measure the throughput. Let e be the index of the "exit" 
server, that is, the experiment will end when S ,  completes 
N jobs. Algorithm 5 is then the requisite generalization of 
Algorithm 4. 

Algorithm 5: Simultaneous estimation of K gradients for 
a queueing network. 

(Comment: A,, is the accumulator at S ,  for gradient with 
respect to 0,) 

0) A,, + 0, i = 1, . . . , K; j = 1, . . . , K 
THETA, + O,, i = 1, . . . , K 

1) Update: Whenever a customer (say C) completes 
service, c h ec k these co n d it i o n s : 
i) If C completed service of length X at 

S, then 
A,, t A,, + PSI(i, X, THETA,) 

Initialize: 
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ii) if C leaves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,  and terminates an idle or 
blocked period of S, then 
A,, +- A,,, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, * . . , K 
(If there i s  a chain of blocking then 
continue this procedure through the 
chain as explained in the text) 

If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS e  has completed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN parts then go to 
OUTPUT, else go to UPDATE 
Let T be the total time since the start of the 
experiment. The IPA estimates of the K 
gradients ddd0, ( j  = 1, . . . , K) are: 
-(N/T2)A,, ( j  = 1,  . . . , K) 

There are several points to  be noted regarding Algorithm 
5. First, no statement has been made regarding the routing 
mechanism of customers or the service time distributions: 
the IPA algorithm as such is derived in a very general way. 
Second, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK gradient values are being computed in parallel 
from a single sample path. Third, note the simplicity of this 
general algorithm. It is easily implemented, for example, in 
any of the common simulation languages-see Suri and 
Leung [64] for an implementation in the SlMAN language. 

We now return to  the fundamental question regarding 
IPA, that is, under what conditions do the estimates in Algo- 
rithm 5 converge to the true gradient values? Since the class 
of queueing networks is very large with many subclassi- 
fications, we will not go into details here but rather give an 
overview of the known results. Our statement will be some- 
what technical and require a rudimentary knowledge of 
queueing network terminology. Currently all  the analysis 
has been for single-server stations. For aclosed tandem sin- 
gle-class network with finite buffers (such as an automatic 
assembly system [64]) Algorithm 5 produces consistent esti- 
mates in the case of exponential service times (Cao and Ho 
[IO]). For open and closed tandem single-class networks with 
finite buffers and more general service time distributions, 
a consistency proof i s  in Chen and Suri [20]. For open and 
closed single class networks with unlimited buffer sizes, 
IPA has been proven to  produce consistent estimates of 
gradients of sojourn times and throughput4 for the case of 

41n the caseof unlimited buffer sizes, throughput gradients with 
respect to service time are meaningful only for closed networks. 
Algorithm 5 is the correct IPA algorithm for throughput gradients 
in closed networks too. 

2)  Test: 

3) Output: 

exponential service times (Cao zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[A, Cao and Ho zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9]). In  gen- 
eral networks with blocking, however, IPA wil l usually pro- 
duce biased estimates (Cao [4]). Such is the case also for 
networks with multiple classes of customers (Cao [5], Hei- 
delberger etal. [33]). In  these cases, more powerful PAalgo- 
rithms are needed, as discussed later. 

C. IPA for General DEDS 

As a final generalization we consider the application of 
IPA to any DEDS. Here we wil l just summarize the results. 
The basic idea i s  straightforward. A fairly general class of 
DEDS is defined formally by Suri [58]. For such DEDS it is 
shown in [58] that the events in  the system are related to  
each other via a "tree" structure (in the computer science 
meaning of the term "tree"). We will illustrate this for our 
simple production line from Section V-A. In  [58] all changes 
in the system that take place instantaneously are consid- 
ered as part of one event. Thus if a part completes service 
at S1, goes to  S,, and starts service at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 2 ,  all in  "zero time" 
(as assumed in Section V-A), then this i s  all considered to 
be one event. Fig. 8 shows the events for the nominal sam- 
ple path from Fig. 6.  E, i s  the event "PI completes service 
at S,." The first event in the path is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEll. This causes P1 to  go 
to S2 and start service there (instantaneously) and hence 
(given the value of VI) Ell determines the time of A pre- 
cise definition of this causal relationship from Ell to  E2, i s  
given in [58] and denoted by schedules, i.e., Ell schedules 
€,,. Similarly, E , ,  schedules El*. The tree structure of events 
in Fig. 8 i s  based on this relation: a branch of the tree goes 
from E,, to E,,, whenever E, schedules Em,,. The reader should 
follow through this tree in Fig. 8 to  verify this structure. In 
particular, note the branch going upwards from E,, to  €16, 

which has to do with the unblocking of S1 when occurs. 
Becauseofthewaytheexamplewassetup,alleventsin Fig. 
8 are on one tree. In general, there may be several (disjoint) 
trees. 

The significance of this tree structure i s  twofold. First, 
under the IPA assumptions it is proved in [58] that pertur- 
bations in event times affect other events only by propa- 
gating "downstream" along the trees (i.e., towards the right, 
in Fig. 8). Thus a perturbation in El3wiIl propagate to  €,,and 
EI5 but not to  E,, or E,, (they are upstream) nor to  E,, or €16 

(they are downstream in time, but not reachable by going 

Events 

= BranchesofTree 

Fig. 8. Tree structure illustrated for events in the production line. 
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downstream along the tree from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,3) .  Also, events on dif- 
ferent trees would not be affected by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE13. (These points 
should be intuitively clear from the meaning of “sched- 
ules’’ and the IPA logic in Section V-A.) Second, for a class 
of performance measures it is shown that, by using the tree 
structure, an IPA algorithm can be implemented very effi- 
ciently. In fact [58] shows that using the structureof atypical 
simulation program as a starting point, implementation of 
IPA requires just four lines of additional code. 

To further illustrate the relation between the tree struc- 
ture and the IPA calculation, consider the perturbation in 
the experiment completion time, due to a perturbation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAO,, 
which was calculated in Section V-A to be AT = AX1 + AX2 
+ AX, + AX,. We know that the effect of AO, i s  to  perturb 
each X, value. However, as we see from this, only some of 
these perturbations affect the final performance measure. 
If we trace back upstream from the final event E2,?,, we find 
only the following X,’s are upstream: X,, X,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX,, and X,! The 
reader may find it interesting to think about this relation- 
ship further, or else read the formal development of these 
concepts in [58]. 

In the next section, we will give examples of systems for 
which IPA is not consistent. Nevertheless, for the cases 
where IPA i s  known to work, one has to remark on the sim- 
plicity of the procedure (such as Algorithm 5 for networks, 
or thegeneral algorithm in [58]), which implies that it could 
beimplementedwith Iittleefforton asimulationoronactual 
data being observed from a DEDS. This simplicity, com- 
bined with the benefits obtainable by knowing the vector 
of gradients, plus the “low noise” properties of IPA esti- 
mates (discussed in Section VII), make it attractive for 
researchers to seek out and define classes of systems where 
IPA will be consistent. 

VI. EXTENSIONS OF IPA 

In this section, we first give some examples where IPA 
clearly will not work. This will motivate the extensions that 
are described next, which enable gradient estimation for 
a wider class of systems. 

A. Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Failure of IPA 

Consider again the communication link studied in Sec- 
tion Ill. Suppose, however, that the performance measure 
of interest i s  the average number of messages sent between 
idle periodsofthelink. l fwe model the linkasasingleserver 
queue, this performance measure is  the average number 
of customers served in a BP. Denote this average by P(O), 
wheretheargument reminds usthatthevalueof Pdepends 
on the parameter O (we will omit the dependence on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy for 
this section). A simple experimental estimate for p(0) would 
be to observe M BPs and then to let 

(6.1) 

where n, i s  (as in Sections Ill and IV) the number of cus- 
tomers served in BP,. 

Now let us consider again the arguments presented in 
Section I l l  and see how they apply to this new performance 
measure. The IPA estimate i s  based entirely on the assump- 
tion that no BPs will coalesce, the situation we called “case 
i)”and showed in Fig. 3. However, i fwe makeour parameter 

change small enough so that no BPs coalesce, then each n,,, 
value in (6.1) will remain the same, so that there will be no 
change in the estimate of the performance measure. Thus 
the IPA estimate of sensitivity will be identically zero! Intu- 
itively it i s  clear that this estimate must be wrong: if we 
increase the link service time we should expect (on average) 
more messages between idle times. So what has happened 
here? 

The key to understanding the failure of IPA i s  to first 
understand the nature of the performance measure. Sup- 
pose for illustration, that we conduct our experiment for 
one BP only, and let us think through what the perturbed 
path would be for various increments AO. Refer to Figs. 3 
and4.Aswe increase thesizeof AB, the numberotmessages 
served in the first BP does not change for a while (it stays 
at n,), then as A0 passes through a critical value, the first BP 
”collides with” the second BP and all of a sudden the num- 
ber of messages served in the first BP(of the perturbed path) 
equals n, + n, (values from the nominal path). Thus, with 
respect to  the variable AO, the sample performance mea- 
sure i s  quite discontinuous: it is in fact stepwise constant. 
Now let us relate this to someof the statements made at the 
end of Section IV, about when IPA works. We mentioned 
there that IPA ignores the possibility of some events. If the 
probabilityof occurrence of such events, multiplied by the 
effect of these events on the performance, is insignificant 
(in the sense of o(AO)), then IPA will be consistent. In this 
case however, the only events that lead to an effect on the 
performance measure (i.e., a coalition of BPs) are precrsely 
the events that IPA ignores! Therefore, in this case IPA is 
doomed to failure by its very assumption that BPs will not 
coalesce. Another salient observation here is that while the 
probability of coalition of BPs i s  the same in this example 
and for the case of average system time in Sections I l l  and 
IV, the effect on the performance measure, when BPs 
coalesce, i s  very small for the case of average systrm time, 
but quite significant for the case of average number ot cus- 
tomers in a BP. 

This example presents a clear instance of the failure of 
IPA-the very nature and assumptions of IPA are such that 
they cannot measure the basic effects that impact the per- 
formance measure in this case. While far more subtle exam- 
ples exist and are discussed in the references, this example 
gets to the heart of why IPA may fail. 

5. Smoothed Perturbation Analysis 

Motivated bythe failure of IPAto work forthe simple case 
above, Gong and Ho [32] used the powerful tool of con- 
ditional probability to develop an extension to IPA, which 
they termed smoothed PA (or SPA). Before describing SPA 
in its generality, let us develop an estimator for the gradient 
of the above performance measure, and use this to give us 
the insight about SPA. We will assume that the link can be 
represented by a Gl/G/l system-this is not necessary in 
general, but we do so to keep the analysis here straight- 
forward. 

Let the interarrival times have a cumulative distribution 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG( . )  and a corresponding density function g(.). In 
order to make the following analysis rigorous, several tech- 
nical assumptions need to be made regarding the inter- 
arrival and service time distributions (see Zazanis and Suri 
[68]). These will be omitted here and the analysis will be 
informal, aiming to give the main insight. Consider again 
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the experiment on one BP as described above, and refer to 
Fig. 3. This experiment would terminatewith the departure 
of M4, and we would have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn, = 4. Now we ask the ques- 
tion,foragivenAB,what istheexpectedchange in thevalue 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnl,  based on the observed LIP1? Looking at the shaded 
areas in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3, which denote the changes induced by A0, 
we see that the value of n, will only change if an arrival 
occurs during the shaded interval following zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM4, because in 
this case for the perturbed path the BP will not end after 
M,. Let this last shaded interval have length AY. Also, at the 
time that the nominal BP1 ended, let z1 be the time since 
the last arrival (in Fig. 3 this is the time from the arrival of 
M4to thedepartureof M4). Then the probabilityof an arrival 
during AY is 

(6.2) 

Here the conditioning (.JBP,) means we have observed all 
the events in BP,. Now the value of AY can be written as 

P(arriva1 in AYIBP,) = AYg(z,)/[l - G(z,)] + o(AY). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m nl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 = l  , = 1  
A Y  = C AX, = C +CX,, e)ae + o w ) .  (6.3) 

Here we have used Assumption (A3) in Section IV-B which 
states that dX,/d0 can be expressed as a function +(XI, 0). The 
purpose of this i s  to  get the RHS of (6.3) explicitly in terms 
of A0 and the observations on  BP,. 

Next we calculate the effect on n, of such an arrival. We 
can think of this arrival as one which would have started 
a new BP in the nominal, but which gets combined with the 
first BP in the perturbed path (as in Fig. 4). Because the BPs 
in a GI/GI/l system are probabilistically independent [45], 
the expected number of customers in this second BP i s  just 
the expected number of customers in a BP, or p(0 + A@- 
note that the argument indicates that this second BP should 
be 3 representative BP for the new parameter value. Thus 
the expected change in nl will be the probabilityof an arrival 
multiplied by the effect of the arrival, or 

. p(0 + A0)AO + R(A0). (6.4) 

Here the term R(A0) denotes a remainder which accounts 
for two effects: i) the fact that the second BP that coalesces 
with the first does not remain unchanged, in fact, it i s  
pushed back bytheamount AS, (see Fig.4)and this may lead 
to this second BP coalescing with a third, and so on; and 
ii) all the o(A0) terms from (6.2) and (6.3) which need to be 
explicitly considered through a further step below. 

It i s  important to note here a fundamental difference 
between the above analysis and that done for IPA in Section 
III.Theentire IPAalgorithm therecould bedevelopedfrom 
the physical dynamics of the system and the observed sam- 
ple values, with no need to bring in  any probability. On  the 
other hand, above we have taken an expectation to  get an 
estimate not of the actual change that would occur but 
rather the average change that would occur with the per- 
turbation. This i s  an essential difference between the SPA 
and IPA approaches and we shall amplify on it later. 

