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equivalent or lift of the multirate plant, translating the given [231 G. M. Kranc, “Input-outPut analysis of multirate feedback SYS- 
multirate costs and noise covariances to the lifted space, and 
then solving a constrained .&ift-invariant LQG problem. Our 
main result also gives a procedure for rms noise power cost 
translation in a multirate QDES package. 
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Perturbation and Stability Theory for Markov 
Control Problems 

Mohammed Abbad and Jerzy A. Filar 

Abstrac-We propose a unified approach to the asymptotic analysis 
of a Markov decision process disturbed by an e-additive perturbation. 
Irrespective of whether the perturbation is regular or singular, the 
underlying control problem that needs to be understood is the limit 
Markov control problem. The properties of this problem are the subject 
of this study. 

I. INTRODUC~ION 

Finite state and action Markov decision processes (MDP’s) 
are dynamic, stochastic, systems controlled by one or more 
controllers, sometimes referred to as decision makers. These 
models have been extensively studied since the 1950’s by applied 
probabilists, operations researchers, and by engineers who often 
refer to them as Markov control problems. The case of the 
single controller constitutes the now classical MDP models ini- 
tially studied by Howard [13] and Blackwell [4] and, following the 
latter, is often referred to as discrete dynamic programming. 

During the 1960’s and 1970’s the theory of classical MDP’s 
evolved to the extent that there is now a complete existence 
theory, and a number of good algorithms for computing optimal 
policies, with respect to criteria such as maximization of limiting 
average expected reward, or the discounted expected reward. 
These models were applied in a variety of contexts, ranging from 
water-resource models, through communication networks, to 
inventory and maintenance models. 

The recent graduate-level texts and monographs by Ross [16], 
Denardo [6], Federgruen [lo], Kallenberg [14], Tijms [19], Kumar 
and Varaiya [ 151, and Hernandez-Lerma [12] indicate the contin- 
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ued research interest in these topics. Implicit in many of these 
works (with the notable exception of [12] and [15]) are the 
assumptions of complete information of the model data and 
parameters. However, in recent years a new generation of chal- 
lenging problems in MDP's began to be addressed. One class of 
these problems focused around the following question: In view 
of the fact that in most applications the data of the problem are 
known at best, only approximately, how are optimal controls 
from the complete information model affected by perturbations 
(typically small) of the problem data? 

From the practical point of view the above question is of vital 
importance, however, it leads to challenging mathematical prob- 
lems. Much of the complexity arises from the fact that if the 
perturbation of a Markov chain alters the ergodic structure of 
that chain, then the stationary distribution of the perturbed 
process has a discontinuity at the zero value of the disturbance 
parameter. This phenomenon was illustrated by Schweitzer [ 171 
with the following example. Let 

pc= ( - E / 2  E/2 1 - E/2 4 2  1 
be the perturbed Markov chain whose stationary distribution 
matrix is 

1/2 1/2 
= ( l / 2  l / 2 )  

for all E E (0,2]. Thus, we have 

where Po* is the stationary distribution matrix of the unper- 
turbed Markov chain Po. The above difficulty has led re- 
searchers to differentiate between the case that avoids the 
above-mentioned discontinuity, and the cases that permit it. 
Somewhat imprecisely, perhaps, the former is often referred to 
as a regular perturbation, and the latter as a singular perturba- 
tion. Of course, it is possible to study the properties of perturbed 
MDP's without performing the asymptotic analysis (as the per- 
turbation tends to zero), and in such a case the distinction 
between the regular and singular perturbations is not essential 
(see, for instance, 191 and [81). 

In this note we propose a unified approach to the asymptotic 
analysis of an MDP with an €-additive perturbation. Irrespective 
of whether the perturbation is regular or singular, the underly- 
ing control problem that needs to be understood is the limit 
Markov control problem (see Section 11). The properties of this 
problem are the subject of this study. The note is organized as 
follows. 

