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The static gravitational potential for four-body system in the order of G3 is calculated 
in the quantized theory. It is derived from the S-matrix elements for scattering of four 
spinless particles, among which gravitons are exchanged. Feynman's and de Dander's gauges 
are used for graviton propagator. The potential has contributions from the transverse-traceless 
part of the graviton field. The potential is different from that obtained in classical theory 

from the physically acceptable metric tensor derived in our previous paper under new coordi
nate conditions. Since all other known coordinate conditions such as de Dander's. ones lead 
to divergent metric tensor at spatial infinity in the post-post-Newtonian approximation, it is 
not unreasonable that the two potentials become different first in . this order of approximation. 

§ 1. Introduction 

There are two methods for obtaining gravitational potentials for many-body 

system. One is to solve Einstein's equation in general theory of relativity by, 

expanding the metric tensor gafl*l in the inverse powers of the velocity of light,**l 

and then to get the potentials from the metric tensor. The other method, which 

is familiar to particle physicists, is to calculate S-matrix elements for particle 

scattering in quantum theory by using propagators, and to obtain the potentials 

in the limit n~O**l from the S-matrix elements. Up to th~ post-Newtonian ap

proximation the two methods lead to the same results.1l' 2l 

Since Einstein's theory is invariant under general coordinate transformation, 

there is a freedom of choosing coordinate conditions.***l An example is de 

*> Greek indices run from 1 to 4. Latin indices run from 1 to 3. 
**> Hereafter the unit li=c=l is used. 

***> Throughout this paper the terminologies "coordinate conditions" and "gauge" are used in 
classical and quantized theories, respectively. 
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Perturbation Calculation of Gravitational Potentials 2067 

Dander's coordinate conditions :3l 

(1·1) 

, where g = det (g afi). In the post-post-Newtonian a!ld higher orders of the approxi
mation, the conditions (1·1) and other known conditions give the metric tensor 
which diverges at infinitely remote place from the region where the matter ex
ists.~J,5l In a previous paper4l we found the metric tensor which is Minkowskian 

at spatial infinity up to the post-post-Newtonian order. We call it the physically 
acceptable one. There is a class of coordinate conditions which give the ac
ceptable metric tensor. Then a natural question arises: Whether or not coordi
nate conditions such as de Dander's ones lead to right physical results in the 
post-post-Newtonian and higher orders of approximation. 

In order to answer this question, we would like to calculate in this paper 
the gravitational potentials in the post-post-Newtonian approximation by using the 
graviton propagators in Feym:nan's and de Dander's gauges. The potentials con

sist of three parts; the potentials in the order of G 3, G 2P2 and Gp', G and p 
, being Newton's gravitational constant and the momentum of a massive particle, 
respectively. These potentials are to be compared with those obtained from the 

physically acceptable metric tensor. The- detailed calculations for the latter will 
he published in a subsequent paper.6l 

In our perturbation calculations we first put 

gafJ =Gap+ !Chap, (1· 2) 

where hap IS considered as the graviton field and /C2 =32n:G. We use the pro
p~gator 

<Of T(hap (x), hra (y)) [0), (1· 3) 

where T and I 0). denote the time-ordering operator and the vacuum state, re
spectively. It is usually assumed that physical observables are independent of 
the definition of the graviton field. For example we may define the graviton 
field saf! by 

(1·4) 

In this case we use the propagator 

(1·5) 

The field hap can be expressed in terms of f3afl as 

hap= f3afl + IC [H/3rrl3aa- 2/3ra/3ra} 0 afJ- t/3rrl3afJ + f3ar/3 fir] + 0 (11:2) • (1·6) 

It would be worth while to note that both the propagators (1· 3) and (1· 5) 
are considered to be independent of 11: in perturbation calculations. This does not 
contradict with (1· 6), but only means that definitions of the graviton field are 

different in (1· 2) and (1· 4). 
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2068 H. Okamura, T. Ohta, T. Kimura and K. Hiida 

In the next section we first calculate the S-matrix elements for the scatter
ing of four spinless particles using the progagator (1· 3) in the Feynman's- and 
de Donder's gauges, and then derive the static four-body gravitational potentials 
in the order of G 8 from the S-matrix elements. Since tlie field hap couples with 
the conserved energy-momentum tensor, it is guaranteed that the use 'of the gra
vitort propagators in these two gauges leads to the same results. It is shown 
that the transverse-traceless part of the graviton field contributes to the static 
potential. 

