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A first-order perturbation theory similar to the one widely used in quantum mechanics is developed for
transverse-electric and transverse-magnetic photonic resonance modes in a dielectric microsphere. General
formulas for the resonance frequency shifts in response to a small change in the exterior refractive index and
its radial profile are derived. The formulas are applied to three sensor applications of the microsphere to
probe the medium in which the sphere is immersed: a refractive-index detector, an adsorption sensor, and a
refractive-index profile sensor. When they are applied to a uniform change in the refractive index in the sur-
rounding medium, the formulas give the same results that one would obtain from the exact resonance equa-
tions for the two modes. In the application to adsorption of a thin layer onto the sphere surface, the results
are identical to the first-order terms in the exact formulas obtained for the adsorption layer. In the last-
named example, a scheme is proposed for instantaneous measurement of the refractive-index profile near the
sphere’s surface. © 2003 Optical Society of America
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1. INTRODUCTION
Ever since it was suggested that microspheres coupled to
optical fibers could be a particular sensitive system for
the sensing of adsorbed molecules,1 there has been in-
creasing experimental support for using narrow-
linewidth photonic resonance modes in a transparent mi-
crosphere as a probe of a surrounding medium.2–4 A
photon in one of these resonance modes [whispering gal-
lery modes (WGMs)] is mostly confined to the interior of
the sphere while it is traveling near the surface by total
internal reflection. The photon orbits many times before
being absorbed or exiting.1,5–9 Recently Vollmer et al.3

demonstrated that a silica microsphere in a buffer solu-
tion exhibits a large shift in resonance wavelength when
protein molecules are adsorbed onto the sphere’s surface.
A single-layer adsorption of bovine serum albumin caused
the wavelength to shift by approximately 16 parts in 106.
Resonances were detected from dips in the transmission
through an eroded fiber that was coupled evanescently to
the microsphere. The eroded fiber was prepared by re-
moval of most of the cladding to expose the evanescent
field.

As the experiment of Vollmer et al. demonstrated, the
resonance frequency is sensitive to the environment in
close vicinity to the sphere surface. Any change in the
vicinity can be detected as a frequency shift. The
changes will include adsorption of molecules onto the
sphere’s surface and change of concentration in the sur-
rounding solution.

Following the experiment, Arnold et al.4 presented a
perturbation approach to evaluating the resonance fre-
0740-3224/2003/091937-10$15.00 ©
quency shift of a WGM. In their formulation, frequency
shift dv was associated with the perturbation in energy
dE of a single-photon resonant state that is due to adsorp-
tion of a dielectric nanoparticle by

\dv 5 dE 5 1/2 Re~dp • E* !, (1)

where d p is the induced dipole moment in the nanopar-
ticle and E is local field within the original mode. The
formulation was applied to a microsphere with monolayer
coverage by protein molecules and to a sphere with a
single protein molecule adsorbed onto the equator. The
authors predicted protein, sphere, and optical parameters
for the detection of a single protein molecule.

In the past, a perturbation approach was applied to
resonance modes in a spherical microcavity with a reflec-
tive interior surface.10,11 Formulas were obtained for the
frequency shift caused by a spatial change in the refrac-
tive index within the microcavity. A more rigorous per-
turbation theory was presented by Lai et al.12 to treat the
effect of isotropic and anisotropic deformations of the
sphere surface on the resonance frequency shift without
changing the refractive index in the exterior or in the in-
terior of the sphere.

The aforementioned formulations, however, do not al-
low one to evaluate the frequency shift that is due to
changes in the medium surrounding the microsphere. In
this paper we derive formulas for frequency shifts that
are due to these changes within a rigorous theoretical
framework. The perturbation that we consider is a small
change in the refractive index. The change can be either
within the sphere or in the surrounding medium. When
2003 Optical Society of America
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it is applied to a uniform change in the refractive index of
the surrounding medium, the formula gives the same re-
sult as that obtained from the resonance formula for a ho-
mogeneous sphere.

The formulas and examples presented here should lay
the groundwork for sensor applications of WGMs for
refractive-index sensing. We focus on the frequency
shift, because it can be measured accurately (the resolu-
tion is better than 1/50 of the linewidth4) and is relatively
unaffected by auxiliary effects that are important in line-
width measurements, such as scattering and absorption
by inhomogeneity of the sphere and the surrounding me-
dium. First we derive general formulas for the frequency
shifts for TE and TM modes. Then we apply these for-
mulas to uniform refractive-index changes in the sur-
round, to the adsorption layer, and to the refractive index
profile near the surface.

We describe our theory following the formulation that
Johnson13 presented to explain resonance states in a mi-
crosphere. His notation will be followed as much as pos-
sible. Unlike in his system, for which the exterior me-
dium is air, in our calculations the medium that
surrounds the sphere has a refractive index between that
of a sphere and that of vacuum.

2. WAVE EQUATIONS
In the absence of continuous energy flow into the sphere a
WGM loses its energy in a finite lifetime. In effect, the
frequency of the WGM is complex.12 With a continuous
influx of energy to match the loss, a steady-state mode
can be maintained with a real frequency. The two modes
are only slightly different, as manifested by the fact that
the imaginary part of the frequency in the decaying mode
is much smaller than the real part.12 We stick to the
steady-state mode here for simplicity.