In Section 11, we give some definitions and formulate the limit 
Markov control problem. In Section 111, we present some theo- 
retical results. In particular, we show that an optimal solution to 
the perturbed MDP can be approximated by an optimal solution 
of the limit Markov control problem for sufficiently small pertur- 
bations. In Section IV, we investigate the discounted case, and 
we show that an optimal solution to the perturbed MDP can be 
approximated by an optimal solution of the original MDP for 
sufficiently small perturbations. In Section V, we discuss a more 
general additive perturbation, and we show that the same con- 
clusion as in Section IV can be derived for the unichain, the 
communicating, and the discounted cases. In Section VI, we 
present an application concerning the approximating models for 
the communicating and unichain cases. 

11. DEFINITIONS AND PRELIMINARIES 

A discrete Markovian decision process (MDP) is observed at 
time points t = 0,1,2,..-, . The state space is denoted by S = 
{1,2;.-, N } .  With each state s E S we associate a finite action 
set A(s)  = {1,2;.-, ms}. At any time point t the system is in one 
of the states s, and the controller chooses an action a E A b ) ;  as 
a result the following occur: i) an immediate reward &,a)  is 
accrued; and ii) the process moves to a state s' E S with transi- 
tion probability p(s'Is ,  a ) ,  where p ( s r I s ,  a )  2 0 and 
E,. E sp(srls, a )  = 1. Henceforth, such an MDP will be synony- 
mous with the four-tuple r = ( & { A b ) :  s E S} , {r (s ,  a): s E S, 

A decision rule n' at time t is a function which assigns a 
probability to the event that any particular action is taken at 
time t .  In general n-' may depend on all realized states, and on 
all realized actions up to time t .  Let hi = (so, ao, sl,-.*, a,- si) 
be the history up to time t where a ,  E A(s,);.-, a,- E A b -  1), 

then n-'(h,,-) is a probability distribution on Ah,) ,  that is, 
nf(h, ,  a,) is the probability of selecting the action a,  at time t ,  
given the history h,. A strategy n is a sequence of decision rules 
n- = (PO, P',..., n-', ... ). A Markov strategy is one in which n-' 
depends only on the current state at time t .  A stationary strategy 
is a Markov strategy with identical decision rules. A determinis- 
tic strategy is a stationary strategy whose single decision rule is 
nonrandomized. 

Let C, C(S),  and C(D)  denote the sets of all strategies, all 
stationary strategies, and all deterministic strategies, respec- 
tively. 

Let R,  and E,(R, ,  s) denote, respectively, the random vari- 
able representing the immediate reward at time t ,  and its 
expectation, when the process begins in state s and the con- 
troller follows the strategy n. 

The overall reward criterion in the limiting average MDP is 
defined by 

a E A(s)}, (p(s 'Js ,  a>: s, s' E s, a E A(s))). 

A strategy no is called optimal if J(s ,  no) = max, E J(s ,  P) for 
all s E S. 

It is well known that there always exists an optimal determin- 
istic strategy and there are a number of finite algorithms for its 
computation (e.g., [71,[61, [141). 

We shall now consider the situation where the transition 
probabilities of r are perturbed slightly. Towards this goal we 
shall define the disturbance law as the set, D = { d s ' l s ,  a)ls, s' 
E S,  a E A(s ) } ,  where the elements of D satisfy: i) 
E,, E sd(s'Is, a )  = 0 for all s E S, a E A h ) ;  and ii) there exists 
eo > 0 such that for all E E [O, eo], p(s'Is, a> + ~db'ls,  a)  2 0, 
for all s, s' E S, a E 4s). 

Note that D is more general than the perturbation permitted 
by Delebecque [5] where it is assumed that &'Is, a )  2 0 when- 
ever s' # s. 

We now have a family of perturbed finite Markovian decision 
processes r, for all E E [0, E,] that differ from the original MDP 
r only in the transition law, namely, in r, we have pe(s'ls, a )  := 
p(s'Is, a )  + ~d(s ' Is ,  a )  for all s, s' E S, a E 4 s ) .  

