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Thermodynamical quantities are expanded in perturbation series with respect to the 
Coulomb repulsion U for the Anderson Hamiltonian with electron-hole symmetry and 'their 
general terms of perturbation are investigated. By these processes the mutual. relations 
among these quantities are discussed. It is confirmed that the thermodynamical quantities 
such as the specific heat. and the scattering t-matrix are expressed in terms of two quantities; 
the even and odd parts of the susceptibility as far as low-lying excitations are concerned. 
These results are entirely consistent with the Nozieres phenomenological Fermi liquid theory 
based on the s-d exchange model. . 

§I. Introduction 

In the :first paper1h*> of' this series, we presented a perturbation theoretical 
approach to the Anderson Hamiltonian2> with electron-hole symmetry and showed 
that each term of the perturbation expansion for the thermodynamical quantities, 
in particular for the free energy, can be expressed by an imaginary time integral 
of the product of two antisymmetric determinants constructed by unperturbed 
local d-electron temperature Green's functions. 

In the second paper by Yam ada, B) each term in the perturbation expansions 

for the specific heat, the susceptibility, the resistivity and the density-of~states 

for the localized d-state has been calculated up to fourth order. In the course 
of calculation it . has been found that some general relations hold between 
thermodynamical quantities, in particular, the T-linear specific heat· is proportional 

to the even part of the susceptibility. This finding immediately leads us to the 

result that the ratio of the susceptibility to the coefficient of the T-linear specific 
heat becomes twice as large in the s-d limit as the value in the case of no 

correlation. 

This paper deals with further development along this line: Here, discussion 
is mainly concentrated on the. general properties of the perturbation series for 
thermodynamical quantities in the Anderson model. 

The basic Hamiltonian in this paper is the Anderson Hamiltonian with 

electron-hole symmetry (Ed= -tU), which is divided into two parts, the 
unperturbed part H 0 and the perturbation H' as follows: 

*> This paper is referred to as I. 
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Perturbation Expansion for the Anderson Hamiltonian. III 1287 

H=Ho+ H', (1·1) 

where ak 11 and ad 11 are respectively the annihilation fermion operators for the 

conduction electron with wave vector k and spin (J and for the localized d-electron 

with spin 6. ek represents the kinetic energy of the conduction electrons, V the 

transfer energy between the conducting ·and local d-states and U the Coulomb 

repulsion between two d-electrons. 

For this Hamiltonian, as shown in I, the free energy F can be expanded in 

the power series of U,, except for the 1st U-linear term, as 

1 
{3=-. 

kT 

Dn(l, oo•n) IS the n-row, n-column antisymmetric determinant, 
' 

Gnl Gn2'" """ "' 0 

(1·4) 

(1·5) 

and the element G.1 is the, unperturbed d-electron temperature Green's function

G•1 = G (r •- r 1) = - <Tradlf (r.) at.,Cr 1) )unperturbed 

1 
G(wn) = . , 
, t (wn + £1 sgn Wn) 

Wn =E._ (2n + 1), 
{3 

where £1 IS the width of the virtual d-level and given by 

J=npiVI 2, 

(1·6) 

(1·7) 

(1·8) 

p being the state density for the conduction electrons. Since the antisymmetric 

determinant identically vanishes for odd n, we can easily see from Eq. (1·4) 

that the free energy is expressed by an even power series of U, exclusive of 

the U-linear term included in the unperturbed part H 0 • 

For our purpose of discussing the general properties of the thermodynamical 

quantities, the determinantal expressions of their perturbation series as (1· 4) for 

the free energy are particularly convenient and such expressions are fully used 

in this paper. 
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1288 K. Yosida and K. Yamada 

§ 2. Dynamical susceptibility 

The perturbation expansion for the static local susceptibility IS given m 
our scheme as8l' 4l 

X = Xeven + X odd ' (2·1) 

(2·2) 

X [D2n+2(1,2, ···2n+2)D2n+2 (2,3, ···2n+3)Jconn· (2·3) 

In this section, these expressions for the static susceptibilities are extended to 
the dynamical susceptibilities. 