As was shown in the previous papers,2l;4> one-graviton-~xchange potential in 
Feynman's and de Donder's gauges coincides up to the order of Gp4 with the 
corresponding part of the potentials obtained from the physically acceptable met
ric tensor in the classical theory. The static potential in the order of G 8 ob
tained in § 2, however, does not coincide with that obtained in the classical 
theory.6l In order to confirm that the calculations in § 2 is right, we calculate 
again in § 3 the static potential by using the propagator (1· 5) for the. field. f3aP. 
It is shown that the potential coincides with that obtained in § 2. 

In the last section we discuss the reason why the ·static potential in the 
order of G 3 obtained in §§ 2 and 3 does not coincide with that obtained by the 
classical method. It is shown that the potential in the order of G 2p 2 cannot be 
determined uniquely as far as Feynman's and de Donder's gauges are used. In 
Appendices 1 and 2, the Lagrangian density is expressed in terms of the gravi
ton fields hap and /3ap, respectively. 

§ 2. The static potential in the order of G3 

In this section we calculate the static part of four-bo~y gravitational poten
tial in the. order of G 3, v4 (G8). we st~rt with the Lagrangian density 

L= 1 -J~gR-l_V-g'L,{gaP 8¢i 8¢i +m/¢£2}, (2·1) 
16nG 2 i axa 8x13 

where R is the scalar curvature and ¢£ denotes a scalar field with the mass mi. 
The explicit form of the Lagrangian density expressed in terms of the graviton 
field hap is presented in Appendix 1. With this Lagrangian density, we calculate 
the S-matrix elements for collisions of four spinless particles by graviton exchange 
m relativistic perturbation theory. 

The propagator (1· 3) can be expressed as 

_ _ z_· _ Jd4keikx XaP.rD (k) (2. 2) 
2(2nf ' k2 -ic ' 

where the numerator Xa 13 ,78(k) depends on the gauge:;. It IS given by 
. ..' '. l.' (' .~' ' ; . ' 

x~.ro (k) =oarfi'pa + OaaO Pr- Oai3ra 

m Feynman's gauge, and by 

(2· 3) 
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Perturbation Calculation of Gravitational Potentials 2069 

(2·4) 

in de Donder's gauge. Since the field ha13 couples with conserved energy-mo
mentum tensor, it is evident that the difference between these two numerators 
has no contribution to the S-matrix elements. 

When the propagator (2 · 2) with (2 · 3) is used to calculate the S-matrix 
elements, they depend on the energy transfer k0 • The potentials obtained from 
these matrix elements become ambiguous. To overcome this difficulty we may 
use the freedom of gauge transformation in gravitational theory and can show 
that one-graviton-exchange potential is determined up to the 'order of Gp\ Then 
the factor XafM 8 (k) is given by2l 

Xa(3,r8 (k) = k
2

2 [oaiJ 13iJr,.o84- oa4o 13Jra- or4o84e a(3 + oa4or4e {38 + o {34o84ea, k . 

- . - k;kj {X + Oa40840 /3T + Op40r40a8- 7 4 (OaiOrJO (34084 + 0 pi0aj0a40r4 

(2·5) 

where x is .a real parameter, suffices i, j, k and l take the values 1, 2 and 3, 
and ea13 =oa13 -oa4o(34. Using only the nature that the field ha(3 couples with a 

(a) . ~ 

~·· (d) 

(h) 

(b) 

(e) 

(i) 

(c) 

(f) 

(j) 

(g) / 
/' 

Fig. 1. The diagrams which contribute to 
V 4 ( G3). Straight lines represent the 
spinless particles and the wavy lines 
represent the exchanged gravitons. 

cdnserved quantity, we can rewrite (2 · 3) .and ~~ 

(2 · 4) as (2 · 5) .2l For this reason we call 

hereafter (2 · 2) with (2 · 5) the propagator 

in Feynman's and de Donder's gauges. 

The diagrams which contribute to the 

four-body. potential in the order of G 8 are 

shown in Fig.· 1. It should be noted that 

these diagrams represent not only the dia

grams themselves but also the same types of 

diagrams. For example, the diagram (b) 

represents also the diagram shown in Fig. 