The limiting average Markov decision problem corresponding 
to r, is the optimization problem 

J , ( s )  := max J , ( s ,  n) ,  s E S (L, ) 
Tr€ C 

where J,(s, n-) is defined in r,, in the same way as J(s, P> was 
defined in r. 
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For every strategy a E C ,  we define J o ( s ,  a) := 
lim inf, JJs,  a ) ,  s E S. The optimization problem (L ) :  
Jo(s )  := max, ~ Jo(s,  a ) ,  s E S, is called the limit Markov con- 
trol problem. Note that the optimization problem ( L )  is the 
natural problem to attempt to solve in the case of a slightly 
perturbed Markov decision process. Our objective in the next 
section is twofold. First we want to show that the optimization 
problem ( L )  has an optimal deterministic strategy. Next we want 
to demonstrate the validity of the so-called limit control princi- 
ple in the present framework, that is, we want to show that an 
optimal strategy in ( L )  is &optimal in r, for any 6 > 0 and E 

sufficiently small. 

111. ASYMPTOTICS OF THE PERTURBED MDP AND THE 
LIMIT CONTROL PRINCIPLE 

For every a E C ( S )  we define: the Markov matrix P ( a )  = 
( p S s , ( a ) ) ~ s f =  where psS4a)  := E,, A(s&'Is, a)a(s,  a), for all 
s, s' E S ;  the Markov matrix PJa )  = (p,Es.(a>)[s,=l where 
p;,,(a) := C, E A(S)pE(s'(s,  a)a(s,  a )  for all s, s' E S; the pertur- 
bation generator matrix D ( a )  = (dss4a)):,,= where 
d J a )  := C,, A(s$(s' ls ,  a)&, a); and the Cesaro-limit matrix 
of 
l)Ei=oPb(a) where P$(a):= I,,,, an N X N identity matrix. 
The Cesaro-limit matrix P * ( a )  of P ( a )  is defined similarly. 
Note that for every a E C(S) ,  P,(a) = P ( a )  + eD(a). Now we 
shall show that for every a E C(S) ,  Pz(a )  has a limit as E goes 
to 0. Our proof uses the following two lemmas. 

Lemma 3.1: Let A = (ass,)~sf=l and B = (bss,)Ts,=l be two 
stochastic matrices satisfying: ass, = 0 bssr = 0, then A and B 
have the same ergodic classes and the same transient class. 

Proof We refer the reader to [l]; for related results also see 
[181. 0 

Lemma 3.2: For any a E C(S), there exists E E (0, eo]  such 
that for any E E (0, E): [Pz(a)lS,~ = 0 

Proofi P,(a) is linear in E and nonnegative for any 
E E LO, €01. 

0 
Theorem 3.1: Fo! any stationary strategy rr E C(S) ,  the limit 

stationary matrix P ( a )  := lim, ~ P,*(a) exists.' 
Proof Let T E C(S) .  From Lemmas 3.1 and 3.2 it follows 

that the family of Markov matrices {P,(a)le E (0, Z)} has the 
same ergodic classes: say E';.., E, and the same transient class: 
say T. 

Consider a standard algorithm (e.g., see [14, p. 281) for the 
computation of P:(a). Determine for k = l;.., m: 

i) the unique solution (x,"ls E Ek} of the linear system 

~ , ( a ) ,  P:(a) = (ptS:(a)):s,=l := hn,+m ( l / t  + 

[P,(a)lsS, = 0. 

(aasr  - [P,(7r)],,.)X,k = 0,  S '  E E,;  X," = 1 (3.1) 
S E E ,  S E E ,  

ii) the unique solution {af,ls' E T }  of the linear system 

c (6Sd - [P€(7%)4 = c [pf (a ) l s s , ;  s E T .  
S ' E T  s ' E E ,  

(3 4 
Then P*,(a) is obtained by 

s,s' E E k , k  = l;..,m 

elsewhere. 
s E T ,  s' E Ek, k = l;.., m (3.3) 

'The same result was proved by Delebecque 151, but for a more 
restrictive disturbance law, and by a more complicated technique. How- 
ever, Delebecque derives an explicit expression for P*(P) .  