The analysis above holds for any BP in the nominal path, 
so we can generalize (6.4) to  get, for the mth BP 

. p(0 + AO)A0 + R(A0) (6.5) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk, i s  as defined in  Section Ill. Next we wil l take the 
expectation of this quantity over all possible occurrences 
of BP,, and use the relation f { E[XIY]} = €[XI to  get 

. p(0 + A0)AO + ER(A0). (6.6) 

Zazanis and Suri [68] show that under certain assumptions 
on the GIIGII system, ER(A0) = o(A0). Hence, dividing (6.6) 
by A0 and taking limits as A0 goes to  0, we get 

The expectation on the RHS is  in general intractable for a 
GI/G/l queue, and also, the value of @(e) is not known in 
closed form. O n  the other hand, both of these are very easy 
to estimate given an observed sample path. Looking at the 
form of (6.7) we see that a possible estimator for dp/dO based 
on a sample path of M BPs, i s  

(6.8) 

Here the first bracket estimates the expected value in (6.7), 
and the second, @(e). This translates easily into an algorithm 
which isonlyslightlydifferent from ourAlgorithm 3foresti- 
mating the gradient of mean system time-Algorithm 6esti- 
mates the gradient dpld0 from a single sample path. (The 
functions GI(.) and G2(.) in the algorithm denote g( . )  and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
G( .) respectively.) 

Algorithm 6: Estimation of dpld0 from single sample path 
of GI/G/I queue. 

0) Initialize: MCOUNT CO; NMSUM -0; PSISUM +O; 

1) Update: At departure of next customer (with ser- 
BIGSUM t o ;  THETA + e. 

vice time observed to  be X)): 
1.1) NMSUM + NMSUM+I 
1.2) PSISUM + PSISUM+PSI(XJ,THETA) 
1.3) If server i s  now idle then 

1.3.1) BIGSUM + BIGSUM+ 
PSI SUM*Gl (ZM)/[I - C2(ZM)] 
(where ZM i s  time since last 
arrival) 

1.3.2) MCOUNT + MCOUNT+I 
1.3.3) PSISUM + 0 

2) Test: If MCOUNT = M then go to  OUTPUT else 
go to UPDATE 

3) Output: The IPA estimate of the gradient i s  BIG- 
SUM * NMS U M/(M *M) 

Thus we have once again a relatively simple algorithm 
thatenablesestimationof thegradientof themean number 
of customers served in a BP, from a single sample path. As 
we mentioned above, the key to this algorithm i s  bringing 
a conditional expectation into the analysis to  develop the 
appropriate estimator. Zazanis and Suri [68] used a similar 
conditioning to  get an estimator for the second derivative 
of mean system time with respect to  a service time param- 
eter, for a GI/G/I queue from observations on a single sam- 
ple path. Gong and Ho [32] develop this conditioning idea 
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into a general approach which they termed SPA and which 
we now describe briefly. 

Let /(B) be a performance measure of a DEDS and let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL ( O )  
be an unbiased sample estimator for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, that i s  

€[L(B)l = /W. (6.9) 

For many situations, such as the performance measure p(B) 
above, the sample performance estimate can be discontin- 
uous with respect to 0 (as i s  n,(O) above), but the expected 
performance measure, I@), may still be continuous. (For 
instance, in the M/M/l queue, which is a special case of the 
above example, n,(B) i s  discontinuous in O exactly as 
described above, yet @(e) is analytic in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8.) Intuitively speak- 
ing, the expectation operator in (6.9)"smooths out" the dis- 
continuities by averaging over a large number of sample 
paths.This smoothing property iswell known in probability 
and filtering theory. 

Now let z(O) be any subset of the data observable from 
the experimental sample path, and let AL(O) = L ( O  + AB) - 
L(O). Gong and Ho [32] define the SPA estimator as 

(6.10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As an illustration of this, for our previous example, let us 
examine (6.8). There z consists of the values: M, n,, . . . , nM, 
z,, . . . , z,, and all the X,. Also, the RHS of (6.8) i s  precisely 
the limiting conditional expectation on the RHS of (6.10). 

In order for the general SPA estimator in (6.10) to be 
unbiased we need 

whereas for the IPA estimator to be unbiased we must have 
(see end of Section IV) 

AL(B) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd 
E lim - = - € [L (B) ] .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

l0-0 AB dB 
(6.12) 

Comparing the LHSs of (6.11) and (6.12) we see that (6.11) 
has one more expectation in it. It is observed in [32] that 
(6.11) is more likely to hold since the inner expectation in 
it "smooths out" the function we are differentiating. Thus 
SPA can be expected to work tor a broader class of systems 
and performance measures than IPA. 

In the form above, SPA is a rather general estimator. As 
shown in [32] by different choices of z one can make the 
SPAestimator range from IPAtoclosed form solutionsfrom 
classical queueing theory. This means that the method i s  
very powerful and can be "tuned" to the amount of closed 
form solutions that can be developed prior to doing the 
experiment. However, it also means that in applying SPA 
to a practical system one needs to examine closely two cou- 
pled aspects: i) what i s  a good choice of L ,  and ii) can we 
obtain an analytic expression for the requisite conditional 
expectation? Thus applying SPA to any system will not be 
routine, as it is for IPA (e.g., Suri [58] states an IPA algorithm 
for a general DEDS). On the other hand, among all the 
extensions to IPA, at the present time SPA is the preferred 
one where it can be developed, since it i s  likely to have the 
best variance properties as we shall see in Section VII. 

We will not consider more detailed analysis c examples 
related to SPA here. Gong and Ho [32] apply 3 several 

simple systems to illustrate its use, and Gong [31] applies 
it to a routing problem in communication networks. An 
interesting point i s  that in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[31] it is proved by the SPA argu- 
mentsthat an algorithm proposed in 1976 by Belloand Segal 
[2], [56] for networks is in fact unbiased (the algorithm was 
believed to be biased in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2]). 

C. Extended Perturbation Analysis 

Another approach to overcome the potential inconsis- 
tency of IPA was introduced by Ho and Li [42] who termed 
it extended PA (EPA). The basic assumption of IPA for the 
single server queue i s  that the BPs remain the same in the 
nominal and perturbed paths. The generalization of this 
assumption for arbitrary DEDS is  that thesequenceof events 
in the two paths remains the same, although the time of 
events may change [58]. Now we know from the above dis- 
cussions that it is not necessary for the actual perturbed 
path to have the same sequence of events, but only that the 
change in the perturbed path be such that its effect i s  sta- 
tistically small. However, i f  the structureof the system being 
analyzed i s  such that this change is statistically significant, 
then IPA will not be consistent. 

For systems that can be represented byacontinuous time 
markovchain, the EPA method can be applied. (An example 
of such a system would be a multiple class queueing net- 
work with class-dependent exponential service times. Any 
practically sized network would be analytically intractable, 
so simulation would bethe usual analysis tool.) Herewewill 
just give an outline of EPA. This method works by choosing 
a finite A8 and then predicting, from the nominal path, 
where the perturbed path would have branched to a dif- 
ferent state, say B, while the nominal path continues in, say, 
state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Up to this point, an IPA-like estimator is used to 
compute the effects of the perturbation, but at this point, 
thecomputation is "frozen."Thealgorithm then waits until 
the system eventually enters state Bduring the nominal path 
(clearly this means that EPA can only be applied to systems 
where all states will recur in finite time). At this point the 
EPA computation restarts. (Certain "end-effects" to do with 
patching together these two pieces need to be considered 
too.) The justification of this approach is that when the sys- 
tem enters state B in the nominal path, from the Markov 
property its future evolution is statistically the same as it 
would have been when it entered 6 earlier on in the per- 
turbed path (provided wecan continueto predictthe future 
differences between these paths as well). Suppose the nom- 
inal experiment is designed such that its output zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL(O) i s  an 
unbiased estimate of/(O), that is, €[L(B)] =I@). Then bycon- 
tinuing with this algorithm to the end of the experiment, 
we will get, in addition, an estimate, say H(B, AB), such that 
€[H(B, AO)] = / ( O  + AO). From these two estimates (computed 
from one experiment) we can therefore get an estimate D(8, 
AB) = H(O, AO) - L(B) which satisfies E[D(B, AO)] = / ( O  + AB) 
- / ( O ) .  Hence D(B, AO)/AB can be used as an estimate of the 
gradient of /@). 