2. The same is true for the diagrams (c), 

(d) and (h). 

We consider first the contribution of the 

diagram (f) to the S-matrix elements. Let 

P; and q; be the initial and. the final mo-
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2070 H. Okamura, T. Ohta, T. Kimura and K. Hiida 

Fig. 2. The other diagram represented by Fig. 

l(h). 

Fig. 3. An example of assigning the momenta 

to the diagram 1 (f). 

menta of the particle with the mass mt (i = 1, 2, 3, 4) . There are four different 

ways in assigning the mass mt and the momenta Pt and q; to the four straight 

lines. An example is shown in Fig. 3. The S-matrix element for Fig. 3 is given 

by 

From this S-matrix element, the four~body potential is calculated to be 

cs mlm2mam4 [ (87- 18x + 3x~) - (1- x Y 
2 r12r1ar14 2 

(2·7) 

where rt1=rt-r1 and rt1 =ir;11,· r; being the position vector of i-th particle. 

When x=F1, this potential depends on the angle between r; and r 1• 

Here we discuss the nature of the angle-dependent potentials obtained from 

the diagrams in Fig. 1. The diagrams (a), (b), (d) and (e) do not contribute to 

the angle-dependent potential. The contributions from the diagrams (c), (f), 

(g), (h) and (i) contain angkdependent potentials, which yanish individually 

only when x = 1, as was illustrated in (2 · 7). The COJ;ltribution from the re

maining diagram (j) also contains angle-dependent potentials, which are separated· 

into two :Parts: One comes from the transverse-traceless part of the graviton 

field hatJ• and is independent of x. The other is free from the transverse-trace

less part, and vanishes when x = 1. 

Hereafter we take the value x = 1. Then the four-body potential obtained 

from all the diagrams involved in Fig. 1 (f) is given by 

(2·8) 
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Perturbation Calculation of Gravitational Potentials 2071 

where 

(2·9) 

The symbql C).) represents the configuration of the four related particles, as 

is shown by the right-hand side of (2 · 9) . 

Next we consider the contribution from the diagram (e) in Fig. 1 to the 

S-matrix. There are twenty-four combinations in assigning the mass mi and the 

momenta Pi and qi to four straight lines. An example is shown in Fig. 4. The 

S-matrix element for Fig. 4 is given by 

Fig. 4. An example of assigning the momenta to the diagram l(e). 

(2 ·10) 

where 

4 4 

y (k2o, k4o) = &<4) (~Pi- :E qi) m1n:2n:3n:4 {m12 + 4m1 (k2o + k4o) + 14k2ok4o}. 
•~1 i~1 k 2 ks k 4 

(2·11) 

In order to derive the four-body potential from the S-matrix element (2 ·10) 

with (2·11), we recall the relation between an S-matrix element and the corre

sponding potential V in old-fashioned perturbation theory. It is given by 

(/1 (S -1) I i) = - 2ni& (E1 - Ei) 

x {<II Vl'i)~ :E (/1 Vln)(nl VIi)+ :E :E (fiVIn)(nl Vlm)(ml VIi)+···} 
" Ei-E,. " m (Ei-Em) (Ei-E,.) ' 

(2·12) 

where the letters i and f denote the initial and the final state, respectively. The 

S-matrix element (2 ·10) contains the terms corresponding to the second and the 

third terms on the right-hand side of (2 ·12), though th~ matrix element (2 · 6) 

from the diagram (f) in Fig. 1 contains only the first term. Now we rewrite 

(2·10) as 

s. = cs.-S/1 - s.B2 + S/B) + {(S.Bl- S/B) + (S/2 - S/B)} + S/B, (2 ·13) 

m which 
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2072 H. Okamura, T. Ohta, T. Kimura and K. Hiida 

SBl= iG3Y(k k')-1-{_1_+ 1 } . 1 
e 5 20, 40 2 I · I . ' 

n 4ml 2ml k2o- k2o k4o- k4o 

(2·14) 

and 

S.BB_ iGaY(k' k') , 1 
e --5 20, 40 4 2 (k' - k ) (k' k ) ' .n m1 20 20 4o- 4o 

'where 

and 

k:o= ../ (qt +k4Y+ m12 -q1o. 