Since (3.1) and (3.2) are linear systems with affine linear coeffi- 
cients, their solutions x," and aft are rational functions of E. It 
follows from (3.3) that the entries of P:(a) are also rational 
functions of E .  Therefore, P:(.rr) has a limit when E tends to 0 
because its entries are bounded. 0 

Remark 3.1: Theorem 3.1 can be extended easily (following an 
analogous proof) to the case where the disturbance law D is of 
the form Do + eD1 + e2D2 + ... , depending analytically and 
locally on the parameter E .  

With every a E C ( S )  we associate the vector of single stage 
expected rewards r ( a )  = (r1(a);.-, r,,,(a))' in which rS(a) := 
ZOE a)&, a )  for each s E S .  It is well known that for 
each stationary strategy a E C ( S )  

J A s ,  a )  = [ P 3 a ) r ( a ) l s ,  s E S .  (3.4) 

The following proposition shows that the limit Markov control 
problem ( L )  can be restricted to the class C ( D )  of deterministic 
strategies. 
Proposition 3.1: For any strategy a E C, there exists a deter- 

ministic strategy f E C ( D )  such that Jo(s ,  a )  < J o b ,  f )  for 
each s E S .  

Proof Let a E C. Let (E,E=, be any sequence in (0, eo] 
which converges to 0. From Markov decision theory we have that 
for any n there exists f,, E C ( D )  such that J,>s, a )  I Jf>s, f,,) 
for each s E S .  Since C ( D )  is finite, there must exist a determin- 
istic strategy f E C ( D )  and a subsequence {E,,$=, of the se- 
quence {€,E= such that .Ifn$, a )  < J,.,'s, f )  for each k and s. 
It follows that 

Jo(s ,  a):= liminfJ,(s,a) 5 IiminfJ, k-.m " k  ( s , a )  

5 lirninfJEnfs,f). 

E'O 

k + m  

From (3.4) and Theorem 3.1, it follows that 

lim k + m  infJ,"fs, f )  = lim k + m  inf [ Pcff)r(f)] , 

= lim [P:(f)r(f)], = J o ( s , f ) .  0 
€'O 

Remark 3.2: From the results above, it follows that the prob- 
lem ( L )  can be restricted to the following optimization problem 
( ~ ' 1 :  maxWE ,-(D)[F*(a)r(a)~S, s E S. ~ n y  maximizing strategy 
for ( L ' )  is also a maximizing strategy for (L) .  

The next theorem shows in particular that the problem ( L )  
has an optimal deterministic strategy. 

Theorem 3.2: There exist a deterministic strategy f o  E C ( D )  
and a positive number 6, such that for any E E (0, 6)fo is a 
maximizer in (Le) .  Moreover, f o  is a maximizer in (L) .  

Proof From Markov decision theory, for any E E (0, eo)  
there exists an optimal deterministic strategy f," E C( 0)  for the 
problem (Le ) .  Since the class C ( D )  is finite, there exist a 
deterministic strategy f o  and a sequence {€,E= in (0, eo)  which 
converges to 0 such that f o  is an optimal strategy in (Len)  for all 
n. Thus, [P;(fo)r(fo) l ,  2 [P;(g)r(g)ls for all 11,s E S , g  E 

C(D).  From the proof of Theorem 3.1, it can be seen that 
[Pz(fo)r(fO)], and [P;(g)r(g)], are rational functions of E, for 
n iarge. Therefore, there exists E ( S ,  g )  E (0, eo) such that 
[P:(fo)r(fO)l, 2 [P;(g)r(g)l, for any E E (0, e($, g)); Define 
6 := min(e(s, g)ls E S, g E C(D)}. Now we have [P:(f )r(fO)], 
2 [P:(g)r(g)J, for all E E (0,6), s E S,  g E C(D). This proves 
the first part of the theorem. For the second part let E 4 0, then 
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Theorem 3.1 implies that [p*(fo)r(fO)], 2 [ p * ( g ) r ( g ) ] ,  for all 
0 

Corollary 3.1 (Limit Control Principle): Let T O  E C(D)  be any 
maximizer in (L) .  Then for all p > 0 there exists > 0 such 
that for all E E (0, ea), IJ,(s, P O )  - J,(s)l < p for all s E S. 