The wave of a WGM is specified by vacuum wave vector
k, angular momentum quantum number l, and another
quantum number m (m 5 2l, 2l 1 1, ..., l). We assume
that refractive index m(r) depends solely on radial dis-
tance r from the sphere center. Amplitude E of the elec-
tric field satisfies the following vector differential equa-
tion:

¹ 3 ¹ 3 E 2 k2m2~r !E 5 0. (2)

Introduction of scalar functions Sl(r, k) and Tl(r, k) for
the TE and TM modes, respectively, simplifies Eq. (2), as
will be shown below. For the TE mode, electric field
Mlm(r, u, w) in spherical polar coordinates is specified by
l and m and is given as13

Mlm~r, u, w! 5
exp~imw!

kr
Sl~r, k !Xlm~u!. (3)

For the TM mode, electric field Nlm(r, u, w) is given as

Nlm~r, u, w! 5
exp~imw!

k2m2~r !
F1

r

]

]r
Tl~r, k !Ylm~u!

1
Tl~r, k !

r2 Zlm~u!G . (4)

Here the angular functions Xlm(u), Ylm(u), and Zlm(u) are
expressed as14
Xlm~u! 5 ip lm~u!êu 2 t lm~u!êw , (5a)

Ylm~u! 5 t lm~u!êu 1 ip lm~u!êw , (5b)

Zlm~u! 5 l~l 1 1 !Pl
m~cos u!ê r , (5c)

where ê r , êu , and êw are the unit vectors in the relevant
directions, Pl

m(x) is the associated Legendre function,
and p lm(u) and t lm(u) are defined as

p lm~u! 5
m

sin u
Pl

m~cos u!, (6a)

t lm~u! 5
]

]u
Pl

m~cos u!. (6b)

TE mode scalar function Sl(r, k) is a solution of a
Schrödinger-equation-like differential equation:

F2
]2

]r2 1 VTE~r, k ! 1
l~l 1 1 !

r2 Gsl~r, k ! 5 k2Sl~r, k !.

(7)
The potential VTE(r, k) is given as

VTE~r, k ! 5 k2@1 2 m2~r !#. (8)

The TM mode scalar function Tl(r, k) is a solution of a
slightly different equation:

F2
]2

]r2 1 VTM~r, k ! 1
l~l 1 1 !

r2 GTl~r, k ! 5 k2Tl~r, k !,

(9)

where the potential VTM(r, k) is given as

VTM~r, k ! 5 VTE~r, k ! 1
2

m~r !

dm

dr

d

dr
. (10)

When a dielectric microsphere of radius a with uniform
refractive index m1 is suspended in a uniform medium of
refractive index m2 with m1 . m2 , i.e., when

VTE~r, k ! 5 H k2~1 2 m1
2! ~r , a !

k2~1 2 m2
2! ~r . a !

, (11)

the solution of Eq. (7) is expressed by spherical Ricatti–
Bessel functions c l(z) and x l(z), defined as

c l~z ! 5 zjl~z !, x l~z ! 5 znl~z !, (12)
where jl(z) and nl(z) are the lth spherical Bessel function
and the lth spherical Neumann function, respectively.
The solution of the TE mode is given as

Sl~r, k ! 5 Hc l~m1kr !

Bl~k !f l~m2kr !
, (13)

where Bl(k) is a constant of r and, for a given k,

f l~m2kr ! 5 x l~m2kr ! 1 b l~k !c l~m2kr !, (14)

where b l(k) is a constant of r. Continuity of the tangen-
tial component of the electric field and of the normal com-
ponent of the electric displacement requires that

c l~m1ka ! 5 Bl~k !f l~m2ka !, (15a)

m1c l8~m1ka ! 5 Bl~k !m2f l8~m2ka !, (15b)

where the prime denotes the derivative with respect to
the argument, and the derivative is taken at a constant k.
At resonance, wave vector k0 satisfies b l(k0) 5 0. To-
gether with the boundary condition, the resonance of the
TE mode is specified by
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m1

c l8~m1k0a !

c l~m1k0a !
5 m2

x l8~m2k0a !

x l~m2k0a !
. (16)

This equation is solved for k0a. The solutions are bound
from l/m1 to l/m2 .13 For given m1 and m2 there may be
more than one solution. These modes are called the first-
order mode (n 5 1), the second-order mode (n 5 2), etc.
with increasing magnitude of k0a. The solutions are
real.

TM solution Tl(r, k) is also given by Eq. (13), as VTM is
identical to VTE in the interior of and exterior to the
sphere. We use a different coefficient:

Tl~r, k ! 5 Hc l~m1kr !

