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ABSTRACT

Asymptotic linear stability of time-dependent flows is examined by extending to nonautonomous systems
methods of nonnormal analysis that were recently developed for studying the stability of autonomous systems.
In the case of either an autonomous or a nonautonomous operator, singular value decomposition (SVD) analysis
of the propagator leads to identification of a complete set of optimal perturbations ordered according to the
extent of growth over a chosen time interval as measured in a chosen inner product generated norm. The long-
time asymptotic structure in the case of an autonomous operator is the norm-independent, most rapidly growing
normal mode while in the case of the nonautonomous operator it is the first Lyapunov vector that grows at the
norm independent mean rate of the first Lyapunov exponent. While information about the first normal mode
such as its structure, energetics, vorticity budget, and growth rate are easily accessible through eigenanalysis of
the dynamical operator, analogous information about the first Lyapunov vector is less easily obtained. In this
work the stability of time-dependent deterministic and stochastic dynamical operators is examined in order to
obtain a better understanding of the asymptotic stability of time-dependent systems and the nature of the first
Lyapunov vector. Among the results are a mechanistic physical understanding of the time-dependent instability
process, necessary conditions on the time dependence of an operator in order for destabilization to occur,
understanding of why the Rayleigh theorem does not constrain the stability of time-dependent flows, the de-
pendence of the first Lyapunov exponent on quantities characterizing the dynamical system, and identification
of dynamical processes determining the time-dependent structure of the first Lyapunov vector.

1. Introduction

Linear stability theory addresses a set of problems in
the dynamics of physical systems that include the origin,
energetics, structure, and growth to finite amplitude of
perturbations, and the conceptually distinct problem of
error growth, which involves the rate of divergence of
initially nearby trajectories in state space. In the context
of the midlatitude atmosphere these address, respec-
tively, the cyclogenesis and the predictability problems.
While traditional stability analysis confined attention to
determining the t → ` asymptotic of perturbations to
autonomous dynamical operators, more recent gener-
alizations of stability theory have examined the more
physically relevant finite-time stability of both auton-
omous and nonautonomous systems (Farrell and Ioan-
nou 1996a, 1996b). In the case of an autonomous op-
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erator the temporal asymptotic perturbation or error
growth occurs at the rate of the most unstable eigenvalue
of the linear dynamical operator and takes the form of
the associated most unstable normal mode. The analo-
gous structure and growth rate in the case of a nonau-
tonomous operator are given by the time-dependent first
Lyapunov vector and first Lyapunov exponent, respec-
tively (Oseledec 1968). Asymptotic structure and
growth rate are readily obtained for autonomous systems
through eigenanalysis of the dynamical operator and
well-known theorems constrain autonomous system sta-
bility (Rayleigh 1880). Analogous results are not avail-
able for nonautonomous systems and integral bounds
on growth in time-dependent systems are relatively
loose (Farrell and Ioannou 1996b, hereafter F&I). More-
over, while eigenanalyses of canonical autonomous sys-
tems provide familiar examples of growth rate and struc-
tures for time-independent systems, growth rates and
structures of Lyapunov vectors are not commonly avail-
able and intuition concerning such issues as the Lya-
punov structure, its variability with time, and the nature
of the energetics producing Lyapunov growth lacks ex-
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ample. Given that all physical systems are to a greater
or lesser extent time dependent, and that the atmosphere
in particular is highly time dependent, it is of more than
strictly theoretical interest to better understand the na-
ture of asymptotic stability of nonautonomous systems.
Indeed, forecast accuracy is likely to be ultimately lim-
ited by asymptotic error growth, which is governed by
the time-dependent tangent linear system linearized
about the forecast trajectory until very near the end of
the period of error growth when nonlinear effects be-
come important. The approach of an initial perturbation
to this asymptotic limit is of interest as is characterizing
the universal structure assumed by the disturbance in
this limit, which is the Lyapunov vector. (Hereafter, the
terms Lyapunov vector and Lyapunov exponent refer to
the first Lyapunov vector and the associated first Lya-
punov exponent.)

We begin by examining destabilization of a barotropic
model in which the flow and effective b are allowed to
be time dependent. The results obtained are then inter-
preted from the point of view of nonnormal dynamics
using simple time-dependent model systems.