Proof Let E E (0, 6) .  By Theorem 3.2, for all s E S, we 
have JJ,(s, T O )  - J,(s)J = lJ,(s, P O )  - Jo(s ,  P O )  + Job, f o )  - 

where f o  is as in Theorem 3.2. In view of Theorem 3.1 and (3.4) 
we conclude that for all p > 0 there exists > 0 such that for 
all E E (0, ea), IJ,(s, P O )  - .To($, .rr0>l < ( p/2)  and IJo(s, f o )  - 
JE(s, f O ) l  < ( p /2 )  for all s E S. This proves the corollary. 0 

Remark 3.3: A problem of interest is to find an optimal 
deterministic strategy for the limit Markov control problem ( L )  
(which exists by Theorem 3.2). In the case of completely decom- 
posable Markov control problems, in [2] we give two methods for 
the computation of such an optimal strategy. 

Let (E,$=, be any sequence in (0, e o ]  converging to 0. We 
define the following sequence of strategies: 

i) choose fo arbitrary; 
ii) for n 2 1, we define f, as an optimal strategy in the 

perturbed MDP (Len)  obtained by the policy improvement algo- 
rithm with f,- as the starting strategy. 

Proposition 3.2: There exists n* such that for any n 2 n*, 
f, = f,. and f,. is optimal in the limit Markov control problem 
( L ) .  

Proof Since the sequence {f,,E= , is in C(D)  which is finite, 
then this sequence has a limit point f*. By the same argument 
as in the proof of Theorem 3.2, it follows that there exists 
6 E (0, E,) such that f* is optimal in (L,)  for any E E (0, 6) .  Let 
n(6)  be such that E,  E (0,s) for all n 2 n( 6 ) .  Since f *  is a limit 
point, then there exists n* 2 n(6)  such that f *  = f,.. Now, by 
definition of the sequence (f,E= we have f, = f, + , for all 
n 2 n*. o 

Remark 3.4: The procedure for generating the sequence 
(f,E=, gives a heuristic for finding an optimal strategy for (L) .  

IV. DISCOUNTED CASE 

In this section we shall show that the perturbation in the 
discounted case can be analyzed by solving the original problem. 

The discounted Markov decision problem corresponding to r, 
is defined by 

s E S , g  E C(D). 

J J S ,  f0)I I IJJS, T O )  - J O ( s ,  TO>l + IJO(s, f O )  - J J s ,  f0I, 

K(s) := max K(s, P ) ,  s E S (DP,) 
W €  C 

where K(s, T )  := C:=,a'E,(R,, s), a E (0 , l )  is the discount 
factor. 

It is well known that for any E E [0, E,],  there always exists an 
optimal deterministic strategy for the problem (DP,); and there 
are a number of finite algorithms for its computation (e.g., [7], 
161, [141). 

If T E C(S), it is well known that 

K ( ~ , P )  = ([ZN - ~ P , ( P ) ] - ' ~ ( P ) ) , ,  s E S. (4.1) 

Lemma 4.1: Let (M,le > 0) be a family of nonsingular matri- 
ces. If M, -+ M as E + 0 and M is nonsingular, then Me-' -+ 

M-' as E +  0. 
Proof For any E > 0, ME-' = (l/det M,)adj(M,). Since 

det(.) is a continuous function, det (ME) + det ( M )  and adj (M,) 
+ adj ( M )  as E + 0. This proves the proposition since M is 
nonsingular. 0 

Theorem 4.1: There exist a deterministic strategy f o  and a 
positive number 6 such that for any E E [0,6), f o  is a maxi- 
mizer in (OPE). 

Prooj The proof is along analogous lines to that of Theo- 
rem 3.2. The key observations are that by (4.1) K ( s , T )  is a 
rational function of E and that the correct limit is obtained by 

0 

The next result is the limit control principle for the discounted 
case. 