Al~k !f l~m2kr !
, (17)

where Al(k) is a constant of r and

f l~m2kr ! 5 x l~m2kr ! 1 a l~k !c l~m2kr !, (18)

where a l(k) is a constant of r. The boundary condition of
the electric field leads to

c l~m1ka ! 5 Al~k !f l~m2ka !, (19a)

c l8~m1ka !/m1 5 Al~k !f l8~m2ka !/m2 . (19b)
There is a jump in ]Tl(r, k)/]r at the interface, because
VTM has a jump at r 5 a. At resonance, wave vector k0
satisfies a l(k0) 5 0. The resonance of the TM mode is
specified by

1

m1

c l8~m1k0a !

c l~m1k0a !
5

1

m2

x l8~m2k0a !

x1~m2k0a !
. (20)

3. ORTHOGONALITY
The solutions for the TE modes and for the TM modes
have different orthogonalities. First we consider the or-
thogonality of Sl(r, k) with various values of k. Let us
examine the integral given as

E
0

`

Sl~r, k !Sl~r, ka!m2~r !dr

5 m1
2 E

0

a

c l~m1kr !c l~m1kar !dr

1 Bl~k !Bl~ka!m2
2 E

a

`

f l~m2kr !f l~m2kar !dr (21)

for k Þ ka . The integrand in the second term is a sinu-
soidal function in the asymptote of r → `. Introduc-
tion of the convergence coordinate forces the integral at
r → ` to vanish. Using Eqs. (C1) and (C3) below, we ob-
tain

E
0

`

Sl~r, k !Sl~r, ka!m2~r !dr

5
m1

k2 2 ka
2 @2kc l8~m1ka !c l~m1kaa !

1 kac l~m1ka !c l8~m1kaa !] 2
m2

k2 2 ka
2 Bl~k !Bl~ka!

3 @2kf l8~m2ka !f l~m2kaa !

1 kaf l~m2ka !f l8~m2kaa !#. (22)

Use of Eqs. (15) leads to
E
0

`

Sl~r, k !Sl~r, ka!m2~r !dr 5 0. (23)

Thus Sl(r, k) of various values of k are orthogonal in this
functional space under the TE boundary condition. We
write it as follows:

^Sl~r, k !um2~r !uSl~r, ka!& 5 0, (24)
where

^ f u pu g& [ E f~r !p~r !g~r !dr. (25)

We might simplify Eq. (24) to

^kum2uka& 5 0. (26)

The orthogonality is slightly different for TM modes.
Its boundary condition makes

E
0

`

Tl~r, k !Tl~r, ka!dr

5 E
0

a

c l~m1kr !c l~m1kar !dr 1 Al~k !Al~ka!

3 E
0

`

f l~m2kr !f l~m2kar !dr (27)

disappear when k Þ ka . We write it as

^Tl~r, k !uTl~r, ka!& 5 ^kuka& 5 0, (28)

where

^ f u g& [ E f~r !g~r !dr. (29)

We can extend the above integrals to k 5 ka . When
the two waves have the same wave vectors, the integrand
has a dc component, and the integral diverges. However,
we can circumvent this behavior by first evaluating the
integral for slightly different wave vectors with a conver-
gence coordinate and then bringing the two wave vectors
to the same value. Details of the calculation are given in
Appendix A. From Eq. (A9) below,

^k0um2uk0& 5 c l
2

a

2
~m1

2 2 m2
2!, (30)

where c l 5 c l(m1k0a). Likewise, for the TM mode, we
have from Eq. (A10)

^k0uk0& 5
a

2
c l

2S m1
2

m2
2 2 1 D F S x l8

x l
D 2

1
l~l 1 1 !

~m1ka !2G .

(31)

Another way to avoid the divergence of the integrals in
Eqs. (30) and (32) below is to place a large hypothetical
concentric sphere with a reflective interior surface and
evaluate the integrals for a WGM sustained in the large
sphere. This method was adopted by Lai et al.12

Equations (3) and (4) relate Sl(r, k) and Tl(r, k) to
electric field M of the TE mode and to field N of the TM
mode, respectively. By integrating the electric energy
densities divided by vacuum permittivity m2M2/2 and
m2N2/2 over the entire space, we find that ^kum2uk& and
^kuk& essentially represent the total energy of the two
modes.
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4. FIRST-ORDER PERTURBATION FOR A
FREQUENCY SHIFT
Now we consider a frequency shift when the system expe-
riences a small change dm(r) in its refractive index. We
assume that the change depends on r only. The change
can be either within the sphere or in the surrounding me-
dium, although our interest is in the surrounding me-
dium.

The unperturbed Hamiltonian for a TE wave with wave
vector k0 is given by

HTE,0~k0! 5 2
]2

]r2 1 FVTE~r, k0! 1
l~l 1 1 !

r2 G . (32)

The Schrödinger equation is

HTE,0~k0!S0 5 k0
2S0 , (33)

where S0 5 Sl(r, k0) is the unperturbed solution.
When the refractive-index changes by an amount

dm(r), k0 changes to k0 1 dk; the solution changes to
S0 1 dS, and the potential function changes to
VTE(r, k0) 1 dVTE , where

dVTE 5 2k0dk~1 2 m2! 2 2k0
2mdm. (34)

The perturbed Schrödinger equation is

@HTE,0~k0! 1 dVTE#~S0 1 dS ! 5 ~k0 1 dk !2~S0 1 dS !.
(35)

Collecting the first-order terms, we have

HTE,0~k0!dS 1 dVTES0 5 k0
2dS 1 2k0dkS0 . (36)

We express dS as a superposition of Sl(r, k) of differ-
ent values of k, each of which is a solution of HTE,0(k):

dS 5 (
k

ckSl~r, k !, (37)

where ck is the superposition coefficient. Substituting
dS into Eq. (36) with Eq. (37) and rearranging the result,
we obtain

(
k

ckk2Sl~r, k ! 1 (
k

ck@HTE,0~k0! 2 HTE,0~k !#Sl~r, k !