We consider a case in which a time-dependent local magnetic field with 
circular frequency (J) is applied in the z-direction. The magnetic moment induced 
by this applied field is calculated by _the time-dependent perturbation theory. 
The perturbation in this case is the Zeeman energy: 

(2·4) 

and the induced moment M is given by 

(2·5) 

The dynamical susceptibility is calculated as 

Jnm = (nlnar- naJ.Im). (2·6) 

Here, if we put (J) + ir;~i(J)n, we obtain the temperature expression for the 
dynamical susceptibility as 

(J)n=2n_E_. 
{3 

(2·7) 

(2 · 7) can be rewritten in the following form: 

X((J)n) = ( g/J.B) 2 ..:!:_ fll fll drdr'ei"'n<•-•'l((T,(nar(r) -naJ.(r)) (nar(r') -ndJ.(r')))),, 
' 2 {3 Jo Jo 

(2·8) 
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Perturbation Expansion for the Anderson Hamiltonian. III 1289 

where <(A)) denotes the thermal average of A 

((A))= .I; e-.SEm(mJAJm)/,L; e-.SEm 
m. m 

and 

A(r) =eH"Ae-H". 

(2 · 8) can be again rewritten as 

X(Wn) = (g~ 8 y ~ r fdrdr'e 1w.<r-r'l[((T,nat(r)nat(r'))) 

- ((T,nat (r) net• (r') ))] . (2·9) 

The integrand of (2 · 9) gives t_he time (imaginary)-dependent susceptibility 

X (r- r'), namely 

X (r- r') = Xeven (r- r') + Xood (r- r'), (2·10) 

Xeven(r-r')/ (g~BY X~ven(r-r') =((T,na1(r)nat(r'))), (2·11) 

Xodd(r-r')/ (g~BY X~dd(r-r') = -((T"nat(r)na.Cr'))). (2·12) 

The perturbation expansion of x (r- r') is easily obtained in a way similar to 

the case for the free energy as 

= u2n ip ip 
x' (r-r')=.L;-- ··· dr~···dr2[D 2 n+ 2 (r12···2nr') 

even n=O (2n)! o o· n ' ' ' ' 

XD2n(1, 2, ···2n)]conn, (2·13) 

X D 2n+2 (1, 2, .. ·2n + 1, r') lonn. (~ ·14) 

Now, we expand the determinant D 2n+2 by their cofactors as follows: 

D 2n+2(r, 1, 2, ···2n, r') = .I; Gr~G 1 "G"'i'G,,,, 
Incl. ij':f;,i;,=i' 

(2·15) 

·an the right-hand side of the second equation, D}1, f'i'' etc., are the cofactors 

of the 2n,th order determinant constructed by G;" where i, j= 1, · ··2n. By 
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1290 . K. Yosida and K. Yamada 

using (2 ·15) in (2 ·13), its Fourier component can be written as 

00 uan 1 ifl 'ifl . ' [ . 1 . + ~--- ··· drl· .. dra,. ~ - ~ G(a>1) n=l (2n) ! fJ o o . J£, J'i' {J "'• 
mel. J=i, J'=,i' 

Similary, by the use of the relation 

JY"+~(r, 1, ... 2n+1) =- ~ GdGJ<Dj(+I, 
Ji 

incl. J=i 

the Fourier component of (2 ·14) is obtained as 

1 oo U2n+l 1 ifl ifl Xodd(a>,.) = ~ - ·.. dr1" ·drsn+l n=O (2n+1)1 fJ o o 

X [ ~ _!_ ~ G (a> I) G (a>1 -a>,.) e-l .. ,c~,-~,> 
incl~~=i {J "'• 

X ~ _!_ ~ G (a>a) G(a>a+ ~.,.)e-''"•<~,'-~c'> 
incl~~";=i:' {3 (1) 11 

(2·17) 