2. The time-dependent stability problem

Consider perturbations to a time varying zonally ho-
mogeneous barotropic flow, U(y, t), in a channel with
y the northward direction and x the zonal direction.
Choosing the inverse of the mean shear and the channel
width as characteristic time- and space scales, the non-
dimensional barotropic vorticity equation for the me-
ridionally and temporally varying component of the
streamfunction C(x, y, t) 5 c(y, t)eikx is given by

2 2]¹ c d U(y, t)
25 2ikU(y, t)¹ c 2 ik b 2 c

21 2]t dy
n 2(n11)2 (21) R ¹ c, (1)n

where k is the zonal wavenumber. The operator ¹2n is
defined as

n2d
2n 2¹ [ 2 k . (2)

21 2dy

The nondimensional dissipation constant Rn is chosen
appropriately for dissipation of order n; for n 5 0 the
dissipation models Ekman damping of the equivalent
barotropic atmosphere with time constant 1/R0; for n 5
1 the dissipation constant R1 is an inverse Reynolds
number. The boundary conditions at the channel walls
are c(61, t) 5 0 and for n 5 1 the nonslip condition
cy(61, t) 5 0 is also imposed. The assumption of zonal
homogeneity is severe and will be relaxed in future
investigations, but for now the simplicity of this zonally
homogeneous flow will be exploited to facilitate the
exposition.

The perturbation barotropic vorticity equation can be
interpreted as governing perturbations to a time-depen-

dent flow in which the time dependence is produced by
external forcing such as a barotropic stratospheric flow
forced by tropospheric planetary waves, or as the evo-
lution equation of errors on a time-dependent zonal tra-
jectory U(y, t) obtained as the free solution of the non-
linear barotropic equation.

The barotropic equation is discretized using central
differences on N grid points so that (1) takes the matrix
form:

dc
5 A(t)c, (3)

dt

where c is the column vector of streamfunction values
at the discretization points, and A is the discretized dy-
namical operator matrix

2d U(y, t)
22 2A 5 ¹ 2ikU(y, t)¹ 2 ik b 2

21 1 2dy

n 2(n11)2 (21) R ¹ , (4)n 2
in which the discretized operator ¹22 has been rendered
invertible by imposition of the boundary conditions.
Convergence of the discrete approximate barotropic Eq.
(3) to its continuous counterpart (1) for the examples
considered was verified by doubling resolution.

Solution of (3) is expressed in terms of the finite time
propagator:

m

A(nt )tF(t) 5 lim e , (5)P
t→0 n51

obtained by m advances of the state of the system by
the infinitesimal propagators eA(nt )t at times nt , where
m and t satisfy the relation t 5 mt .

Asymptotic stability of (3) is determined by the Lya-
punov exponent

log(\F(t)\)
l 5 lim , (6)

tt→`

which exists for all of the time-dependent flows to be
considered. When the Lyapunov exponent is positive
the flow is asymptotically unstable.

It is well known that A(t) can have a stable spectrum
at each instant and yet the time-dependent system (3)
can be asymptotically unstable; this is the regime in
which the midlatitude atmosphere typically operates. To
understand the mechanism of this destabilization, we
select for analysis operators that have stable spectrum
at each time instant.

The Lyapunov exponent for time-independent flows
reduces to the maximum over the real parts of the spec-
trum of the operator A and the definition (6) is a natural
extension of this notion of instability to time-dependent
operators. In the case of time-independent flows, as-
ymptotic stability can be assessed by examining only
the spectrum of A without taking account of the structure
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of the associated eigenvectors, but in time-dependent
flows it is necessary to take account also of the non-
normality of A, which is associated with the structure
of the eigenvectors. It was shown in F&I that if the
operator A(t) has a stable spectrum at each time instant,
then for the time-dependent flow to be asymptotically
unstable (i.e., l . 0) A(t) must be nonnormal in all
inner products and in addition exhibit transient growth
in all inner products. At first sight it is surprising that
the Lyapunov exponent is independent of the norm con-
sidering that the nonnormality of an operator depends
on the norm (cf. appendix A). The reason that nonnor-
mality in all inner products produces the same asymp-
totic growth stems from the fundamental fact that time-
dependent operators with noncommuting instantaneous
realizations cannot be simultaneously rendered normal
by choosing a time-independent inner product (while
this can easily be done for autonomous operators or
time-dependent but serially commuting operators). For
this reason nonautonomous operators that do not serially
commute and therefore do not have the same eigenvec-
tors are fundamentally and irreducibly nonnormal and
we will show that instability of time-dependent flows
with stable mean operators is a consequence of this
requisite nonnormality of the operators.