1 dVTESl~r, k0!

5 k0
2 (

k
ckSl~r, k ! 1 2k0dkSl~r, k0!, (38)

where

HTE,0~k0! 2 HTE,0~k ! 5 ~k0
2 2 k2!@1 2 m2~r !#.

(39)

We multiply Eq. (38) by Sl(r, kb) and integrate the prod-
uct. Using the orthogonality of Sl(r, k), we arrive at

2ckb
~k0

2 2 kb
2!^kbum2ukb& 1 ^kbudVTEuk0&

5 2k0dk^kbuk0&. (40)

We obtain the first-order correction to the eigenvalue
by setting kb to k0 :

^k0udVTEuk0& 5 2k0dk^k0uk0&. (41)
For dVTE given by Eq. (34) we obtain the following for-
mula:
S dk

k0
D

TE

5 2
^k0umdmuk0&

^k0um2uk0&
. (42)

The first-order correction to the eigenfunction can be ob-
tained from Eq. (40).

The frequency shift of the TM mode is calculated in a
similar way. The perturbation now has an additional
term:

dVTM 5 dVTE 1 2
d~dm/m !

dr

d

dr
. (43)

We can invoke the orthogonality of eigenfunctions
Tl(r, k) by multiplying the counterpart of Eq. (38) by
m22(r)Tl(r, k). The first-order eigenvalue correction is
obtained as

S dk

k0
D

TM

5 2
^k0um21dmuk0&

^k0uk0&

1

K k0u
1

k0
2m2

d~dm/m !

dr

d

dr
uk0L

^k0uk0&
, (44)

where uk0& 5 T0 5 Tl(r, k0) is the unperturbed solution.
If dm vanishes rapidly toward r 5 0 and r 5 `, it can be
rewritten as

S dk

k0
D

TM

5 2
1

k0
2 ^k0uk0&21 E dm

m3

3 F S dT0

dr D 2

1
l~l 1 1 !

r2 T0
2Gdr. (45)

The two formulas, Eqs. (42) and (44) [or Eq. (45)], have
a form the same as that of Eq. (1):

dk

k0
5 2

~energy perturbation!

2 3 ~electric energy!
. (46)

We divide by 2 because the electric field energy changes
by perturbation in m but the magnetic field energy does
not.4

5. APPLICATIONS
Now we apply the general formulas to frequency shifts of
a WGM by environmental changes, i.e., dm2(r). Other
parameters (a and m1) are assumed not to change, unless
otherwise noted. Specifically, the following three cases
are considered: (A) a uniform change in m2 to be caused,
for instance, by a change in the surrounding fluid, (B) ad-
dition of a thin layer with a different refractive index onto
the sphere surface, and (C) a refractive-index profile near
the sphere’s surface.

A. Uniform Change in m2
For a uniform change Dm2 in the exterior refractive index
we can also estimate the shift by using the resonance con-
dition. A comparison of the result thus obtained with the
one to be obtained from our general formulas for first-
order perturbation will validate the general formulas. In
Eq. (16), which gives the resonance condition for the TE
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mode, we change k0 to k0 1 Dk and m2 to m2 1 Dm2 .
Collecting the first-order terms, we calculate fractional
shift Dk/k0 as

S Dk

k0
D

TE

5 2
m2Dm2

m1
2 2 m2

2

3 F l~l 1 1 !

~m2k0a !2 2 1 1
1

m2k0a

x l8

x l
2 S x l8

x l
D 2G

5 2
m2Dm2

m1
2 2 m2

2 Fx l11x l21

x l
2 2 1G , (47)

where Eq. (C6) below was used and x l21(z), x l(z), and
x l11(z) are evaluated at z 5 m2k0a. For the TM mode,
use of Eq. (20) leads to

S Dk

k0
D

TM

5 2
m2Dm2

m1
2 2 m2

2

3

l~l 1 1!

~m2k0a!2 2 1 2
1

m2k0a

xl8

xl
2 Sxl8

xl
D2

l~l 1 1!

~m1k0a!2
1 Sxl8

xl
D2 . (48)
Now we use the general formulas in the first-order per-
turbation to evaluate the fractional frequency shift. For
the TE mode,

^k0umdmuk0& 5 m2Dm2@Bl~k0!#2E
a

`

@x l~m2k0r !#2dr

5 @Bl~k0!#2
a

2
m2Dm2

3 H 2x l8
2 1 F l~l 1 1 !

~m2k0a !2 2 1Gx l
2

1
x lx l8

m2k0aJ , (49)

where the same process that we used in evaluating Eq.
(A9) below was used to force the integral to converge.
With Eq. (30) we obtain the same equation as with Eq.
(47).

For the TM mode we need to use the formula given by
Eq. (44) because dm(r) remains finite at large r. The in-
tegrals are evaluated as follows:
^k0um21dmuk0&

5 @Al~k0!#2
a

2

Dm2

m2

3 H 2x l8
2 1 F l~l 1 1 !

~m2k0a !2 2 1Gx l
2 1

x lx l8

m2k0aJ ,

(50)

^k0u
1

k0
2m2

d~dm/m !

dr

d

dr
uk0&

5
Dm2

k0
2m2

E
0

` 1

m2 T0

dT0

dr
d ~r 2 a !dr

5
Dm2

k0m2
2 @Al~k0!#2x lx l8. (51)

With formula (31) and Eq. (44) we obtain the same ex-
pression as with Eq. (48).