§ 3. Relation between tht;l free energy and the dynamical susceptibility 

The 2n-th order term of the free energy is, from (1· 4), written as -

F 2"=- U 2
" _!_ [fl ... Jdr1···drs [D2"(1 ... 2n) 12 • (2n)! {J Jo " ' Jconn 

- (3·1) 

Here, we 'expand D 2" with respect to the elements of 2n-th row and 2n-th 
column as 

(3·2) 

and carry out the in~egration with respect to r 1,.. · Then, (3 ·1) is written as 

U2" 1 ifl ifl F 2"= ---- ... drl· .. dra,.~l ~ 
(2n) I tJ o o J'i''' • fJ incl • .I =i, r =i' 
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Perturbation Expansion for the Anderson Hamiltonian. III 1291 

(3·3) 

Comparing this result with (2 ·17), we obtain the relation 

(3 ·4) 

or 

(3 ·5) 

This result can be derived indirectly by putting 

~ ~ X~;:n(Wn) =0 
fJ Wn 

for n=/=0 (3·6) 

m the well-known relation which generally holds between the free energy and 

the dynamical susceptibility. (3 ·'6) can easily be proved in the expression for 

X~ven (wn) given by (2 ·16). 

The ground state energy Eu is given in terms of Xoctd (wn) at the absolute 

zero by 

U 1 iu ioo ' Eu=Eo---- dU Xoctd(w)dw. 
4 71: 0 0 

(3·7) 

· § 4. Static susceptibility at T = 0 

The expressions for' the static susceptibility, X~ven (0) and X~ct (0), can be 

rewritten in a more compact form for T = 0. 

First we consider x~;:n (wn = 0) and take out its integrand: 

(4·1) 

At T = 0, the sum over Wn can be replaced by integration as 

1_ ·~ G(w1) ~__!__ foo G(w)dw. 
{3 "'• 2n -oo 

By partial integration, we have 
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1292 K. Yosida and K. Yamada 

By the cofactor expansion, we rewrite ( r: 1 - r: £) D}~ as follows: 

( r: 1 - r: £) Dji = - [ ~ r: j' I:; G f'i'D}~J'i'- I:; r: i' I:; G f'i'D~~f'd 
J''i=J i' i''f=i j' 

(b) 

One more partial integration yields 

(r:f'-r:£-) 21rr s G(w)e-im(<J'-«'ldw 

= _ _l__ _ _l__ Jccwye~im('''-«'ldw. 
rr.J 2rr 

(c) 

After the above three manipulations, the second term in ( 4 ·1) 1s rewritten as 

1 I:; _!_ L:; G(w1Ye-im,(<J-'<lD}~J'i'D2n 
rr.J .Jiii:,i~., {3 "'' 

JJ 'J ,t 

x _!_ I:; G (w2ye-im,(<J'-q'J D}~ 1 'i'D 2 "". 
{3 "'' -

The second term is cancelled out with the j~i and j' ~i' terms of the first 
term of ( 4 ·1). Thus, the following terms survive in ( 4 ·1): 

(4·2)-

By the reversed processes of (c) and (b), 

1 fcc )2 -iw''''-q')d 1 ( )G 2rr ()) e W= --;J- r:f'-r:i' J'i'' (c') 

(b') 

( 4 · 2) becomes 
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Perturbation Expansion for the Anderson Hamiltonian. III 1293 

If we notice the relations 

Dj;;1 = -Dj1;;, D}w1 = -D}1r;, 

Diwv= -D}vn, (4·4) 

we see that the quantities in the square brackets are cancelled out and we 

finally obtain 

x' = X10 --lim :E --- ... dr1dr2···dr2 
1 ~ U 2n 1 ip s 

even even 7C J P~oo n=l (2n)! {3 o n 

' 
(4·5) 

By similar but simpler manipulations, the odd part of the static susceptibility 

X~dd at T = 0 carl be written in the following compact form: 