3. Necessary conditions for existence of positive
Lyapunov exponents in flows with stable mean
operators

a. The time-dependent operator must be nonnormal
and its time realizations must not commute

We begin analysis of the fundamental role of non-
normality in destabilizing time-dependent operators by
decomposing the time-dependent operator into a time
mean and deviation operator:

A(t) 5 A 1 N(t), (7)

in which
t1

A 5 lim A(s) ds. (8)Ett→` 0

In this decomposition A is the autonomous mean op-
erator and N the time-dependent deviation from the
mean. We seek generic results independent of the spe-
cific time dependence and so require the deviation op-
erator (matrix) N(t) to be a stochastic operator (matrix)
with zero mean (Nij 5 0) and bounded variance ( 2N ij

bounded for all i, j). We choose the operator N(t) to be
a sum of red noise processes:

m

N(t) 5 e (t)B , (9)O i i
i51

where e i is a red noise process and Bi a time-independent
matrix. The number of independent processes m is at
most n2 where n is the dimension of N. As a concrete
example consider a Numerical Weather Prediction

(NWP) tangent linear model; in that case the mean op-
erator together with the structure and temporal corre-
lation of an orthogonal expansion of deviations from
the mean operator can be used to determine the model’s
A and N(t), respectively.

Consider first the case in which the commutator1 be-
tween the mean operator and the deviation operator van-
ishes for all time: [A , N(t)] 5 0. In that case the prop-
agator can be written:

t 1/2t1# ds (s) t1O(t )A N A0F(t) 5 e ø e (10)

given that asymptotically each entry of ds N(s) growst#0

at most as t1/2. This shows that when the commutator
[A(t1), A(t2)] of the operator matrix vanishes for all
times t1, t2 the asymptotic stability of the flow is de-
termined by the stability of the mean operator A .

Consider, for example, the barotropic vorticity equa-
tion on an f plane with Rayleigh friction of timescale
1/R0 and a mean flow consisting of a temporally varying
constant shear, that is, U(y, t) 5 ay 1 e(t) y with e 5
0 and e2 bounded. The governing equation for the vor-
ticity z 5 ¹2c from (1) is

]z ]z ]z
5 2ay 2 R z 2 e(t)y . (11)0]t ]x ]x

We are free to determine the asymptotic stability of (11)
in the vorticity variable as the choice of variable does
not affect asymptotic stability properties. For this case
and with the usual centered difference approximations
to the derivative operator, the commutator [A , N] van-
ishes:

] ]
[A, N] 5 2ay 2 R , 2e(t)y 5 0, (12)0[ ]]x ]x

implying that time dependence of a meridionally uni-
form shear cannot affect the stability of the mean flow.2

This argument also applies to a baroclinic flow on an
f -plane with time-dependent shear and this explains the
stability of the Eady model with temporally varying
shear (Hart 1971). Note that inclusion of either b or any
dissipation other than Rayleigh friction or Ekman damp-
ing (which in this problem is equivalent to Rayleigh
friction) will lead to noncommuting operators in (12)
in which case no statement can then be made about the
stability of the time-dependent flow from the above ar-
gument.

Consider now a temporally varying zonal velocity
profile, u (y, t), in an atmosphere with Rayleigh damping

1 The commutator of two linear operators A, B is defined as the
operator [A, B] 5 AB 2 BA.

2 Equation (12) implies that the eigenmodes of the mean operator
and of the deviation operator are the same and therefore there is a
variable (the projection on the modes) in which the modes are d
functions and the operators therefore commute and destabilization
cannot occur.
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and no vorticity gradient. Although this flow requires
cancelation of the flow curvature term Uyy in the effec-
tive b term, b 2 Uyy, by a temporally and spatially
varying b(y, t), it is instructive as an example. The
equation for perturbation vorticity is

]z ]z ]z
5 2U (y) 2 R z 2 u(y, t) . (13)0]t ]x ]x

The commutator

] ]
[A, N] 5 2U (y) 2 R , 2u(y, t) 5 0, (14)0[ ]]x ]x

and consequently such an atmospheric state cannot be
destabilized by velocity fluctuations of any magnitude.