Corollary 4.1: Let no E C(D)  be any maximizer in the origi- 
nal problem (DP,). Then for all p > 0, there exists > 0 such 
that lK(s, P O )  - K(s)l < p for all E E (0, E ~ )  and s E S. 

Proof Let E E (0, 6). By Theorem 4.1, for all s E S we 
have lV,(s, T O )  - V,(s)l = lV,(s, TO) - Vo(s, P O )  + V&, f o )  - 

where f o  is as in Theorem 4.1. In view of (4.1) and Lemma 4.1, 
the result follows. 0 

Remark 4.1: All the results in Sections 111 and IV can be 
extended easily (following analogous proofs) to the case where 
the disturbance law D is of the form Do + ED, + ... +E"D, 
and n is any natural number or, more generally, if D := D ( E )  is 
a rational function of E .  

Lemma 4.1. For details we refer the reader to [ l ] .  

K(s, f91 5 I L g s ,  Po> - V J s ,  TO>l + IVo(s, fO) - K(s, f O ) l ,  

v. THE GENERALIZED DISTURBANCE LAW 

In this section, we consider the general perturbation 

s, s' E S; a E A ( s ) .  (5.1) 

Define lldll:= max(ld(s'ls, a)[ Is, s' E S; a E A b ) ) .  
We assume that there exists E, > 0 such that for any d 

satisfying lldll I eo, pd is a transition probability, that is, for any 
s, s' E S and a E A(s) ,  pd(s'Is, a )  2 0 and spd(s'Is, a )  = 1. 

In general, P$(P)  may not have a limit when lldll tends to 0 as 
is illustrated by the following example. 

Example: Let d = (d l ,  dz); d,, d, E (0, l ) .  The perturbed 
transition matrix is given by 

The stationary distribution of Pd is 

but (d, /d,  + d,) has no limit as lldll tends to 0. 
However, if P E C ( S )  is unichain in ro, that is the corre- 

sponding Markov matrix P ( T )  has one ergodic class plus (per- 
haps empty) class of transient states, then P$(P)  has a limit 
when lldll tends to 0 as is shown in the following proposition. 

Proposition 5.1: Let P E C ( S )  be unichain in ro, then 
lirnildll+ ,P,*(T> = P*(P) .  

Proof Let (d,E=, be any sequence satisfying: i) Ild,ll 
s E,, for all n; ii) lldll converges to 0 and; iii) l imn+m P $ ~ T >  
exists. Since P$J,)P,JP) = P,*Jrr) for all n ,  then 
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(lim, ~ P ; J r ) ) P ( r )  = limn - P,:(r). It follows that 
l imn+m P $ j r )  = P * ( r )  because r is unichain. Now assume 
that P;(r) does not go to P * ( r )  as lldll 0. Then there exists 
E > 0 such that for any n there exists d, satisfying Ild,ll 5 ( e 0 / n )  
and IIPjJr) - P*(r)ll > E. Since the sequence {I(Pd*,(7~)11K=~ is 
bounded, there exists a subsequence {dnkESl  of the sequence 
(d,K= satisfying i)-iii). Thus, lim, + Pd*,!r) = P*(r ) .  This is 

0 
The MDP r is called unichain if every stationary strategy in r 

is unichain. 
The MDP r is called communicating if for any (s, s') E S X S, 

there exist a deterministic strategy f~ C ( D )  and a natural 
number n such that [P"(f)],,. > 0. Let r, be the MDP defined 
by r except for the transition law which is defined by (5.1). 

In the remainder of this section we shall prove that in the 
unichain case, the communicating case, and the discounted case, 
the limit control problem (15) is equivalent to the original 
problem ( L o )  in the sense that any optimal deterministic strat- 
egy in (Lo)  is &optimal in r d  for any 6 > 0 when lldll is 
sufficiently small. 

The limiting average Markov decision problem corresponding 
to r, is defined by 

a contradiction to IIP2n(r) - P*(r)ll > e for all k. 