Then the first, the second and the third terms on the right-hand side of (2 · 13) 
correspond to those of (2 ·12), respectively. 

The potential for many-body system is included in the first terms in (2 ·12) 
and (2 ·13). From (2 ·10), (2 ·11) and (2 ·14) we get 

41 ·ca 4 4 
S -S BI_S s2+S ss =~z_r;<4J (I; P·-L: q) 

e e e e 16n5 i=l ' i=l i 

which leads to the four-body static potential 

m1m2mam.4 

k22ka2kl ' 
(2·15) 

(2·16) 

As was mentioned above there are twenty-four diagrams represented by Fig. 1 (e). 
Thus the contribution from Fig. 1 (e) to V4 (G3) is 

There are three diagrams represented by Fig. 1 (j). One of them is shown 

m Fig. 5. The S-matrix element for this diagram Is 

Fig. 5. One of the diagr11m represented by Fig. 1 ( j). 
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Perturbation Calculation of Gravitational Potentials 2073 

x {K (k1, ks) K (k1, k4) + K (k1, k4) K (k2, ks) - K (k1, k2) K (ks, k4)}, 

(2·18) 

(2·19) 

The second term on the right-hand side of (2 ·18) is the contribution from the 

part where the internal graviton with the momentum k is in ·the transverse·c 

traceless state. Recalling that Fig~ 1 (j) represents three diagrams, we get the 

following contribution from Fig. 1 (j) to v4 (G8): 

(2·20) 

where 

1 1 1 1 1 + ---+ ---+ ---+ ---+ ---

(2·21) ' 

and V/T denotes .the potential which comes from the second term on the right

hand side of (2 · 18) and similar two terms. The presence of V/T part in the 

static potential V41 (G3) means that the contribution from the transverse-traceless . 

part of the graviton field appears first in the post-post-Newtonian approximation. 

The V/T is the angle-dependent potential mentioned before, and is independent 

of the gauge parameter x. It cannot be expressed by a linear combination of 

the potenti~ls V(A) and V( o-o-o--o ) • The same potential V/T is obtained6l 

from the physically acceptable metric tensor in the classical theory. 

For 'the remaining seven diagrams in Fig. 1, the S-matrix elements can be 

calculated similarly. In order to obtain the gravitational potential from the S
matrix element for the diagram (d), we must subtract, from the S-matrix ele

ment, the terms corresponding to the second and the third terms on the right

hand side of (2·12), as we have done in the case of the diagram (e). The S
matrix elements for the diagrams (b), (c) and (h) contain the terms correspond

ing to the second term, but do not contain those corresponding to the third term 
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2074 H. Okamura, T. Ohta,- T. Kimura and K. Hiida 

Table I. The contribution to V4 (G3) from each diagram in Fig. 1, when the graviton field 

is defined by haP· The coefficients of the potentials V(A) and V( o-o,-o-o ) are written in 

the table. The definition of these potentials is given by (2·9) and (2·21). The poten
tial V/T is obtained from the diagram (j), though it is not included in the table. 

Diagram a b c d. e f g h Total 

V(A) 108 
123 

-36 
33 21 

-6 
3 

12 0 0 0 
2 2 2 2 

v ( o-o-o-o ) I -55 94 0 -40 0 0 29 -25 0 
15 3 

4 4 

on the right-hand· side of (2 ·12). In this case it is easier to obtain gravitational 
potentials than in the former case. For the other diagrams (a), (g) and (i), 
the potentials can be calculated without subtraction. We summarize the result 
in Table I, where contributions to V 4 (G3) from each diagram in Fig. 1 are shown. 
From Table I we have the static potential in the order of G 3, 

(2·22) 

§ 3. Recalculation of the static potential in the order of G8 

The static potential v4 (G3) was calculated in the previous section. There 
the graviton field was defined by hatJ in (1· 2), and the propagator (2 · 2) with 
(2 · 5) was used. In a separate paper6l the gravitational potentials in the post
post-Newtonian approximation will be calculate~ by. the classical method from 
the physically acceptable metric tensor gatJ· Then it will be found that the po
tential V4 (G3) obtained by the classical method does not coincide with that giv
en by (2 · 22), though in the order of Gp4 the same. potential is obtained by 
the two methods. We think that this difference is very important. In order to 
confirm that the potential (2 · 22) is correct as far as Feynman's and de Donder's 
gauges are used in quantized theory, we calculate in this section the potential 
'V:t (G3) by defining the graviton field by (3afJ in (1· 4) .. 