When k0a @ 1, use of formulas (B5) and (B7) below
simplifies Eqs. (47) and (48) to
S Dk

k0
D

TE

> 2
m2Dm2

m1
2 2 m2

2 F S l 1
1

2 D 2

2 ~m2k0a !2G21/2

, (52)

S Dk

k0
D

TM

> 2
m2Dm2

m1
2 2 m2

2

2~l 1 1/2!2/~m2k0a !2 2 1

@~l 1 1/2!2 2 ~m2k0a !2#1/2F ~l 1 1/2!2

~m1k0a !2 1
~l 1 1/2!2

~m2k0a !2 2 1G . (53)
The shift occurs in the same direction for the two modes.
For the first-order mode l > m1k0a, and these expres-
sions are further simplified to

S Dk

k0
D

TE

> 2
m2Dm2

~m1
2 2 m2

2!3/2

1

k0a
, (54)

S Dk

k0
D

TM

> 2
m2Dm2

~m1
2 2 m2

2!3/2 S 2 2
m2

2

m1
2D 1

k0a
. (55)

Thus we find that the ratio of the TM shift to the TE shift
at k0a @ 1 is greater than unity for the first-order mode.

The solid curves in Fig. 1 are plots of sensitivity factor
fTE [ 2(Dk/k0)TE /@m2Dm2(m1

2 2 m2
2)21# for the first,

second, and third-order modes (n 5 1, 2, 3, respectively)
as a function of size parameter k0a. Dashed curves de-
pict fTM [ 2(Dk/k0)TM /@m2Dm2(m1

2 2 m2
2)21#; equa-

tions (47) and (48) with m1 5 1.47 (silica) and m2
5 1.33 (water) were used for the calculation. For refer-
ence, approximate formulas (54) and (55) are also shown
in Fig. 1, as dashed–dotted curves. At k0a @ 1, both fTE
and fTM decrease as ;(k0a)21 and run close to the ap-
proximate formulas. In this range, fTE , fTM for each
mode. The higher-order mode (greater n) experiences a
greater shift at the same k0a, but the difference quickly
disappears with increasing k0a. Both fTE and fTM peak
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near k0a > 76 for the first-order mode. The peak is due
to a term neglected in formulas (52) and (53): The peak
moves left and up, extending the nearly straight section,
when m1 is increased, thus more strongly confining the
resonant photon by a greater contrast of refractive index.

For a given sphere with a/l @ 1, Dk/k0 is proportional
to wavelength l. The shorter the wavelength, the
weaker is the effect of the surroundings. This fact is re-
lated to the penetration depth of the evanescent field from
a medium with a high refractive index to a medium with
a low refractive index when total internal reflection oc-
curs. In fact, the reciprocal of the decay rate of Sl(r) and
Tl(r) for l @ 1 at r 5 a1 , where a1 is infinitesimally
greater than a, is identical to the penetration depth.

Toward the low end of k0a in Fig. 1 the sensitivity fac-
tor is high, but the resonance peak is too broad for any
meaningful detection of Dm2 by measurement of Dk/k0 .
We can arbitrarily set the detection limit to width w of the
peak (in terms of k0a), which is given by13

Fig. 1. Sensitivity fTE (solid curves) and fTM (dashed curves) of
the resonance frequencies of TE and TM modes, respectively, in a
microsphere to a uniform refractive-index change in the sur-
rounding medium, plotted as a function of size parameter
k0a. These curves are for the first three orders (n 5 1, 2, 3) for
m1 5 1.47 and m2 5 1.33. Dashed–dotted curves represent ap-
proximations [formulas (54) and (55)]; the lower curve represents
fTE .

Fig. 2. Expected sensing limit Dm2,min of refractive-index
change in the surrounding medium in microspheres of different
values of k0a for the first three modes. Solid curves are from
the intrinsic linewidth of resonance; dashed curves denote the
sensing limit for the current distributed-feedback laser driver’s
resolution, Dk/k0 5 1028.
w 5
2m2

m1
2 2 m2

2

1

@x l~m2k0a !#2 (56)

for the TE mode. The actual detection limit is much
lower.4 Then the smallest Dm2,min that can be detected is
estimated as

Dm2,min 5 2/~k0ax l
2fTE! 5 2/@k0a~x l11x l21 2 x l

2!#.
(57)

Likewise, for the TM mode,

Dm2,min 5
2

k0ax l
2

1

~l 1 1/2!2/~m1k0a !2 1 ~x l8/x l!
2 .

(58)

The solid curves in Fig. 2 show Dm2,min for the first
three orders of the TE mode. We have found that the
first-order mode is the most sensitive at the same value of
k0a. At k0a 5 400, Dm2,min as small as 2 3 1028 can be
detected. We also found that Dm2,min decreases rapidly
with increasing k0a, which is due to smaller leakage of
the photon energy.

