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The single orbital Anderson Hamiltonian with d-orbital fixed to the Fermi level (E"=O) 
is discussed by a perturbation method with respect to electron correlation U. In this model 
the Coulomb repulsion U reduces the occupied d-electron number and, on the other hand, 
enhances the d-electron effective mass and normalized susceptibility (X,). As the result of 
competition of these effects, the specific heat at low temperature decreases and the magnetic 
susceptibility increases with U for U<LJ and then decreases for large U. 

§I. Introduction 

The single orbital Anderson Hamiltonian1l is written as follows: 

H=Ha+H', 

H' = :;8 sdnd• + Una1nd1 , 

" 

(1) 

(2) 

(3) 

-vvhere cL and ck" are creation and annihilation operators for the conduction electron 
with wave vector k and spin u, and c16 and ca6 are those for the localized d
electron at the energy level Sa. V represents the transfer integral between the 
s- and d-state and U is the Coulomb energy between two d-electrons. 

It is known in this Hamiltonian that the magnetic susceptibility, X" IS given 
byl)~.l) 

Xs= ~ (gfJ.B) 2Pa(O)X., (4) 

Xs = xn- Xt1 , (5) 
where pd (0) is the density of states for d-electron at the Fermi energy. Xn and Xn 
are normalized susceptibilities clue to parallel and antiparallel spin correlation, re
spectively. 

The T-linear term of the specific heat, yT, is given by Xrt as 3), 4) 

*l Present address. 

2 27, 2 
7C hB (0) ~ r= --Pd r 
3 

and r= xn. (6) 
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Perturbation Expansion for the llsymmetric A~nderson Hamiltonian 355 

Hereafter, we omit (g;JB) 2/2 and 2JC2lcB2 /3 for simplicity. 
In Ref. 3), physical quantities for the symmetric case with respect to the 

electrons and holes, namely 2a =- U/2, have been obtained by the perturbation 
calculation. sl We denote physical quantities in the symmetric case with superscript 

's'. In the syn1metric Anderson Han1iltonian, X~t is equal to the even part of 

f., Xcvcn. and - X~o to the odd part, Xodd· These are given by the following 
expansions :3) 

;:s _ ~ _ I ( "
2

) 2 h 4 I .. , Xn-Xevcn-1-r 3-4 U +0.0o53u T , (7) 

( .,.,.2) .....-s ...-- h h 3 1 -X' I= X dd = u + 3 0-- u T ... _,_ .o 2 ' (8) 

u=Uj~ril and il=~cpV2, 

where p is the density of states at the Fermi level for conduction electrons. Using 
Eqs. (7) and (8), we obtain the susceptibility: 

which is similar to exponential u. Therefore, we expect the fifth order term of 

Xodd is of the order 10-2• 

In this paper, we discuss the asymmetric Anderson Hamiltonian in which d
level is fixed to the Fermi level, namely 2a = 0. Though this case is a special 
one of the asymmetric cases, it includes the essential property of the asymmetric 
Anderson Hamiltonian, namely valence change. We deal with this model by the 
perturbation method with respect to u, choosing Eq. (2) as the unperturbed Hamil
tonian and Eq. (3) as perturbation to 1!0• 

In carrying out the perturbation calculation, it is convenient to divide II' into 

the following two parts, H/ and 1-I/: 

H' =1-1/ +H/- U/4, (10) 

(11) 

(12) 

Though Hz' vanishes in the symmetric case, this term g1ves the potential, 
U /2, in the present asymmetric case. In the following, we can deal with l-Iz' 
as a perturbational potential added to the symmetric Anderson Hamiltonian. The 
thermal Green function for d-electron in the unperturbed state is written as 

(13) 

which 1s an odd function of (J), 
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356 K. Yamada 

§ 2. d-electron number 

The localized d-electron number is given by the Friedel sum rule as 5l 

- 1 1 -I }; (0) naa---- Tan ---- (14) 
2 n £1 ' 

where }; (0) is d-electron self-energy at the Fermi level. }; (0) can be calculated 
as follows. 

If we. put H/ = 0, Eq. (1) reduces to the symmetric Anderson Hamiltonian, 
in which ];• (0) is given by integral of odd-number product of the odd-function G0 

and vanishes. The first order term of }; (0) with respect to H/ is obtained by 
using the charge susceptibility of the symmetric case, xc', as 

u _ . u c-· + -· ) u c- _ ) 2 Xc = 2 Xn XH = 2 Xeven- Xodd , (15) 

where Xeven and Xodd are given by Eqs. (7) and (8), respectively. The even-order 
terms with respect to H/ also vanish by the same reason as the zeroth order term. 