We can see right away that the EPA algorithm cannot be 
as efficient as IPA, since it may remain "inactive" for sig- 
nificant sectionsof the nominal experiment. However, there 
are two factors that make its performance better than one 
might expect. The first i s  that in most applications one is 
doing gradient estimation with respect to a number of 
parameters simultaneously-in this case it can turn out that 
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several of the gradient computations are ”active,” on aver- 
age, during the observations and the savings i s  still better 
compared to multiple experimentation. The second i s  that 
from a practical point of view, one can often aggregate the 
states of a system to fewer subsets, and use the aggregate 
state to decide whether to  activate or deactivate the EPA 
calculation. Notonlydoes this keep thecomputationsactive 
for longer segments of the experiment, but it also enables 
EPA to be applied to  non-Markovian systems. All these 
points are elaborated by Ho and L i  [42]. As an example, we 
mention that in [42] an EPA algorithm i s  applied to gradient 
estimation in a multiple class queueing network and exper- 
imental results show that there still exists the possibilityof 
an order of magnitude or even more reduction in experi- 
mental time compared with the use of repeated experi- 
ments. 

An important point to  note from the preceding discus- 
sion i s  that its properties of EPA will be similar to  the CRN 
finite difference estimator. This i s  because the EPA algo- 
rithm i s  just a clever way of estimating the value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ (O  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AO) without a second experiment. On  the other hand, both 
the IPA and SPA estimators directly estimate a derivative, 
not a finite difference. This point i s  actually quite critical, 
because it impacts the variance properties of these esti- 
mators, discussed in Section VII. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Finite Perturbation Analysis 

This extension, which we denote FPA, historically pre- 
dates EPA and SPA. In fact, the original paper on PA by Ho 
et a/. [40] used a version of FPA, but the formal distinction 
between IPA and FPA methods was made later [41], [38], [39]. 
The basic idea of FPA i s  to tackle IPA’s weakest assumption, 
namely that events to  not change order. However, in order 
to avoid doingacomplete newexperimentto trackchanges 
in order of events, FPA only considers changes in order of 
events up to a predefined limit. For example, ”first order” 
FPAonlyconsidersthe possibilitythatadjacent events might 
change order, and ignores any effects of changes in order 
beyond adjacent events. The way it works then i s  to intro- 
duce perturbations and propagate them while observing 
the nominal path, but limiting its calculations by only 
extrapolating to predict the effects of such changes in order 

Wl. 
While the original FPA algorithms were all  heuristic in 

nature and the indications of their consistency were purely 
experimental (e.g., [39], [40]), Cao [5] placed FPA on a the- 
oretical footing by proving consistency of an FPA algorithm 
for a simple multiclass queueing network. In retrospect, 
however, we can see the work by Cao [5] as being the finite 
difference step in the SPA estimator (e.g., the step in (6.6) 
above), and it appears better to take such an analysis one 
step further, where possible, by letting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA0 + 0 to  get the 
expression in (6.7) with corresponding estimator (6.8). 
Indeed, Gong and Ho [32] develop such an SPA estimator 
for the system considered in [5]. The early papers on FPA 
also make for very difficult reading for researchers starting 
on PA. In addition, in the light of recent developments on 
SPA and EPA, it i s  likely that these methods will cover the 
domain forwhich FPAwas initiallydeveloped.Thus itwould 
be this author’s recommendation for interested readers to 
focus on these new approaches and save reading some of 
the earlier papers on FPA until they are thoroughly familiar 

with the recent thoughts on PA and definitely feel the need 
to understand FPA (or wish to explore the origins of PA!). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E. Making IPA Work by Change zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Parameter oi 
Representation 

Although IPA may not work for a given problem, there 
may be a transformation of the problem for which IPA will 
work. An age-old trick in mathematics, when one encoun- 
ters a seemingly new problem, is to see whether it can be 
transformed to  a problem that has already been solved. Ho 
and Cao [37] use this idea to convert the problem of sen- 
sitivity analysis with respect to  a routing parameter (for 
which IPA is not consistent) to an equivalent problem with 
respect to a service time parameter (for which it is). Addi- 
tional examples of the use of such a transformation remain 
a topic for investigation. 

Some very recent research on the applicability of IPA has 
produced the interesting observation that whether IPA will 
work or not can be a consequence of the observer’s internal 
model of the system being observed. It i s  possible to con- 
struct two alternative such models, both of them stochas- 
tically correct representations of the actual system, and yet 
the resulting IPA algorithm may produce consistent results 
in one representation and not in the other! For example, 
Heidelberger et al. [33] provide an example of a birth-death 
process and show that (for their model of the process) an 
IPA algorithm provides a gradient estimate which is clearly 
biased since it has the wrong sign. 

In analyzing this example, Glasserman [25] discovered 
that by usingan alternative representation of the birth-death 
process the resulting IPA algorithm produced consistent 
estimates. In other words, some representations may pro- 
duce sample paths that are ”smoother” with respect to a 
given parameter, than other representations. This i s  con- 
sistent with the recent work of Glynn [28] who makes the 
same observation about random variables (Glasserman’s 
statement was for DEDS). The result by Glasserman raises 
the intriguing question: for the cases where IPA is currently 
considered to be inconsistent, might there be alternative 
representationsforthesystemswhich would make IPAcon- 
sistent? Glasserman and Gong [26] provide such an alter- 
nate representation for an M/G/I/K queue. Because of the 
simplicity of IPA, as well as its excellent variance properties 
(Section VII), finding such representations would be very 
worthwhile. 

VII. COMPARISON OF PA WITH OTHER GRADIEN~ 
ESTIMATION METHODS 

Although PA offers the ability to estimate a gradient from 
a single experiment, for stochastic systems one also needs 
to understand the “noisiness” of the PA estimates, in order 
to fully convince ourselves that PA i s  worthwhile. In fact, 
in signal processing, it is common knowledge that differ- 
entiating a signal tends to  amplify the noise in it. Since IPA 
does just that, one’s intuition might lead one to expect 
highly “noisy” derivatives from IPA. However, we will find 
surprising results below! Also, other ”single-experiment” 
methods have recently been suggested for gradient esti- 
mation and it i s  useful to understand the properties of these 
in comparison with PA. We begin by comparing PA to the 
natural alternative, namelyfinite difference estimates using 
multiple experiments. 
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A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAComparison zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof IPA with Finite Difference Methods 

The simplest conventional approach to gradient esti- 
mation for a DEDS would be the finite difference method 
which would conduct two experiments, one at the nominal 
value of the parameter ( O ) ,  and one at the value zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 + A0, and 
then use the forward difference (FD) estimate in (2.6) to  get 
an approximation to the gradient. Compared with this, PA 
has the apparent advantage in that it produces estimates 
from a single sample path. However, this advantage may 
not be realized if the PA estimates are so noisy that we 
require a longer sample path to get the same accuracy as 
the FD method. Thus in order to  convincingly demonstrate 
the computational savings offered by PA, one has to also 
investigate the issue of "noisiness" in both estimates. Here 
we will consider first the IPA estimator and then discuss 
other PA methods. The discussion below i s  based on the 
treatment in Zazanis and Suri [67l (also see [4] for a related 
analysis). 