The Lagrangian density (2 ·1) is expressed in terms of the field f3atJ in Ap
pendix 2. As is shown by (A2 · 2) and by (A1· 5) with (A1· 6), the ftee Lag
rangian density for the field f3atJ has exactly the same form as that for the field 
hatJ· Feynman's and de Dopder's gauges are used again in this section. Then 
the propagator for the field f3atJ is given again by (2 · 2) with (2 · 5). All the 
diagrams in Fig. 1 are necessary to calculate V4 (G3). Sinc_e the calculation is 
similar to that in the previous section, we confine ourselves to summarize the 
result in Table II. As in the previous section, V41 (G3) also contains V/T. We 
find from Table II that the static .part of the four-body potential in the order of 
G 3 remains unchanged and is again given by (2 · 22). 
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Perturbation Calculation of Gravitational Potentials 2075 

fable II. The contribution to V4 (G3) from each diagram in Fig. 1, when the graviton field 

is defined by fJaP. The <;oefficients of the po~entials VC),) and V( o-o-o-o ) are writ

ten in the table. 

Diagram 
I 

a b c d e f g h 
I 

Total 

V(A) I 0 0 18 0 
123 

12 -24 
159 

48 -60 1 2 2 
12 

V(~)~ -4 28 0 -40 0 0 -16 41 0 -~I 
3 

4 

§ 4. Discussion 

The gravitational potentials in the post-post-Newtonian approximation consist 

of three parts: The potentials in the order of Gp4, G2p2 and G 3• It has been 

shown2l' 4J that the potential in the order· of Gp4 obtained in quantized theory in 

Feynman's and de Donder's gauges coincides with that obtained in the classical 

theory from the physically acceptable metric tensor. In §§ 2 and 3 we have cal

culated the gravitational potential V4 (G3) for four-body system in the order of 

G3 in Feynman's and de Donder's gauges. The potentiaL in this order, except 

for V/T, is angle-independent oniy when x=1·. Then the potential V4 (G8) is 

given by (2 · 22) . It is interesting to compare (2 · 22) with the corresponding 

potential obtained from the physically acceptable metric tensor in the classical 

theory. In general the latter potential depends on several parameters, but there 

. is a unique choice of parameters, which makes the latter potential angle inde

pendent except V/T. It is given .by 

(4-1) 

A discrepancy is found in the coefficients of the potential V C)-a) 111 (2 · 22) and 

( 4 -1), though the remaining parts coincide. 

Recall that the potential (2-22) is obtained 111 Feynman's and de Donder's 

gauges, but the potential (4-1) is obtained under the coordinate conditions used 

in the previous paper.4l There we put the metric tensor gafl in the form 

(4-2) 

where the numbers in superscripts with parentheses denote the order of c- 1• The 

simplest form of the ·coordinate conditions which lead to the physically accep

table metric tensor is given in the lowest order of c-1 by 

and 

(4-3) 
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2076 .H. Okamura, T. Ohta, T. Kimura and K. Hiida · 

Up to the post-Newtonian approximation the gravitational potentials obtained 
in both classical and quantized theories are identical, when parameters such as 
x are properly chosen. In that order of approximation the metric tensor becomes 
Minkowskian under any known coordinate conditions·at a -place infinitely remote 
from the region where the matter exists. In the post-post-Newtonian approxi
mation, however, the situation is quite different'. At spatial infinity the metric 
tensor diverges under de Donder's· coordinate conditions, while the physically 
acceptable metric tensor becomes Minkowskian. It would be natural that the 
discrepancy between (2 · 22) and ( 4 ·1) first appears in the post-post-Newtonian 
approximation. Thus there is a possibility that the potential (4·1) is obtained 
in quantum theory by using the propagator (1· 3) in which the field hap satisfies 
the conditions corresponding to ( 4 · 3). This possibility will be investigated on 
another occasion. 