There is another limit on Dm2,min that is due to a finite
laser linewidth or fluctuations in the source wavelength,
whichever is greater. In the study of protein
adsorption3,4 a distributed-feedback laser (l 5 1.34 mm)
was used. It was found that the source wavelength fluc-
tuations surpass the laser linewidth. The fluctuations
were ;1025 nm, which translates to Dk/k0 ; 1028. The
dashed curves in Fig. 2 represent Dm2,min imposed by this
restriction. They are nearly flat from ;1026 to ;1027 in
the range of the figure. It is now apparent that the sec-
ond limit poses severe restrictions on the detection limit.
Efforts are under way to decrease the source fluctuations.

B. Adsorption of Molecules in a Thin Layer
Small molecules with a small excess isotropic polarizabil-
ity aex are adsorbed at a uniform surface density s on the
exterior side of the surface of a sphere immersed in a sol-
vent with refractive index m2 . Refractive-index change
dm2 caused by the adsorption is given as

dm2 5
aexs

2«0m2
d ~r 2 a1!. (59)

Then

^k0umdmuk0& 5
aexs

2«0
@Bl~k !#2f l

2 (60)

for the TE mode. The fractional frequency shift of the
mode is

S Dk

k0
D

TE

5 2
aexs

«0a

1

m1
2 2 m2

2 . (61)

Note that the fractional frequency shift is flat for all val-
ues of k0a and is common to all orders. The same result
was obtained by Arnold et al., who used the energy per-
turbation approach.4

For the TM mode we use the general formula given by
Eq. (45). The integral is
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E dm

m3 F S dT0

dr D 2

1
l~l 1 1 !

2
T0

2Gdr

5
aexs

2«0m2
2 k0

2@Al~k0!#2x l
2F l~l 1 1 !

~m2k0a !2 1 S x l8

x l
D 2G . (62)

Then the fractional frequency shift is given as

S Dk

k0
D

TM

5 S Dk

k0
D

TE

l~l 1 1 !/~m2k0a !2 1 ~x l8/x l!
2

l~l 1 1 !/~m1k0a !2 1 ~x l8/x l!
2 .

(63)

Because m1 . m2 , (Dk/k0)TM /(Dk/k0)TE . 1. Adsorp-
tion of molecules with isotropic polarizability causes a
greater shift in the TM mode than it does in the TE mode.

For l @ 1 the use of Eq. (B5) below leads to the follow-
ing revision of Eq. (63):

S Dk

k0
D

TM

Y S Dk

k0
D

TE

>
2~l/m2k0a !2 2 1

~1 1 m2
2/m1

2!~l/m2k0a !2 2 1
.

(64)

We can further simplify formula (64) for the first-order
mode:

S Dk

k0
D

TM

Y S Dk

k0
D

TE

> 2 2 S m2

m1
D 2

. (65)

It is easy to extend the results obtained here to the fre-
quency shifts that are due to coating of the sphere’s sur-
face with a thin layer of thickness t (t ! l). For the
refractive-index change Dm2 in the coating, the fractional
frequency shift of the TE mode is

S Dk

k0
D

TE

5 2
2m2Dm2

a~m1
2 2 m2

2!
t, (66)

where aexs/(2«0) 5 m2Dm2t was used. For the TM
mode, the shift is given by Eqs. (63) and (66).

The frequency shift that is due to the coating depends
on tDm2 proportional to the total mass of the coating ma-
terial excluding the solvent in the layer. This result
leads to the following situation: If the coating is a poly-
mer brush grafted onto the sphere’s surface or a poly-
meric gel, a change in thickness does not change the reso-
nance frequency as long as the coating remains
sufficiently thin. A change in thickness can be caused by
a change in the environment, e.g., in temperature or in
pH. When a change in thickness is caused by adsorption
of a second substance, it is only the second substance that
changes its resonance frequency. Conformational
changes of the brushes that may occur concomitantly with
adsorption will not affect the resonance. Thus we detect
the adsorbed second substance only.

Apparently our formulation does not apply to a large
perturbation that causes the refractive index of the coat-
ing to increase to a level close to m1 . This is clear when
we consider a situation in which a thin layer of refractive
index m1 is added to the sphere, effectively increasing the
sphere’s radius. The resonance condition states that k0a
be held constant for TE and TM modes under this pertur-
bation; Eq. (66) contradicts this supposition. This incon-
sistency comes from a limitation of our first-order pertur-
bation approach. For the TE mode we can have a
consistent formula for Dk/k0 by considering d (m2), the
change in the relative permittivity, in place of dm in our
first-order perturbation theory. The result is identical to
the one obtained by Folan15 and presented in Ref. 8. For
the TM mode this modification falls short, because the ex-
act formula15 is a nonlinear function of d (m2). We in-
tend to address this problem in a future publication. It is
to be noted here that the TM shift given by Eqs. (63) and
(66) @m2Dm2 replaced by D(m2

2)/2] is identical to the lin-
ear part of the exact formula.

When the refractive-index change occurs in the interior
side of the interface, the frequency shift of the TE mode is
the same as that given by Eq. (61), but it is different for
the TM mode. Now it is

S Dk

k0
D

TM

5 S Dk

k0
D

TE

l~l 1 1 !/~m1k0a !2 1 ~ c l8/c l!
2

l~l 1 1 !/~m2k0a !2 1 ~ c l8/c l!
2 ,

(67)

where c l(z) and c l8(z) are evaluated at z 5 m1k0a. The
TM shift is smaller.