Clearly, the accuracy of the gradient estimate obtained 
by the FD method will depend on the choice of As.  The FD 
method however, suffers from a basic incompatibility of 
two considerations: i) in order to  estimate the gradient as 
accurately as possible one would like to  make A0 as small 
as possible, yet ii) i f  we look at the form of the FD estimate 
in (2.6) we see it i s  the difference of two noisy quantities 
divided by a small quantity (A01 so that this estimate will 
have a variance proportional to 1/A82, and to minimize this 
variance we should choose A8 as large as possible. 

To understand this tradeoff better we need to quantify 
the total error in the FD estimate and for this we can use 
the mean squared error (MSE): if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg is the actual gradient 
value and F i s  the estimate then the MSE i s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE &  - PI2. This 
MSE can be expressed as the sum of the variance in e and 
thesquareofthe bias inP.(The biasarisesfrom usingafinite 
difference as an approximation to  the gradient). Since the 
bias increases with A0 while the variance decreases with A0, 
as can be expected then, there i s  a "best" choice of A0 which 
minimizes the MSE.  The performance of the FD estimate 
then will be, at best, that obtained if one chooses this value 
of A0. Zazanis and Suri [67] analyze this problem for the case 
where theexperimentat8consistsof M independentobser- 
vations, and that at 8 + A0 consists of another M indepen- 
dent observations (a l l  2M observations are mutually inde- 
pendent). Under these circumstances, they show that the 
MSE of the above "best" FD estimate i s  proportional to 
M-"*. For systems where IPA i s  consistent, this MSE turns 
out to be proportional to M-' for the IPA estimate. These 
two rates are drastically different. To see this, note that for 
statistical estimates, confidence intervals are roughly pro- 
portional to the square root of the MSE. Thus if we wish to 
increase the accuracy of a gradient estimate by one sig- 
nificant digit, using IPA we will need to obtain a hundred 
times as many observations. (This might sound high but it 
i s  true of any statistical estimator, not just IPA-here IPA i s  
just behaving as well as the best statistical estimator.) On 
the other hand, to get this increase in accuracy using the 
FD method will require 10 000 times as manyobservations! 
This example points out the fundamental numerical prob- 
lems associated with gradient estimation in stochastic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsys- 
tems. It also shows, however, that IPA offers not only the 
opportunityto reduce the number of experiments, but also 
the opportunity to get the same accuracy for far fewer 

observations. (Practical examples in [67] indicate that the 
constant of proportionality i s  about the same for both meth- 
ods, so the M terms dominate.)These statements, of course, 
apply only in the cases where IPA i s  itself unbiased. In such 
cases though, by combining the fact that we can estimate 
multiple gradients with IPA, with this additional efficiency 
in reduced noise, we can conclusively state that IPA pro- 
vides the possibility of orders of magnitude reduction in 
computational effort. 

The FD estimator above can be improved by using sym- 
metric difference (SD) estimates, namely, one experiment 
at 0 - A0 and one at 0 + A8. This does improve the MSE 
properties somewhat [67], however, the price we pay for 
this i s  that we now need two additional experiments after 
the nominal one at 0. In fact, for N parameters, the FD 
method requires N additional experiments, the SD method 
2N additional, while IPA requires no additional experi- 
ments. Also, as shown in  [67] this SD estimator still does not 
achieve the accuracy of IPA. Another possibility is, if exper- 
imental design permits, to use common random number 
(CRN) methods along with the FD estimate, as discussed in 
Section 11-6. An analysis in Cao [4], while not based on MSE 
properties, suggests that whenever IPA is unbiased its con- 
vergence properties will be better than CRN FD estimates. 
A rigorous comparison of the MSE of IPA with CRN FD 
methods remains to be done. (This author's intuition sug- 
gests that while use of CRN methods will improve the con- 
stant of proportionality in the MSE, the fundamental depen- 
denceon observation length will remain at M -'"and so the 
FD estimate will remain quite inefficient even with CRN 
met hods.) 

B. Other PA Estimates 

We come next to the question of accuracy (in the above 
sense) of the SPA, EPA, and FPA estimates. While rigorous 
analyses remain to be done on these, we can make some 
general statements based on the knowledge of these esti- 
mates and the basic methodology used by Zazanis and Suri 
[67l. Any estimator that directly provides an unbiased esti- 
mate of the gradient will definitely have an MSE propor- 
tional to M -'. On the other hand, any estimator that first 
estimates the performance at 8 + A8 and then uses this to 
estimate the gradient by a finite difference, i s  likely to have 
an MSE proportional to M -"*. Therefore, SPA falls into the 
most efficient category along with IPA, while EPA and FPA 
are likely to behave as the FD estimator. Note that these 
statements are in regard to the M S E  property only; in terms 
of number of experiments, all these PA methods provide 
estimates from only one sample path. 

At any rate, from the above observations as well as the 
discussion in the previous section, we can now justify our 
earlier statements that IPA is the simplest and also most 
efficient estimator and should be used where possible, and 
after this, SPA is to be preferred over EPA or FPA. Also, the 
issue of MSE for EPA is somewhat involved-see the dis- 
cussion in Section IX-so the statements in this section 
should be regarded as somewhat speculative until rigorous 
results are available. 

C. Likelihood Ratio Methods 

Gradient estimation in stochastic systems has recently 
been receiving a lot of attention from the research com- 
munity. A number of methods, all based on likelihood 
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ratios, have been proposed which, like zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPA, also obtain gra- 
dient estimates while observing onlyone sample path. Fairly 
general classes of likelihood ratio (LR) methods have been 
proposed and analyzed by Glynn and Sanders [30] and Rei- 
man and Weiss [51], and a particular caseof these methods, 
called the Score Function method, has been proposed by 
Rubinstein [55]. Interestingly enough, it seems that an LR 
method for gradient estimation in simulations was actually 
introduced in the Russian literature in  1968 [I], but appar- 
ently never attracted any attention! While we do  not cover 
the technical details of these approaches here, for readers 
knowledgeable in statistics we mention that these methods 
all use a technique that i s  related to”importance sampling” 
or “change of measure.” Without covering the analytical 
aspects, it may sti l l  be useful for the reader if we make some 
remarks that compare PA with LR methods. The simulation 
community has been attempting to make broad statements 
comparing the two methods, but as we hope to  show, the 
comparison is quite complex and neither method domi- 
nates. In making our comparison, we first talk about IPA, 

then PA in general. 
The LR algorithm can be stated for general systems, gen- 

eral performance measures, and certain types of parame- 
ters. In this respect it is similar to  IPA which can also be 
stated in general terms. Like IPA, LR also involves a (dif- 
ferent) change of limits. It appears however, that LR is appli- 
cable to  a wider class of stochastic systems (not just DEDS) 
and performance measures, and that the characterization 
of systems where it i s  consistent has been more thoroughly 
completed than for IPA. 