Similar results can be obtained for the stability of a
uniform flow U(y, t) 5 U0 with time varying b. The
equation for the vorticity takes the form:

]z ]z ]z
22 n 2n5 2U 2 b(t)¹ 2 (21) R ¹ z, (15)0 n]t ]x ]x

and the commutator also vanishes for this case:

] ]
n 2n 22[A, N] 5 2U 2 (21) R ¹ , 2b(t)¹0 n[ ]]x ]x

5 0, (16)

as ¹22 commutes with ]/]x and ¹2n. This proves that
time variation of a meridionally uniform b cannot de-
stabilize a constant mean flow.3

We conclude that destabilization of a stable mean
operator by a time-dependent deviation operator re-
quires that the operators not commute.

b. Effect of breaking the commutativity between the
mean and deviation operator on the structure of
the Lyapunov vector

The Lyapunov vector is the time-dependent structure
to which all initial perturbations to a linear time-de-
pendent system converge after sufficient time (cf. F&I
for its properties).

We begin analysis of Lyapunov vector structure by
considering a diagonalized 3 3 3 dynamical system with
time-mean operator:

l 0 0 
 

A 5 0 m 0 , (17) 
 
0 0 n 

with each of the eigenvalues (l, m, n) assumed to have

3 Inclusion in (1) of temporal variation in b with the form b(t) in
addition to variation in shear of the form U(y, t) 5 (a 1 e(t))y can
be shown not to produce instability using simple integral arguments
although the mean and deviation matrices do not commute in this
case. However, a term of the form b(y, t) may be destabilizing.

negative real part. We wish to find those deviation ma-
trices of the form (9) generated by a single noise process,
which will destabilize (17). Noise matrices N that in-
dependently excite the modes of the time-mean operator
are of the form

a 0 0 
 

N 5 e(t)B 5 e(t) 0 b 0 , (18) 
 
0 0 g 

but for N of form (18) and any choice of a, b, and g,
the commutator [A , N] vanishes and we know that the
system is stable. The mean operator A cannot be de-
stabilized by a time-varying deviation N(t) unless this
deviation operator mixes the eigenmodes, that is, does
not commute with the mean operator. We wish to know
if there are other requirements on the structure of a noise
matrix in order that it destabilize a mean operator. Con-
sider the deviation operator produced by the noise ma-
trix B in (18) with b 5 g 5 0 to which has been applied
a rotation R about the direction of the third eigenvector
giving a deviation operator N 5 e(t)RB, which has the
effect of mixing the first two eigenvectors. Although
the commutator [A , N] ± 0 it can be shown that A is
not destabilized for any magnitude of e. The reason is
that although N mixes the first two modes, this mixing
is one way; that is, the first eigenvector is rotated into
the direction of the second but not vice versa. We are
thus led to conclude that destabilization of a stable op-
erator requires that the deviation operator mix at least
two modes in such a manner that each projects on the
other. A minimum such deviation operator for desta-
bilization is produced by the noise matrix RB where R
is a rotation with respect to the third eigenvector and B
the noise matrix in (18) with a and b nonzero and g 5
0. In this case the system is unstable for e2 sufficiently
large and the structure of the Lyapunov vector results
from mixing of the first two modes. These arguments
are general and any set of stable modes however damped
can be destabilized by mode mixing in this way with
noise of sufficient magnitude. Moreover, the Lyapunov
vector that results must be a superposition of at least
two eigenmodes of the mean operator A .

We turn now to the role of nonnormality of the mean
operator. Consider a general matrix A; any such matrix
can be diagonalized by transformation to normal co-
ordinates. The general time-varying system with one
noise process,

dc
5 Ac 1 e(t)Bc, (19)

dt

in the variable y 5 U21c, with U the eigenvector matrix
of A , becomes

dy
215 Ly 1 e(t)(U BU)y, (20)

dt

in which L is the diagonal matrix of the eigenvalues
of the time-mean operator. This is the system we in-
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FIG. 1. The Lyapunov exponent as a function of the angle (in
degrees) between the two nonorthogonal eigenvectors, which measure
the nonnormality of the mean operator in the 3 3 3 example (21).
The least damped eigenvector eigenvalue is 20.3 and the two non-
normal eigenvectors have eigenvalues 20.5 6 i0.1. The noise process
is red with variance 0.2 and a decorrelation time of one nondimen-
sional time unit.

vestigated in the previous paragraphs. But in (20) it is
crucial that the original deviation matrix is transformed
to a deviation matrix in which the effective magnitude
of the noise process e has been increased by as much
as the condition number \U21\ \U\ of the eigenvector
matrix of the time-mean operator because \U21BU\ #
\U21\ \B\ \U\, where \ · \ denotes the Euclidean norm. It
follows that a highly nonnormal mean operator A , which
is characterized by very large condition number, can be
destabilized by very little noise provided that the de-
viation matrix mixes at least two of the eigenmodes of
the nonnormal subspace of A .