§ 5. T 2-part of the free energy 

The free energy. of 2n-th order is given by 

F 2n= -~ 2_ fP Jdrt .. ·dr2n[D 2 n]~onn, 
(2n)! {3 Jo 

(4·6) 

where temperature dependence arises from the d-electron Green's function, 

Wn = (2n + 1) _!. . 
{3 

Now, we consider a function F(w) which has a singularity at w=O, just as 

G (w). Then, a discrete sum of F(wn) with respect to n can be expanded in a 

series of T 2n as 

27! L;F(wn)= soo F(w)dw-2_(_!.) 2 [F'(O-)-F'(O+)] 
{J aln -oo 6 {J 

+-7-(_!.)4[F1H (0-) -FIH (0+ )] - .... 
360 {3 . 

(5 ·1) 

Using this relation, we have 
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1294 K. Yosida and K. Yamada 

(5·2) 

If we use the relation (5 · 2), it is an easy ·task to take out the T 2-part .from 
F 2"'. The result is obtained as 

,1(2) pn = _!_ ( Ji.) 2
- 1- U 2."' lim_!_ [P · · · [P drc · ·dr2n 

3 '{3 TCJ (2n)! P~oo {3 Jo Jo 

X I: [ ( r; - r ,) D~~D 2 nlonn • (5·3) 
ji 

From this result, we obtain the coefficient of the T-linear specific heat r as 

(5·4) 

Compa.ring (5 · 4) with ( 4 · 5), we are led immediately to 

x~!~n = [ ~ Cnkfr1r2
n. (5·5) 

By noting that 

(5·6) 

an important relation for the Anderson Hamiltonian 1s derived: 

X~ven =r / ~ (rckf. (5·7) 

It is more convenient to define dimensionless quantities, X and r, for later use by 

2(k)21-r=- n -r. 
3 TCJ 

(5·8) 

Another proof by the diagram metho'd of this relation was presented in II, 
where it was shown that this relation immediately leads to the result that the 
ratio 

x = 1+ Xodd 

r Xeven 

(5·9) 

tends to 2 in the limit of large U, namely in the s-d limit. Thus, we can see 
that Xodd represents the many-body effect for the Anderson Hamiltonian. 

The procedures used in this and the preceding sections enable us also to 
obtain the T 4-part of the free energy and the T 2-part of the static susceptibility. 
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Perturbation Expansion for the Anderson Hamiltonian. III 1295 

Here, we wtite down only the obtained results. 

LJ<4lF 2n= _ _l_(nk/-1- ~lim_!_ fP··· fP dr1···dr2n 
· 18 (n LIY (2n) ! P~oo {3 Jo Jo 

X [ I:: ( r 1- r i) (r J'- ~ i') D't.n,D2n 
jij 1 i 1 

LJ<4)Fo= +__!_(nk)4_l_ _!_ 
. 90 7!" L1 L/ 2 ' 

LJ< 2 lX~;:n=_l(nkY(_l_) 2 [J 2
n lim_!_ fP··· fP dr1···dr2n 

6 nLI (2n)! P~oo {3 Jo Jo 

X [ :E (r,-ri) Crr-ri')D't.,,~,D 2 n 
jij'i' 

+nL1~{: 2 (r 1 -r£)- (r_;-r;) 3 }D~~D 2 n 

+ 2 :E (r 1 - riYD~~rvD 2 n 
jij'i' 

incl. J'=i' 

LJ<2)x'O = _!_ C~k)2_1_!!... 
even 6 (7!" LIY LJ : 

1 1 " ( )D2n+l ~\ +- -. - "-' r ,,- ri' JiJ'i' 
2 (n Ll) . JWi' 

tncl. J=i 

X " D2n+1J ' 
"'-.! j'i' conn • 
j'i' 

incl. J'=i' 

§ 6. Scattering t-matrix 

(5 ·10) 

(5·11) 

(5 ·12) 

The electrical conductivity (J of the system described by the Anderson 

Hamiltonian is calculated by the following expression: 