C. Depletion of Refractive Index at the Interface
We have learned in example (A) above that the sensitivity
of the resonance shift to the refractive-index change or
the surrounding medium depends on k0a . Then we can
expect that using different values of k0a and especially of
l will enable a WGM to be a sensor for the refractive-
index profile of the surrounding medium near the surface.
When the exterior medium is a solution of macromol-
ecules or a suspension of particles, the refractive index of
the solution will change as a function of the distance from
the sphere surface. If the solute has a positive differen-
tial refractive index and does not interact with the micro-
sphere except to create a steric hindrance (excluded vol-
ume), the refractive index will have the profile depicted in
Fig. 3. This mean-field refractive-index profile may not
be valid for suspension of large solid particles with a large
refractive-index difference but will be a good approxima-
tion for solutions of macromolecules and suspensions of
swollen gel particles and vesicles.

It is convenient to separate Dm2(r) into two parts:
Dm2(r) 5 Dm2(`) 2 @Dm2(`) 2 Dm2(r)#. In the first-
order perturbation, each term gives an independent fre-
quency shift. Thus

Fig. 3. Refractive-index profile across the interface surrounding
a microsphere.
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Dk

k0
5 S Dk

k0
D inf

2 S Dk

k0
D dep

, (68)

where the first term is given by Eqs. (47) and (48)
@Dm2(`) in place of Dm2] for the TE and TM modes, re-
spectively. The second term decreases rapidly to zero at
long distances. For the TE mode

S Dk

k0
D

TE

dep

5 2
^k0um2@Dm2~`! 2 Dm2~r !#uk0&

^k0um2
2uk0&

5 2

m2E
a

`

@x l~m2k0r !#2@Dm2~`! 2 Dm2~r !#dr

~a/2!@x l~m2k0a !#2~m1
2 2 m2

2!
.

(69)

For the TM resonance, (Dk/k0)TM
dep can be calculated simi-

larly from Eq. (45).
A numerical calculation was made for a profile Dm2(r)

that changes as

Dm2~r !/Dm2~`! 5 1 2 exp@2G~r 2 a !# (70)

for r . a. The solid curves in Fig. 4 are plots of Dk of
the first-order TE mode, reduced by (Dk)inf for a
5 100 mm and m2 5 1.33, but with various values of m1
and l. The dashed and dash–dotted curves are for
higher-order modes (n 5 2,3) with m1 5 1.47 and l
5 2mm. Comparing the five solid curves, we can see
that the shorter the wavelength or the greater the refrac-
tive index of a microsphere, the less is the sensitivity to
deeper depression. A higher-order mode with greater n
can explore a deeper depression. The values of param-
eters used in the figure are currently accessible in prac-
tice. Use of microsphere sensors of different values of l
and m1 and analyses of various orders of resonance will
allow us to estimate the depth of depression and its pro-
file. In a solution of macromolecules, for instance, we
should be able to find the molecular weight distribution
just by dipping the sensor heads into the solution. A
more elaborate expression for Dm2(r) is necessary for
that purpose.

6. CONCLUSIONS
We used first-order perturbation theory to obtain formu-
las for the resonance frequency shift that is due to

Fig. 4. Frequency shift as a result of a refractive-index change
of Dm2(r) 5 Dm2(`)$1 2 exp@2G(r 2 a)#% reduced by the shift
that is due to a constant Dm2 , plotted as a function of 1/G.
refractive-index variations in a medium exterior to a mi-
crosphere, and we applied the general formulas to three
examples. The first example can be used to construct
tiny refractive-index detectors that may replace the bulky
detectors that are widely used in liquid chromatography.
The third example paves the way for small instruments to
measure size distributions of suspensions and molecular
weight distributions of polymers; the measurement will
be instantaneous. The second example exposed a limit of
our first-order perturbation theory; here a different ap-
proach is needed.

In this paper we did not consider an equally important
microsphere system that has a decaying WGM. It will be
possible to extend our first-order perturbation theory to a
system with a complex frequency. A slightly different
formulation may be needed. Then the effects of environ-
mental change, including imaginary Dm2 , on the reso-
nance linewidth can be treated. We intend to address
this problem in future publications.

APPENDIX A: INTEGRALS IN
NORMALIZATION
We evaluate the two integrals in Eq. (21). Let ka 5 k
1 Dk. For a small m1aDk,

c l~m1kaa ! 5 c l~m1ka ! 1 m1aDkc l8~m1ka !, (A1)

c l8~m1kaa ! 5 c l8~m1ka !

1 m1aDkF l~l 1 1 !

~m1ka !2 2 1Gc l~m1ka !, (A2)

where Eq. (7) has been used. Then the upper limit of the
first integral is

lim
Dk→0m1

1

~k2 2 ka
2!

@2kc l8~m1ka !c l~m1kaa !

1 kac l~m1ka !c l8~m1kaa !]

5 2
1

2m1k H 2m1akc l8
2 1 F l~l 1 1 !

m1ka
2 m1kaG

3 c l
2 1 c lc l8J , (A3)

where the Ricatti–Bessel functions are evaluated at
z 5 m1ka.