The third and fifth order terms with respect to H/ are easily obtained up to 
the sixth order term with respect to U, since it is necessary to include only the 
third and the first order terms with respect to H/. Therefore, we comment only 
on a useful relation in diagrammatic calculation. 

As a simple example, we calculate the fifth order terms shown in Fig. 1, where 
the cross represents the potential term, H/. The sum of these three diagrams 
is given as 

Using 

0 
• X j H : : 

Fig. L Three fifth order self-energy diagrams, whose sum can be 
calculated more easily than the separate contributions. The 
crosses represent the potential H.'. 

(16) 
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S= dx d s= dx [ -- . -[G02 (x)Go(x+w)] = · - -2Go3 (x)Go(x+w) 
-= 2n zdx -= 2n 

we obtain 

The relations and methods similar to this example are useful to calculate other 

physical quantities as well as the self-energy. 

Thus, .Z (0) is expanded up to the sixth order term as 

.z (0) n [ 1 ( 9 7r2
) , (19 , 1"') 3 frc 4 29 2 0 05"' 3) 4 L1 =-zu -u+ u-4 zt"+ 127I"-;) u +\16-367I + 0 ;) u 

(18) 

where in the sixth order term we have neglected the fifth order term of Xodd in 

Eq. (15), as it is expected to be 10-2• Equation (18) is ~written as 

.Z (0) / L1 = n/2 · u [1-u + 0.5326u2 + 0.6269u3 -l.807lu' + 1.0270u5]. 

vV e show .Z (0) and nd, as functions of u in Fig. 2, where the full curve represents 

the result obtained from the series expansion up 

to the sixth order term and the clotted curve up 

to the fifth order term. For u>0.5, the two 

curves are separated from each other, which 

shovvs our perturbational calculation is meaning

ful within U <1.5.:1. In Fig. 2 nd, decreases to 

0.35 at u = 0.5 with increasing u and increases 

rapidly with negative u. Though our calculation 

gives no conclusion for large u region, it is 

known that nd, tends to zero in the limit zt--'> CXJ 6J~sJ 

and to unity in the limit u->- =. 

Fig. 2. The d-electron self"energy at the Fermi level, .E (0), 

and occupied d-electron number, nd,, as functions of 

u= U /ru1. The full curves include the terms up to the 
sixth order term and the dotted curves up to the fifth 

order term. 
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PcJ/fao = R/Rc 
1.0 

-o.5 0.0 

K. Yanzada 

u 0.5 

Fig. 3. Density o£ states of d-electrons 
at the Fermi energy. This curve 
also shows the resistivity at T=O 
as a function of u. 

By using .Z(O) given by Eq. (18), we obtain the density of states, Pa(O), for 
d-electrons at the Fermi level as 

(19) 

which is shown in Fig. 3. As the scattering t-matrix is proportional to the d
electron Green function G (0) ,3>' 1> the resistivity clue to the impurity at the zero 
temperature is given by 

- R (zj)_ = _p~u) = [1 + (I (0) / .df] - 1• 

R(u=O) Pa(u=O) 
(20) 

§ 3. Grouml state energy 

The ground state energy, Eu, is obtained ia a 1vay similar to the self-energy. 
For example, the second order term 1vith respect to .H/ is obtained from -I;" 
h/ (U/2) 2 • Finally, E 9 is given by the following: 

Eg=Eu(u=O) +n.d[~-u-0.2869u 2 +! u3 + ( -0.7492+ ~)u4 

+ (1: _~~~)us-(~~~_ 1~:~ + (),0:53) us] 
= Eg (u = 0) +rc.d[0.25u-0.2869u2 + 0.25u3 -0.0295u1 

- 0.3623u5 + 0.3704u6], 

(21) 

(22) 

where 1ve have neglected the sixth order term of the ground state energy for the 
symmetric case, which is expected to be negligibly small. E0 (u = 0) is given by 

2.d ( D ) Eg(u=O)=- '!:. log .d -1-1, (23) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/62/2/354/1845326 by guest on 16 August 2022



Perturbation Expansion for the Asymmetric Anderson Hamiltonian 359 

2D being the conduction band width. 

Fig. 4. The ground state energy as a 
function of u. The full curve 
shows the result including up to 
the sixth order term and the dotted 
one up to the fifth order term. 

For comparison we give the ground state energy for the symmetric case, which 
is given by3> 

Comparing Eq. (22) with Eq. (24), we notice that convergence of expansion series 
in the symmetric case is very smooth in contrast with the asymmetric case. If we 
put H/ = 0, we can obtain the exact resule> as 

Eu=Eu(u=O) + U coC1 _Q_+~ log [1+ (!!_) 2
]-U. (25) 

n 2£1 n 2£1 4 

Eg' = Eu- Eu (u = 0) given by Eq. (22) is shown in Fig. 4 as a function of u. 
The ground state energy Eg' does not exceed the order of £1 for positive u and 
decreases rapidly with negative u to reach U ( <O) in the limit u~- oo. 