(6·1) 
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1296 K. Yosida and K. 'Yamada 

and 

1 
(6·2) 

t-matrix IS obtained from the retarded Green's function as 

(6·3) 

where R (w) and I (w) are, respectively, the real and imaginary parts of the 
self-energy 

;;n(w) =R(w) +ii(w). (6·4) 

Therefore, the following relation holds between t-matrix and the retarded self
energy of the local d-electron: 

1 2 . t w-R-i(J+I) - nzp kk = ---==------'-'---=e___ 
w-R+i(J-I) 

Since, as will be seen later, ;;n (0) = 0 and Rocw, Iocw2, T 2, (6 · 5) is written 
down for low frequency and low temperatures as 

1 2 . ( ) [1 4I J 1/2 -2 i8 - mptkk w = +J e , 

(J(w)=.!!__W-R. (6·6) 
2 J 

The imaginary part of the phase shift (}' =I/J represents contributions from 
inelastic channels. In the low-energy and low-temperature regions, the inelastic 
channel is dominated by two-particle scattering. The transition rate for this 
type of inelastic scattering is calculated by Nozieres. 5l If w;e here use his result 
in our case, we have 

~I= -2n2p4 (n2T 2+ W2
) [1Anl 2+ ~ IAtt12

]. (6·7) 

where Au and Att are the notations employed by Nozieres5l and represent the 
transition amplitudes with which two electrons in the states of k11 and k2>• or 
k11 and k21 on the Fermi surface are, respectively,, scattered to the states of ks> 
and k4t> or k81 and k41 on the Fermi surface. 

On the other hand, the self-energy J;(w) can be directly calculated from 
the improper self-energy };' (w) which IS m the following relation to the proper 
one J;(w): 

J;'(w) = ;; (w) R' (w) + il' (w), 
1-J;(w)G(w) 

(6·8) 

namely, R' (w) =R(w) + ... , I' (w) =I(w)- (1/ J)R2 (w) + .... 
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Perturbation Expansion for the Anderson Hamiltonian. III 1297 

The perturbed Green's function GP (r- r') 

IS expanded in a power series of U as 

00 u2n l/3 lfl 
GP(r-r') =G«'+ :E -- ··· · dr1···dr2n 

n=l (2n)! o o 

X [D2n+l(r, r'; 1, 2, ···2n)D2n(1, ···2n)lonn. (6·9) 

Therefore, its Fourier component is given by 

Noting the relation 

(6 ·11) 

we obtain the improper self-energy as 

From (6 ·12), we can see .S' (w~O) = 0 because D~i, = - D;'j. The first-order 

term with respect to Wn is given by 

X :EJi [( r 1 - r: i) D~D 2 nlonn . (6 ·13) 

Comparing this with X~ven given by ( 4 · 5), we obtain 

(6 ·14) 
0 

and replacing Wn by -iw, we obtain 

R' (w) =R(w) =-(I) (Xeven -1) (6 ·15) 

. or 

(I) .;_ R ((I)) = WXeven • 

As for I (w), we pursue an indirect way without obtaining it directly from 

.S' (wn). We first calculate inelastic scattering amplitudes An and An. In order 

to get them, we have to calculate the two-particle Green's functions 

Gn (krerv1, k2(r' V2 ;· ks!J' Vs, k4!Jv4) 
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1298 K. Yosida and K. Yamada 

X «T,ak, a ( s1) ak,a' ( s2) at,"' ( ss) at, a ( s4) )). (6 ·17) 

First we calculate the Green's function for-O"= [ and 0"' = ~- This can be done 
in the following way: 

Gil (k1v1 t, k2w~; kavs~, k4v4 [) 

00 U" if/ if/ x:L;(-1t- ··· dr~···dr,.[D"+I(s 1 s 4 ; 1,2, ···,n) 
n=O n! 0 0 

xD"+1(s2ss; 1, 2, ···n)Jconn' (6·18) 
where 

D"+1(sls4; 1, 2, ···n) 

Gk,k, (s1- s4) Gk,a (s1- r1) Gk,a (s1- r2) · · ·Gk,a (s1 .:_ r ,.) 