On the other hand, LR is restrictive in the parameters it 
can analyze. Essentially it cannot be applied to  a parameter 
that changes the support of a probability distribution for 
an r.v. (i.e., the domain over which the r.v. takes values). 
This excludes whole classes of parameters, such as the mean 
of a uniform distribution. By its very nature, LR simply can- 
not be applied to deterministic parameters. In  constrast, as 
shown by our development in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI l l ,  IPA does not 
require any probability statements for i ts  basic arguments. 
Thus, as shown by Suri and Zazanis [65] IPA can be applied 
to, and will beconsistent for, sensitivityanalysiswith respect 
to the deterministic service time in an M/D/I  queue. For 
discrete valued r.v.’s the comparison i s  rather interesting. 
Consider a discrete r.v. that takes the values CY, with prob- 
ability p, ( i  = 1, . . * , n). LR algorithms can be developed 
with respect to thep, parameters, but not the CY, parameters, 
while quite the opposite, IPA algorithms can be developed 
with respect to  the CY, parameters, but not thep, parameters! 
(We say only “can be developed” to  remind us that the 
question of consistency of these algorithms would sti l l  need 
to be clarified in either case.) 

Now we turn to the wider class of PA methods. The devel- 
opment of SPA, EPA, and FPA algorithms has (theoretically 
or experimentally) extended the domain of applicability of 
PA, in terms of the classes of systems, parameters, and per- 
formance measures that can be analyzed, so some of the 
above disadvantages of IPA can be overcome. However, as 
already mentioned, these extensions of PA may require 
considerable analytical work on the part of the algorithm 
developer, with some ”customization” for each problem, 
while LR has the advantage of remaining a generally defin- 
able algorithm wherever it can be applied. One other area 
where PA can be applied, but not LR, is  that of discrete-val- 

ued parameters, which can be important in practical appli- 
cations such as buffer-sizing decisions (see Section VIII). 

Finally, there i s  the question of “noise” in the estimates. 
For problems involving steady-state performance mea- 
sures, LR methods need to  use regenerative techniques, 
and thevarianceoftheir estimates increaseswith the length 
of the regeneration cycle. This can lead to quite “noisy” 
estimates. For example, the LR estimates in [51] seem to have 
an order of magnitude or more variance than correspond- 
ing IPA ones in [65]. In  steady-state estimation then, if IPA 

i s  known to produce consistent estimates, then it should 
be the method of choice [6]. Both methods can be used for 
transient performance estimation too (e.g., for IPA esti- 
mation of transient throughput see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[A). The comparison of 
variance in this case remains an open question. 

Thus, as we hope we have shown, the two methods (PA 

and LR) have overlapping domains of applicability, but none 
contains the other. Also, the decision to  use one method 
or the other is compounded by issues of algorithm coding, 
estimate consistency, and variance. In this author’s opin- 
ion, both methods represent very promising advances in 
the state of the art, and both methods, as well as their com- 
parison, are worthy of further research efforts. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D. Optimization Implications Including Single-Run 
Optimization 

As we mentioned in the introduction to this paper, an 
obvious application of the gradient information supplied 
by PA would be for use with parameter optimization algo- 
rithms.The problem of optimizing stochastic systems, using 
experimental observations, is inherently difficult. Because 
of the randomness in the observation, a few sample obser- 
vations may lead us to  change the parameter in the wrong 
direction. Thus, any good stochastic optimization scheme 
must be able to converge to the optimum despite the con- 
fusion of noise. This problem has received a fair amount of 
attention in the statistics literature, and a number of tra- 
ditional approaches exist to tackle it, including response 
surface methods, various search methods, and stochastic 
approximation techniques (e.g., see the references in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[49], 
[54], [63]). Empirical investigations of these methods shows 
that, while they may work on practical problems, they 
require enormous amounts of experimental effort. These 
investigations are supported by analytical results too. For 
example, without the availability of gradient information, 
the convergence rate of the Kiefer-Wolfowitz method (a 
classical stochastic approximation method [46]) i s  typically 
O(I%-”~),  where M is the experimental effort. This means 
that to improve the estimate of the optimum by one sig- 
nificant digit requires increasing the experimental effort by 
a factor of IOOO! 

As we shall see, the knowledge of gradient information 
can improve this situation considerably. With regard to  sto- 
chastic approximation methods, for example, if we can 
directly estimate the gradient from each experiment, then 
the optimum seeking problem for the objective function 
i s  replaced by a root finding problem for the gradient. Of 
course, the gradient i s  st i l l  a noisyobservation, and we need 
to apply root-finding methods for noisy observations. The 
classic stochastic approximation method for this i s  the Rob- 
bins-Monro (RM) procedure [53]. Le: us say we are inter- 
ested in optimizing some steady state performance mea- 

SURI: PERTURBATION ANALYSIS 133 



sure of a production line, with respect to a service time 
parameter. An obvious optimization approach would then 
be to  conduct an experiment, get an estimate of the steady- 
state gradient, and then use the RM procedure to update 
the parameter value. Such an approach was used success- 
fully by Hoand Cao[36]for several queueing networkexam- 
ples. The RM procedure has a convergence rate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O(M-’”), so we now need (only!) 100 times as many exper- 
iments for each significant digit. We see at once the con- 
siderable effect of being able to obtain the gradient with 
each experiment. 

It seems, however, that we can do even better than this 
approach. Since the PA estimate of the gradient i s  available 
as the experiment i s  being observed, why not use this esti- 
mate to improve the parameter value while the system is 
operating and, by continuously doing so, optimize the sys- 
tem during a single experiment! Of course, this raises sev- 
eral interesting issues. First, each time we change the 
parameter value, we introduce transient effects into the sys- 
tem, which may create bias in our updating scheme if we 
are really interested in optimizing a steady state perfor- 
mance measure. Second, because of such transient and bias 
effects, will this scheme really end up taking a longer exper- 
iment than the sum of the individual experiments required 
with the previous method? 

Only preliminary answers are known to these questions. 
Still, the evidence that is available suggests that such single- 
run optimization methods may be very promising in over- 
coming the computational demands of stochastic optimi- 
zation problems. Preliminary experiments with such meth- 
ods were reported by Meketon [MI, [49] and Suri andzazanis 
[65], and a comprehensive empirical study was done for a 
simple system (MIMI1 queue) by Suri and Leung [63]. Single- 
run optimization of a manufacturing system with multiple 
parameters i s  in [64]. The results for the PA-RM single-run 
(PARMSR) algorithm in [63] are quite exciting. For example, 
in one case where the parameter was updated after every 
5 customers were served, the algorithm converged to i ts  
estimateof theoptimum afterabout500customers(average 
over a number of sample runs). The same number, for a 
single-run optimization algorithm operating without gra- 
dient information, was around 25 000 customers. Not only 
that, but the average absolute deviation from the (theo- 
retical) optimum cost, after convergence, was 2.5 percent 
for the PARMSR algorithm but 7.4 percent for the other 
algorithm. In  other words, the reduction in run time was 
achieved along with an increase in accuracy. Recently, Fu 
and Ho [71] obtained a further reduction in run time by uti- 
lizing second derivative information obtained simulta- 
neouslywith the gradient information from a single sample 
path. No doubt, all these results are preliminary and many 
open issues remain. However, one cannot but be excited 
by the convergence in 500 customers, because, for the M/ 
MI1 queue, it typicallytakes 100 000observations just toget 
reasonable estimates of performance at one parameter 
value! (e.g., see [65], [50]). This seeming contradiction (abil- 
ity to optimize the parameter faster than we can estimate 
the system performance) i s  an intriguing empirical result 
that invites further research (see the discussion in Section 
IX). 