§ 4. Susceptibility and specific heat 

The magnetic susceptibility is given by Eq. (4) and the coefficient of T-linear 
term of the specific heat is given by Eq. (6). These quantities are determined by 
Xtt and XH• which are obtained as 

(161 2 7 4) 5 J + lsn -Sn u + ... 

= 1 + 0.5326u2 - 2.2422u 4 + 3.0452u5 + · · · , (26) 

_ _ (7n2 15) a+ n2 4+ (23 4 502 2) 5 -xH-u- 4- u 3u 16n- 36n u 

= u- 2.2718u 3 + 3.2899u4 + 2.3994u5 + · · · , (27) 
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Xs/Xo 

0.0 
-0.5 o.o u 0-5 

Fig. 5. The susceptibility and the coefficient of 
the T-linear term of specific heat. The full 
curves show the result up to the fifth order 
term and the dotted ones up to the fourth 
order term. x.' and r' are x. and r in the 
symmetric case, respectively. 

-0.5 0.0 u 0-5 
Fig. 6. The charge susceptibility, Xc, as a func

tion of u. The full curve shows the result 
up to the fifth order term and the dotted 
curve up to the fourth order term. Xc • is 
Xc in the symmetric case. 

where the fifth order term of Xodd for the symmetric Anderson model is neglected. 
Using the above result and Eq. (19), we obtain X• and r shown in Fig. 5. 

Xs increases for positive u, and r, on the other hand, decreases with u. The reason 
is as follows: Though Xtt increases with u due to electron correlation, pd (0) de
creases with u. The zl-term of rrJpd (0) is - (7!2/ 4) u 2 and overcomes the u2-term 
of Xtt• (3- (7!2/4))u2• As the result, r decreases as (1- (rr2/2-3)u2 +···)/rrJ. 
In the case of x., the increase due to electron correlation in Xs overcomes the 
decrease of pd(O). 

For negative u, X• and r decrease rapidly with increasing the absolute value 
of u. 

Comparing Eqs. (26) and (27) with Eqs. (7) and (8), we notice that as 
mentioned in the previous section, the expansion series in the symmetric case 
converge more rapidly than in the asymmetric case. The difference of convergency 
between the two cases is due to the valence change. That is, while d-electron 
number is fixed to 1/2 in the symmetric case, it changes from 1/2 to zero in the 
asymmetric case. 

Using Xtt and Xtt> we can obtain the charge susceptibility, which is shown in 
Fig. 6. The charge susceptibility Xc decreases with increasing u as a result of 
shift of d-level due to positive .4 (0). In the limit u-HX>, Xc tends to zero slowly 
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Perturbation ExjJansion for the A.symmetric Anderson Hamiltonian 361 

as [log u] - 2 in the asymmetric case,sl, 7l while it tends to zero rapidly as exp [- u] 
in the symmetric case. 3J It should be noted that Xc increases for negative and 
small u. This effect and reduction of L1 increase the charge fluctuation additively, 
if screening effect by conduction electrons or phonons is included in the Anderson 
Hamiltonian. 9J 

§ 5. Discussion 

We have presented a perturbation calculation for the asymmetric Anderson 
Hamiltonian for U<1.5Ll. For large U region we can make discussion by using 
the scaling theory6J by Haldane. The scaling law for the asymmetric Anderson 

Hamiltonian in the case D> U is as follows: 

* L1 1 u Sa =Sa+~ og~. 
n L1 

(28) 

By this scaling law, sa* shifts upward over the Fermi level with increasing u for 

the case fixing Sa to the Fermi level. Therefore, for l:JYLl=lsal, na., X and r 
tend to zero.n-lol Thus, this case leaves the valence mixing region. In order 
to remain in the valence mixing region, sd must be shifted downward from the 
Fermi level6J-sJ with increasing U. As this scaling law tells that Sa (=Sa*- L1 
/n log u; Ll) with large u is scaled to Sa* with small U, it is sufficient for the 
valence mixing region to discuss the case with sa=O and small U, where essential 
properties are included. 

Though we have discussed the asymmetric case with Sa= 0, the symmetric 
Anderson Hamiltonian (sa= - U /2) shows also charge fluctuation, as far as u is 
small, and it is not essentially different from asymmetric case. For large u region, 
in contrast with Sa= 0, the symmetric system changes gradually from charge fluctuat
ing region into the singlet ground state region with increasing u. Therefore, x: 
and r' increase monotonically with increasing u. Xs and r in general asymmetric 
cases (sa is not fixed to the Fermi level) decrease monotonically for fixed u, as 
d-electron number departs from the symmetric case. 
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