Jd(s ) :=  max [ P 2 ( r ) r ( r ) ] , ,  s E S. (Ld) 
,E U S )  

The generalized limit control principle for the unichain case is 
stated as follows. 

Theorem 5.1: Let ro E C(S) be any maximizer in the original 
problem ( L o ) .  Then for all /3 > 0, there exists > 0 such that 
for all d satisfying lldll < eS, IIP2(ro)r(7ro) - Jdll < P.  

Proof: Let d be such that I(dJI I eo. We have 

l l P 2 ( r 0 ) r ( r 0 )  - ~,ll 

= l l P 2 ( r 0 ) r ( r 0 )  - P * ( r O ) r ( r O )  

+ P * ( r o ) r ( r o )  - JdlI 

I I IP2(r0)r(ro)  - ~ * ( r ~ ) r ( r ~ ) I I  

+ IlP*(r0)r(.r0) - Jdll 

and 

l l P * ( r o ) r ( r o )  - J,II 

Now since the class C ( D )  is finite, the theorem follows from 

Lemma 5.1: If r is communicating then there exists t > 0 
such that for any d satisfying IJdJI < t ,  I'd is communicating. 

Proof: Define S := min {p(s ' ( s ,  a)(p(s ' ls ,  a)  > 0, s, s' E 
S, a E A(s)), and Z := min (6, eo}, then r, must be communicat- 

0 
Remark 5.1: Recall that any communicating MDP possesses a 

Proposition 5.1. 0 

ing when lldll < Z. 

unichain deterministic strategy which is optimal with respect to 
the limiting average criterion (e.g., see [131). 

The generalized limit control principle for the communicating 
case is stated as follows. 

Theorem 5.2: Let ro E C ( D )  be any maximizer unichain 
strategy in the original problem (Lo). Then for all P > 0, there 
exists E > 0 such that for all d satisfying I(dl1 < 

Proof: The proof is by contradiction. Assume that there 
Ep, llP2(nfbk(?i-0) - Jdll < P. 

exists p > 0 such that for all n, there exists d, satisfying 

where t is as in Lemma 5.1. 
From Lemma 5.1, it follows that the MDP rdn is communicat- 

ing for all n, and hence (from Remark 5.1) for all n, rdn has an 
optimal unichain deterministic strategy g,. Since the class C ( D )  
is finite, there exist a subsequence { ( l / r ~ ~ ) K = ~  of the sequence 
{(l/n)g= 1, and a deterministic strategy g which is unichain and 
optimal in r, for all k.  Thus 

" k  

for all k , s  E S , ~ E  C ( D ) .  (5.3) 

Since the sequence {Pi is bounded, there exists a sub- 
sequence {nkl rp= of "the sequence {nkE= such that 
lim, - P i  (g) := P*(g)  exists. From (5.3), we have 

" k f  

for all 1 , s  E S , ~ E  C ( S ) .  (5.4) 

Let 1 + m in (5.4), then from Proposition 5.1 we have 

for any unichain strategy f and any s E S. (5.5) 

Note that g need not be unichain in the original MDP ro. 
Hence, let S1;..,SK be the ergodic sets with respect to P(g) ,  
and for each k E {l;.., K } ,  let i k ( g )  be the unique stationary 
distribution of the restriction of P ( g )  to S k ,  and define q,k(g) := 
Q,k(g) for s E Sk and q,k(g):= 0 for s E S \ Sk. Note that since 
g is unichain in rdnkl for all I, the rows of Pjnk,<g) are identical. 
Let p i  ( g )  be a row of P2nk{g). We have p:nk{g)Pdn ( g )  = 
p i  (g) for all 1. When 1 tends to infinity, we get $ * ( g ) p ( g )  = 
$*Ti), where P*(g) := lim, - Therefore $*(g) is a fixed 
probability vector of P ( g )  and hence there exist p l , . - . , p K  
satisfying Ef= pk = 1 and pk  2 0 for all k E {l;.., K )  such 
that $*(g) = E:= pkqk(g) .  Define := argmax{qk(g)r(g)lk 
= 1, ..e, K}. Since the MDP r is communicating, we can easily 
construct a deterministic strategy g with the singLe ergodic set 
S k ,  which coincides with the strategy g in S k .  Note that 
p * ( g ) r ( g )  = qk(g>r (g )  and $*(g ) r (g )  = E:= pkqk(gb(g)  5 
q z ( g ) r ( g )  = p*(g)r (g) .  Now it follows from (5.5) that P*(g)r (g)  
= p*(g)r (g) ,  that is, lim, + PZkl(g)r(g)  = P*(g)r (g) ,  and by 
(5.5) g is the maximizer in (Lo). 
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Finally, we have for all 1, 