There remains to estimate the potential in the order of G 2p1 • We calculate 
the S-matrix elements for the scattering of three particles shown by the diagrams 
in Fig. 6. Using the propagator (2 · 2) with (2 · 5), we can get the potentials 

Fig: 6. The diagrams for the potential in the order of G2p2• 

uniquely from the S-matrix elements for the diagrams (a) and (b). The sitqa
tion is different for the diagram (c) . In this diagram there exists a three-gra
viton vertex. This vertex shows that the graviton couples with the energy
momentum tensor of the graviton itself. Thus the S-matrix element for the 
diagram (c) contains, in ,general, the terms proportional to the energies transferred 
by the gravitons, and the terms proportional to the square of the' energies. we 
have checked that there remain terms proportional to the energy transfers in the 
S-matrix element, though the terms proportional to the square of the transferred 
energies happen to cancel out. Consequently it is impossible to determine the 
potential uniquely in the order of G 2p2 from l:he S-matrix element for the diagram 
(c). It is an interesting problem to study whether or not we can eliminate this 
dependence on energy transfers by using the propagator (1· 3) derived under the 
·conditions ( 4 · 3) . 

Appendix I 

The expression of the Lagrangian density (2 ·1) in terms of hap 

From the definitions (1·4) and gaf:lgf:lr=iJar, we have 
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(Al·l) 

and 
2 

./- g = 1 + ..£ haa + f£_ { (haaY- 2haphap} 
2 8 

+ /C 3 {1._ hapharhPr- _!_ haphaphrr + _!_ (haaY} + 0 (!C4) • 

. 6 8 48 
(Al·2) 

The Lagrangian density containing only the graviton field is given by 

where 

T~n = tgrl' (8ag !'8 + Osgal'- fjl'gas) · 

It is expanded m terms of hap as 

where 

and 

I=- ihpr,ahpr,a + ihpp,ahrr,a + hpr,ahar,p- hap,ahrr,p' 

lap= 1thrs,ahrs,p- ihrr,ahss,p- has,rhflr,s + hrs,rh~p,s 

+ has,rhps,r- hap,rhss,r + hf3r,ahss,r + hss,ahpr,r- 2hrs,ahps,r 

(Al·3) 

(Al-4) 

(Al·5) 

(A1·6) 

The Lagrangian density for the scalar field with mass m interacting with 

the graviton field is given by 
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te8 [ 8¢ 8¢ . · + - ----11 {hall (h77hss- 2h7sh7s) - 4harhflrh8s + 8harhflsh78} 16 axa ax 

_ _!_ (_!}j__ _!}j__ + m 2¢2). (8harhashrs- 6hflrhflrhss + hflflhrrhss) J + 0 (te4) • 6 axa axa . . 

(A1·7) 

Appendix 2 

The expression of the Lagrangian density (2 ·1) in terms of' f3a 11 

Using the definitions (1· 4) and (1· 6) for the fields ha11 and j3a11, we can 
express ha11 in terms of f3a 11 as 

hall= f3afl + te { ~ (/3rrf3ss- 2/3rs/3rs) (J afl- ~ /3rr/3afl + f3arf3 fir} 

+ te2 { 1 ~ (- f3rr/3ss/3pp + 3f3rBf3rs/3pp- 2f3rs/3rp/3sp)/Jafl 

+ ~ (3/3rrf38s- 2f3rsf3rs) f3afl- f3ssf3arf3flr + f3ar/3 fl8/3rs} + 0 (te3). 

(A2·1) 

The substitution of this relation into (A1· 5) with (A1· 6) and into (Al· 7) leads 
to 

1 1 
Lg = - 2/3 flr,a/3 flr,a + 2/3 flfl,a/3rr,a + /3 flr,af3ar, fl- f3afl,a/3rr.fl 

+ te { ( ~ /3rs,af3rs,fl + f3as,r/3 flr,B- f3a8,r/3 f18,r + ·~ f3afl,r/388,;- /3 flr,a/388,r) f3afl 

(A2·2) 

The Lagrangian density for the scalar field is given by 
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+JC2m 2ql {-f6 CSaaY+ ! Sa.eSa.e} +JC3m 2¢l {;6 (SaaY- 1
1
6SaaS.ert1.er 

+ l_ Sa.eS.erSra} + 0 (JC4
) • 

12 
(A2·3) 
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