We need to be careful about the integral of
f l(m2kr)f l(m2kar) over (a, `) because f l(m2kr) is a
linear combination of x l and c l with a k-dependent super-
position coefficient. We note that

f l~m2kaa ! 5 f l~m2ka ! 1 m2aDkf l8~m2ka !

1 Dkb l8c l~m2ka !, (A4)

where the derivative of f l is defined for a constant b l .
Likewise,

f l8~m2kaa ! 5 f l8~m2ka ! 1 m2aDk

3 F l~l 1 1 !

~m2ka !2 2 1Gf l~m2ka !

1 Dkb l8c l8~m2ka !. (A5)
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Then the lower limit of the second integral in Eq. (21) is

lim
Dk→0

1

m2~k2 2 ka
2!

@2kf l8~m2ka !f l~m2kaa !

1 kaf l~m2ka !f l8~m2kaa !]

5 2
1

2m2k H 2m2kaf l8
2 1 F l~l 1 1 !

m2ka
2 m2kaG

3 f l
2 1 f lf l8J 1

b l8

2m2
, (A6)

where f l and f l8 are evaluated at z 5 m2ka and Eq. (C5)
below has been used.

The upper limit of the integral is evaluated in the same
way. We use c l(z) > sin(z 2 lp/2) and x l(z) > 2cos(z
2 lp/2) for large z. A lengthy calculation leads to

lim
Dk→0

1

m2 ~k2 2 ka
2!

lim
r→`

@kf l11~m2kr !f l~m2kar !

2 kaf l~m2kr !f l11~m2kar !] 5 b l8/2m2 , (A7)

where sinusoidal functions have been set to zero. Com-
bining Eqs. (A3), (A6), and (A7), we have

lim
Dk→0

E
0

`

Sl~r, k !Sl~r, k 1 Dk !@m~r !#2dr

5 c l
2~a/2!~m1

2 2 m2
2!. (A8)

We can use this result for normalization of Sl(r, k). We
write the integral as

^Slum2uSl& 5 c l
2

a

2
~m1

2 2 m2
2!. (A9)

For the TM mode

^TluTl& 5 c l
2

a

2 S m1
2

m2
2 2 1 D F l~l 1 1 !

~m1ka !2 1 S x l8

x l
D 2G . (A10)

APPENDIX B: ASYMPTOTIC EXPANSION
OF RICATTI–NEUMANN FUNCTIONS
In estimating x l8(z) for large l, the following asymptotic
expansion of the Neumann function is useful:

Nn~n sech s ! > 2
exp@n~s 2 tanh s !#

@~p/2!n tan s#1/2 , (B1)

with s . 0. The spherical Neumann function nl(z) is
then expressed as

nl~z ! > 2S l 1
1

2 D 21

3 expF S l 1
1

2 D ~s 2 tanh s !G cosh s

sinh1/2 s
, (B2)

where

z 5 S l 1
1

2 D sech s. (B3)
Then the decay rate of nl(z) is calculated as

nl8

nl
> 2

1

z H F S l 1
1

2 D 2

2 z2G1/2

1
1

2
2

1

2 F S l 1
1

2 D 2Y z2 2 1G21J , (B4)

and the decay rate of x l(z) 5 znl(z) is calculated as

x l8

x l
> 2

1

z H F S l 1
1

2 D 2

2 z2G1/2

2
1

2 F1 2 z2Y S l 1
1

2 D 2G21J . (B5)

Another useful relationship for large l can be obtained in
a similar way:

x l11~z !

x l~z !
5

nl11~z !

nl~z !
>

l 1 1/2

z
1 F S l 1 1/2

z D 2

2 1G1/2

.

(B6)

With Eq. (C6) below, the factor that appears in Eq. (47) is
approximated as

x l21x l11

x l
2 2 1 > F S l 1

1

2 D 2

2 ~m2k0a !2G21/2

, (B7)

Equation (B2) allows a rough estimate to be made
of nl(m2k0a) at resonance. For the first-order mode,
cosh s > m1 /m2 , which is slightly greater than 1. Then
s > @2(m1 /m2 2 1)#1/2 and s 2 tanh s > @2(m1 /m2
2 1)#3/2/3, which is of the order of 1. Inasmuch as
l 1 1/2 @ 1, nl(m2k0a) is dominated by the exponential
factor. Therefore nl(m2k0a) @ 1 and x l(m2k0a) @ 1.

APPENDIX C: RICATTI–NEUMANN
FUNCTIONS
Here are some recurrence formulas for Ricatti–Neumann
functions:

c l8~z ! 5
l 1 1

z
c l~z ! 2 c l11~z !, (C1)

c l21~z ! 1 c l11~z ! 5
2l 1 1

z
c l~z !, (C2)

x l8~z ! 5
l 1 1

z
x l~z ! 2 x l11~z !, (C3)

x l21~z ! 1 x l11~z ! 5
2l 1 1

z
x l~z !. (C4)

c l~z !x l8~z ! 2 c l8~z !x l~z ! 5 1. (C5)

Using these recurrence formulas, we can derive a useful
expression:
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l~l 1 1 !

z2 2 1 1
1

z

x l8

x l
2 S x l8

x l
D 2

5
x l21x l11

x l
2 2 1 5

1

z

x l21

x l
1

d

dz

x l21

x l
. (C6)
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