= IlP,*,,,<,.0)r(?r0) - P * ( P o ) r ( P o )  

+ P*(Z)r(E) - P;”H(g)r(g)ll 

+ IIP*(E)r(E) - P&,<g)r(g)ll 

5 I I P ~ ~ , , ( P ~ ) ~ ( P ~ )  - p*(.rro)r(7r0)11 

which goes to 0 as 1 goes to infinity. This is a contradiction with 

The discounted Markov decision problem corresponding to rd 
(5.2). 0 

is defined by 

V,(s) := max Vd(s, P )  s E S (DPd 1 
Tr€ C 

where G(s, P):= C:=oa‘E,(R,, s). 
We define R := max{lr(s, a)l Is E S, a E A b ) } .  Let Ila(.)ll de- 

note any vector norm of a = (a(l);.*, 4~))~. The following 
theorem shows that the limit control principle for the discounted 
case is also valid if we consider the general perturbation. 

Theorem 5.3: Let P O  E C(S) be any maximizer in the original 
(DP,). Then for all p > 0, there exists E@ > 0 such that for all d 
satisfying lldll < eP, IlVd(., PO) - Vd(‘)ll < p. 

Prooj From Markov decision theory, for any P E 
c(S): Vd(s, r )  = [dP)ls + acs’~s[Pd(P)lsS‘Gld(s’, r), s E S. It 
follows that for any s E S, 

Now, for any s E S, 

s (aNIIdIIR/(1 - a)’). 

Hence llVo(., P O )  - Vd(-)ll I (aNIldllR/(l - a)’). Finally, 

Ill$(., P o )  - V,(.)ll 5 IlVd(., no) - V,(. ,  PO)ll 

+ IIVo(., P O )  - V,(*)II I (2aNIIdlIR/(I - a)’). 

This proves the theorem. 0 

VI. APPLICATION: APPROXIMATING MODELS 

Let r, = ( S , A , q , , r ) ,  where t = 1,2;.., be a sequence of 
MDP’s. Also let r = (S, A, q,  r )  be the limit, where q := 

For the limiting average (discounted) overall reward criterion 
we shall define the optimal reward from state s to be J ( s )  (u(s)). 

The problem of approximating models is: when does the 

lim, + m q , .  

optimal reward of the MDP r, converge to the optimal reward 
of the limit MDP r? 

Hernandez-Lerma [12] solved this problem for the discounted 
case, and for the limiting average case restricted by a rather 
strong ergodicity assumption. Below we provide an answer for 
the case of general communicating limiting average MDP. 

Let .I,(.) and .I(.) denote the vectors of average-optimal re- 
wards in the MDP’s r, and r, respectively. 

Theorem 6.1: If the limit MDP r is communicating then 
lim, + ,J,(.) = A.). 

Prooj From Theorem 5.2, it follows that limlldll OJd = 

limlldll+ , P , * ( ~ ~ ) r ( , r r ~ )  = P*(rO)r (no) :=  J,.  The second equal- 
ity follows from Proposition 5.1 since P O  is unichain in ro. Set 
d ,  := q, - q,  hence, we have J, = Jd, and J = J,.  This proves the 
theorem. 0 

Remark 6.1: An analog to Theorem 6.1 for the unichain case 
can be derived from Theorem 5.1 in the same way as Theorem 
6.1 is derived from Theorem 5.2. 
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