While the convergence of these single-run optimization 
algorithms remains an open issue in general, a few prelim- 
inary results have recently been obtained. Using results 

from adaptive control theory, Leung and Suri [47] recently 
presented a convergence proof for a simple single-run opti- 
mization scheme. This point may be relevant to the audi- 
enceof this paper, because it showsthat people with knowl- 
edge of conventional (i.e., continuous) system theory may 
be able to  contribute much needed new ideas in the area 
of DEDS as well. Glynn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[27] presents a convergence proof 
for an algorithm which i s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso single-run. By using a clever 
trick where parameter updates are done only at the end of 
every two regenerative cycles, he eliminates bias from the 
estimates, but a concern with this method may be the length 
of a regenerative cycle in practical systems, which could be 
hundreds or even thousands of customers in a queueing 
network problem. (With the PARMSR algorithm in [63]each 
update stepwas applied every 5 customers.) Fu [23] extends 
Glynn‘s method to  prove convergence of a single-run opti- 
mization algorithm for a CI/G/I queue. However, his algo- 
rithm still needstowaittil l theendofoneregenerativecycle 
before it updates the parameter. Recently Wardi [66] has 
presented a convergence proof for a single-run optimiza- 
tion algorithm operating on a GI/G/I queue, using however, 
a nonstandard measure of convergence, and an alogrithm 
that requires increasingly longer run lengths between 
parameter updates. Proof of “convergence with probability 
1” for the PARMSR algorithm (i.e., updating every 5 cus- 
tomers), even for a simple queueing system such as M/MI 
1, remains an open question. 

PA also provides a tool for distributed optimization algo- 
rithms. This might be particularly useful in communication 
networks where nodes could update their parameters asyn- 
chronously based on local information; applications of this 
idea can be found in [14], [16], [18]. 

VIII. PA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFOR DISCRETE PARAMETERS 

In practical systems, many parameters (such as buffer 
sizes, or number of servers at a station) are discrete in 
nature. Although this paper has focused on IPA, which by 
its nature can be applied only to continuous parameters, 
from a historical perspective the subject of discrete param- 
eters has special significance for PA. The origins of PA are 
in a paper by Ho, Eyler, and Chien [40] on buffer size opti- 
mization for a production line. The approach in that paper 
seemed to be a special heuristic designed to  solve a par- 
ticular problem. However, subsequent work by the same 
authors [41] plus the many other authors cited throughout 
this paper, took the ideas in [40] and developed them into 
ageneral body of theoryand algorithms. Here we will cover 
the subject of discrete parameters only briefly. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. FPA for Discrete Parameters 

The application of PA to sensitivity analysis with respect 
to a discrete parameter 0 i s  concerned with estimating the 
performance of the system at the values 0 + 1 and/or 0 - 
1, while observing just the nominal sample path (at 0). 
Clearly, in this case, by the very nature of the parameter, 
one i s  concerned not with gradient estimation, but finite 
differences. Also, the perturbations introduced in the sam- 
ple path cannot be made arbitrarily small, they are of size 
1, which can often be relatively large compared with the 
nominal parameter value. These perturbations can intro- 
duce significant changes in event order in the sample path, 
and thus, in order to propagate these perturbations, one 
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hasto invoke FPA rules. PAfordiscrete parameterscanthus 
be quite involved (as can be seen from the original paper 
[40]). We do not recommend beginning researchers on PA 
to look into this aspect until they are thoroughly familiar 
with the basics of IPA and some of the other recent exten- 
sions. Also, the theory of PA for discrete parameters, being 
dependent on FPA, is not rigorously developed, so it can 
properly be considered a set of heuristic algorithms at the 
present time. Nevertheless, the empirical results in [40], [59] 
show that reasonable estimates of perturbed system per- 
formance can be obtained with discrete parameters from 
a single sample path. There is plenty of scope for research 
here (see Section IX). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. The Augmented Chain Approach 

A somewhat different approach for discrete parameters 
has been developed recently by Cassandras and Strickland 
[15], [17] and applied to scheduling problems [60]. Although 
it arises from the authors’ earlier work on PA, it might well 
be classified as a separate approach because of some struc- 
tural differences in its basis. Applicable to continuous time 
Markov chains, it is termed the “augmented chain” 
approach.The idea is that for such systems, the sample path 
for the system with parameter % + 1 or % - 1 differs only 
occasionally from that with parameter 8. Thus while sim- 
ulating the nominal system, with a little extra computa- 
tional effort, one can simultaneously be simulating the sys- 
tem at % + 1 and/or % - 1. This idea can also be extended 
to the case where one is observing an actual system. Unlike 
FPA, this approach is exact (in that it can be rigorously 
proven to give consistent estimates). We mention this 
method here as it appears to be more promising than FPA 
for design analysis of systems that can be modeled as Mar- 
kov chains, and also because we wish to refer to it in our 
discussion of research topics later. 

IX. RESEARCH ISSUES 

As we mentioned in the introduction, PA is a very young 
discipline by scientific standardsand many interesting open 
problems need to be addressed. We mention here a few 
that we consider to be significant. Others can be found in 
the body of this paper as well as many of the recent works 
on PA. 

A. Understanding and Expanding the Domain of  IPA 

Although IPA may not be consistent for many classes of 
systems and/or performance measures, when it i s  consis- 
tent it combines several desirable features: it i s  the simplest 
to understand and implement, can be written as a “uni- 
versal” algorithm for any DEDS [58] and has the best var- 
iance properties [65]. It is of great interest then, to under- 
stand and expand the domain of applicabilityof IPAas much 
as possible. First, continuing to prove the consistency of 
IPA for common classes of systems provides a lot of insight 
and understanding about the nature of IPA. Thus, more 
results along the lines of [65], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[q, [IO], [68] would be useful. 
What can be said for more general systems, e.g., classes of 
GSMPs [29]? Second, and possibly more significant, we have 
seen that by suitable transformations, consistent IPA algo- 
rithms can be developed for systems in which IPA appears 
inconsistent at first glance [37, [25], [26]. Can we find “pre- 

ferred“ representations for classes of stochastic processes 
so that IPA will be consistent in these representations? 