G_ak,(rl-s4) 0 G12···············G1,. 

Gak,(r,.-s4) G,.1································· 0 

Expanding D"+ 1 (s1s4 ; 1, 2, ···n) with respect to the first row and column and 
carrying out the integration over si, we obtain 

Gil (k1v1 I, k2v2~; ksvs~, k4v, [) 

= (3 [(3Gk,k, (v1) Gk,k, (v2) tJ.,./1.,., 

00 U" 1 if/ if/ +I; ( -1)"-- · · · dr1· · ·dr,. {I;Gk,a (v1) Gak, (u,) 
n=l n! (3 o o Ji , - -

X e -i}ol 8t'j"+ilr2t'.i 1Dn . } ] 
J't' conn • 

By the use of the relations 

Gu- (v) = V 2G (v) Gk o (v) G~, (v), 

Gak(v) = VG(v)Gk 0 (V), 

(6 ·19) 

(6·20) 

where Gk o (v) is the free electron Green's function in the absence of the s-d 
mixing, (6 ·19) can be calculated as 

(6 ·19) = (3G~, (v1) G~. (v2) G~, (vs) G~. (v4) {(3V'G (v1) G (v2) (] .,.,tJ .,., 

+ V'G (v1) G (v2) G (vs) G (v4) 

xf; (- 1)"u,._!_ f"' ... r{ldrl···dr,.[ :E e-i••<J+h,q 
n=l n! (3 Jo Jo . Ji 

mel. J=i 
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XD ~. """' e-iv,<J'+ivo«'D~ ] } Jt LJ J"i' conn • (6·21) 
1'1/ 

incl. J'=i' 

If we put V1 = 0, only the terms with odd n remain, because E 11Dj1 = 0 as n is 
even. Then, the sum in (6 · 21), the vertex part, is .proportional to Xodd· Compared 
with Xodd given by ( 4 · 6), this vertex part, which should be put as Au, is expressed 
as 

1 ~ 
= - np2L1 Xoctd. (6·22) 

The two-particle Green's function for (J = j and (J' = j IS also calculated in a 
similar way and the result is 

Gil (k1 jv1, k2 iv2; ksiVs, k4jv4) 

= PV 4 G~. (v1) G;, (v2) G~,(vs) G;, (v4) [G (vJ) G (v2) P (ov,v,ov,v,- ov,v,ov,v.) 

X ~ eiJ.Ilt"i-iJ.14t'j+iv2ri'-illat"j'D~~j'i'D2n]conn• 

Jij'i~ 

incl. J=i, J'=i' 

Here we put Vi= 0. Then, the. second vertex part identically vanishes since 

whi~h results from ( 4 ·4). Thus, we have 

Att=O. 

Inserting (6·22) and (6·23) into (6·7), we obtain 

(6. 23) 

(6. 24) 

With the results of (6 ·16) and (6 · 24), the imaginary part of the t-matrix 
becomes 

(6. 25) 

I t12 1 .. ' L12 
np = np (w-Rf+(iJ-If 

1 {1_(w-Rf+2I} 
np . L12 L1 

(6. 26) 
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~ 1 1 ~2 ( n2T 2 w2 ) 
- np 2Xadd ~+j2 · (6 ·27) 

The second term of (6 · 25) expresses contributions from inelastic cha!lnels and 

plays a role of spin-flip scattering in the Suhl-Nagaoka theory6l based on the 

s-d model. However, here in our case it arises from two-particle scattering 

whose mechanism is different from the so-called 'spin-flip' mechanism. 

§ 7. Discussion and conclusion 

It has been well established that the ground state of the system described 

by the s-d model is in a locally singlet state, or non-magnetic state.7),B) However, . 

up to date not so much about the low-lying excitations from the ground state 

has yet been clarified although the low-temperature behavior is known to be 

completely normal. Wilson's recent theory9l was successful in obtaining the 

low-temperature specific heat and susceptibility with the aid of numerical 

calculations. At the same time, however, it seems to show how difficult it is 

to develop the theory analytically. On the other hand, the Anderson Hamiltonian 

from which the s-d model is derived in the limit of a large value of U always 

gives a non-magnetic ground state. The small system described by the Anderson 

Hamiltonian should have no singularity in its b~havior in the whole range of 

U from zero to infinity. Thus, it is expected that the low"energy and low-tem

perature behavior of the system described by the Anderson Hamiltonian for not 

so large a value of U is essentially the same as the one described by the s-d 

model. Therefore, it might be of great help in clarifying the low-temperature 

behavior of the s-d model to investigate the Anderson Hamiltonian without using 

any approximate methods such as Hartree-Fock, RPA, etc. This is the main 

reason for our present work on the perturbation theoretical approach. 

In the Anderson Hamiltonian, inelastic channels always exist besides the 

elastic channel for scattering of conduction electrons and the former scattering 

represents the many-body character of this system, as has been pointed out by 

Nozieres.5 l This inelastic scattering is different from 'spin-flip' scattering in the 

Suhl-Nagaoka theory on the s-d model and it arises from two or more electron 

scattering. 

In this paper, perturbation terms of general order for thermodynamical 

quantities-the specific heat, the susceptibility, and the scattering t-matrix-are 

investigated and mutual relations between them are examined. The main results 

obtained in this paper are that the low-temperature or low-energy behavior of these 

quantities is described in terms of the even part Xeven and the odd part Xodd of 

the local susceptibility at the absolute zero temperature. The Coulomb repulsion 

U is included in these two quantities. Therefore, as far as the low-lying ex

citations are concerned, the thermodynamical behavior of this system is scaled by 

these two quantities. This is also true in the s-d limit where the two quantities 
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become identical and equal to n:Ll/4T K· These facts are entirely consistent with 
-the phenomenological Fermi liquid theory presented recently for the s-d model 
by Nozieres and confirm it from the microscopic point of view. 

On the other hand, we have developed the theory of the singlet ground 
state for the s-d exchange Hamiltonian and calculated the zeroctemperature 
susceptibility for the s-d system.8l Thus, if one combines this separately calculated 
susceptibility with the present results, they can be regarded as the expressions 
describing the low-temperature behavior of the s-d system. 

Acknowledgements 

The authors express their sincere thanks to Professor A. Yoshimori and Dr. 
A. Sakurai for their stimulating discussions. 

References 

1) K. Yosida ahd K. Yamada, Prog. Theor. Phys. S"uppl. No. 46 (1970), 244.· 
2) P. W. Anderson, Phys. Rev. 124 (1961), 41. · 
3) K. Yamada, Prog. Theor. Phys. 53 (1975), 970. 
4) N. Menyhli.rd, Solid State Comm. 12 (1973), 215. 
5) P. Nozieres, J. Low Temp .. Phys. 17 (1974), 31. 
6) W. Brenig and J. Zittartz, Magnetism, edited by H. Suhl (Academic Press, 1973), Vol. V, 

p. 185. 

7) P. W. Anderson and G. Yuval, Magnetism, edited by H. Suhl (Academic Press, 1973), 
Vol. V, p. 217. 

8) K. Yosida and A. Yoshimori, Magnetism, edited by H. Suhl (Academic Press, 1973), Vol. 
V, p. 253. 

9) K. Wilson, Collective Properties of Physical Systems, Nobel Symposium 24 (Academic Press, 
1974). 

Note added in proof: 

When the condition of electron-hole symmetry, 2Ea=-U, is removed, x11 and x11 defined by 
(2·11) and (2·12) include both even- and odd-order terms in U, because for the unsymmetric case 
the determinants constructed by d-electron temperature Green's functions are no longer antisym· 
metric. However, the relation between the T-linear specific heat and Xeven remains to hold for X!!· 

The proof for this can easily be given in a quite parallel way. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

3
/5

/1
2
8
6
/1

8
2
1
7
7
1
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2