B. FPA and PA for Discrete Parameters 

At the present time, implementing FPA for general sys- 
tems remains in the realm of heuristics. EPA works for con- 
tinuous time Markov processes (albeit, inefficiently if the 
state space i s  large), and one can view FPA as an approxi- 
mate implementation of EPA where various states have been 
aggregated. However, a better understanding of FPA i s  
needed, along with rigorous statements about its accuracy. 
The use of PA for discrete parameters also has much room 
for work. The difficulty in dealing with such parameters i s  
that a change in the parameter (e.g., increase in buffer size) 
can generate a sample path that i s  impossible in the nom- 
inal path, so predictions based on the nominal path are dif- 
ficult. The augmented chain method is one way of getting 
around this. Are there other PA approaches (e.g., variations 
of SPA or EPA) that could be used with effect? 

C. Efficiency o f  the Methods 

More extensive work can be done, both empirical and 
theoretical, on the efficiency of various PA and other gra- 
dient estimation methods. Here”efficiency” should include 
measures of MSE as well as total computer time required 
for each approach. An open question (see Section VILA) is, 
how well do CRN methods compare with IPA? For EPA, the 
question of efficiency is complicated: the perturbed path 
it develops is of shorter length than the nominal, yet cor- 
related, with it on segments. What can we say about the 
theoretical efficiency of EPA? In regard to LR methods, can 
we derive analytical expressions for the efficiency of IPA 
compared with LR in the steady state estimation case? How 
does IPA compare with LR methods for transient estima- 
tion? 

D. Using PA for Single-Run Optimization 

The experimental results obtained with such algorithms 
are exciting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[49], [63]-[65]. What can we say about the con- 
vergenceof such methods? Why dotheexperimental results 
indicate extremely fast convergence, even faster than might 
be expected? I s  it because current statistical theory on con- 
vergence of stochastic approximation algorithms i s  based 
on long-sample characteristics, while single-run algorithms 
appear to converge so quick that they need short-sample 
analysis of their rates? Understanding these issues and 
developing well-tested algorithms for multiple parameter 
problems would be practically very useful. 

E. Getting More lnformation from a Sample Path 

Quite a bit of the recent development in DEDS analysis 
is related to the question: how can weget more information 
out of this set of observations? When PA was first intro- 
duced, many researchers were skeptical, even unbelieving, 
that it could possibly work. (How can you get something 
for nothing, or for almost nothing?) In retrospect, it seems 
less surprising. A DEDS has a lot of structure to it, which 
is reflected in its sample path (e.g., Fig. 8). By exploiting this 
structure, a great deal of information may be gleaned from 
the observations emanating from the system. Most of the 
traditional “output analysis” approaches had looked at a 
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DEDS as a "black box" and only performed statistical anal- 
ysis on  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoutputs of the "box." The PA methods are all 
means of extracting additional information from a sample 
path. The same i s  true of the LR methods and the aug- 
mented chain method. This points out a general research 
direction: techniques for getting more information out of 
DEDS sample paths (see [43]). 

X. CONCLUSION: IMPACT OF "DYNAMIC SYSTEMS" 
VIEWPOINT 

As afinal, somewhat philosophical remark relevantto the 
audience of this paper, it is worth noting that many of the 
recent developments in DEDS have come from people with 
a "systems" background (e.g., dynamic systems, control 
theory, signal processing, etc.) The development of PA i s  
firmly rooted in system dynamics. A preliminary conver- 
gence result for single-run optimization i s  based on adap- 
tive control theory[47]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIn the past the "continuous variable 
dynamic systems" (CVDS) people and the DEDS people 
have tended to have separate communities, conferences, 
and journals. It seems that both communities can benefit 
by serious exchange of ideas and by researchers crossing 
thetraditional boundariestoworkon problemsof theother 
side. In particular, given the growing importance of DEDS 
in today's world, people with CVDS background should 
view this as an opportunityto explore and contribute in the 
DEDS area. The development and maturing of PA i s  but one 
instance of the potential of such a migration over to DEDS 
from people schooled in CVDS. Other instances can be 
found in some of the accompanying papers in this special 
issue. It i s  hoped that this paper will stimulate many more 
persons into investigating PA in particular, and the area of 
DEDS in general. 
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Queueing Models for Systems with 
Synchronization Constraints zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Invited Paper 

In this paper, we consider queueing models which occur natu- 
rally in the study zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a class of  resource sharing problems under 
synchronization constraints such as resequencing and Fork-loin 
primitives. These queueing models are amenable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto a representa- 
tion in terms of a state recursion. The proposed methods of anal- 
ysis are complementary and draw on classical ideas of queueing 
theory as well as on mathematical tools front the theory of  sto- 
chastic ordering and ergodic theory. The state recursion i s  at the 
center o f  all aspects of the analysis, be i t  for developing the exact 
solutions, obtaining bounds on system performance or establish- 
ing the stability conditions. The ideas are illustrated on simple 
models of resequencing and Fork-loin synchronization, with 
emphasis put on deriving computable bounds on the performance 
measures. 

I. INTRODUCTION 

Although synchronization constraints are inherent to the 
operation of many computer, communication, and pro- 
duction systems, their impact on system performance is far 
from being well understood. This may be partially attrib- 
uted to the penury of models which meaningfully incor- 
porate the synchronization constraints of interest, and 
which are nevertheless analytically tractable. This difficulty 
is of course not specific to this class of applications. 

Numerous attempts have been made at modeling and 
analyzing the effects of (hard) synchronization constraints. 
We shall not report on this activity here in any detail, but 
in the interest of developing some perspective on the 
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approach taken in this paper, we briefly mention one of the 
most common approaches, namely the one based on Petri 
nets [I], [15]. We recall that the theory of Petri nets was ini- 
tiated in responseto modeling needs in protocol validation 
and that its ideas were especially adapted to  handle process 
synchronization and provide a very general framework for 
accurately describing the system logical functions. 
Although Petri net models could in principle be used to 
represent most notions of synchronization encountered in 
applications, quantitative models based on Petri nets typ- 
ically exhibit high dimensionality and their analysis yields 
few structural properties to assist in the performance eval- 
uat io n. 

On the other hand, many of the interesting applications 
involving synchronization constraints are concerned with 
problems of resource sharing. It is widely recognized that 
such problems are adequately described in terms of 
queueing network models which have a long tradition of 
providing quantitative insights into system performance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[31], zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 33 ] .  With this in mind, we propose to investigate the 
performance issues associated with synchronization within 
the confines of queueing network modeling. However, the 
explicit incorporation of the synchronization constraints in 
these queueing models often destroys important proper- 
ties, such as the product form [12], [29] and insensitivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4] 
properties, which have fueled the development of various 
methodologies for the performance evaluation of data net- 
works. Consequently, product-form networks do not pro- 
vide a natural framework for attacking the performance 
evaluation of systems with synchronization constraints. This 
state of affairs points to the need of expanding the theory 
of queueing networks into new directions if a quantitative 
theory of such systems i s  to be developed. 

In this paper, we take a step along these lines by restrict- 
ing attention to a class of queueing networks which arises 
in modeling interesting synchronization mechanisms pres- 
sent in many applications. Loosely speaking, we can char- 
acterize the queueing systems of interest as the ones where 
the time behavior of a natural state variable is given through 
a recursion endowed with certain monotonicity and con- 
vexity properties. Typical state variables include customer 
waiting time or response time, and appropriate general- 
ization thereof. This approach is very much in the spirit of 
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