As an example consider the 3 3 3 system with L
given by (17) and assume that this system was produced
by diagonalization of a time-mean matrix having ei-
genvectors the columns of

1 0 0 
 

U 5 0 1 cosu . (21) 
 
0 0 sinu 

The degree of nonnormality induced by the nonortho-
gonal subspace is controlled by the angle u between the
two nonorthogonal eigenvectors. Consider a noise ma-
trix N 5 Rp/4B, where B is given by (18) with a 5 0
and b 5 g 5 1 and Rp/4 is a rotation about the first
eigenvector by an angle p/4. This noise matrix mixes
the two nonorthogonal eigenvectors and as argued above
for fixed magnitude noise process e(t) the degree of
instability is expected to increase with the degree of
nonnormality of the mean operator A as measured by
u. Indeed this is verified in Fig. 1, which shows the
Lyapunov exponent as a function of u.

c. On Rayleigh’s theorem in time-dependent flows

For inviscid zonally homogeneous time-independent
flows, Rayleigh’s theorem provides a necessary condi-
tion for the existence of exponential instability, which
is rooted in momentum conservation. We inquire wheth-
er a similar theorem constrains the possibility of positive
Lyapunov exponents in inviscid time-dependent zonally
homogeneous flows.

Consider the momentum stress divergence M 5
d[uy]/dy, where the bracket denotes the zonal average
of u, y , which are, respectively, the zonal and meridional
velocity. If the boundary conditions require vanishing
of the perturbation momentum stress at y 5 61, then
the perturbation cannot alter the integrated momentum
of the mean flow because

1

M dy 5 0. (22)E
21

The tangent linear vorticity equation

]z ]z
5 2U(y, t) 2 Q (y, t)y 1 D, (23)y]t ]x

implies the enstrophy tendency equation
2][z /2]

5 2Q (y, t)[yz] 1 [zD], (24)y]t

where D denotes the dissipation, and Qy(y, t) the time-
dependent vorticity gradient of the background flow.
Integrating over the channel width, we obtain in the
absence of dissipation (D 5 0) the following integral
constraint at every instant:

2][z ]
1 11 ]t

dy 5 [yz] dyE E2 Q (y, t)y21 21

1 d[uy]
5 2 dy 5 0, (25)E dy

21

which necessarily requires that in the time mean

1 21 ][z ]/]t
dy 5 0. (26)E2 Q (y, t)y21

A positive Lyapunov exponent also implies that at each
latitude

2]z
$ 0. (27)[ ]]t

If the vorticity gradient Qy is time independent, we ob-
tain from (26) as a necessary condition for instability
that it change sign (Rayleigh 1880). However, this result
does not generalize to time-dependent flows because
episodic decrease in [z 2] can coincide with small values
of Qy so as to maintain constraint (26) while ][z 2]/]t
. 0. The possibility of satisfying the integral constraint
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FIG. 2. (left panels) The mean flow velocity as a function of latitude
for the Rayleigh stable example. (right panels) The associated mean
vorticity gradient with b 5 10.

FIG. 3. The Lyapunov exponent as a function of the switching
period T for the Rayleigh stable example, consisting of the velocity
profiles in Fig. 2. The time-dependent flow results from periodic
switching every T time units of the flows shown in Fig. 2. The case
shown is for zonal wavenumber k 5 1 and b 5 10.(26) in time-dependent flows while maintaining the pos-

itivity of Qy(y, t) is illustrated with a simple schematic
example in appendix B; however, in order to verify that
the Rayleigh theorem does not constrain the stability of
dynamical systems arising from time-dependent flows
it suffices to consider a time periodic flow produced by
periodic discontinuous alteration between two mean ve-
locity profiles. We choose nondimensional b 5 10 in
order to ensure that the associated mean vorticity gra-
dient is of one sign. The two velocity profiles and the
associated mean vorticity gradients are shown in Fig.
2. Each flow state is maintained for a time interval T.
The Lyapunov exponent is readily calculated using Flo-
quet analysis. The time-dependent flow is unstable and
the growth rate as a function of the switching period T
is shown in Fig. 3 for zonal wavenumber k 5 1.

A situation in which (26) does require stability of a
time-dependent flow is that of time-varying meridio-
nally uniform shear flows, U(y, t) 5 a(t) y, with time-
varying b(t) of one sign. For this case the constraint
(25) becomes

11 ]
2[z ]dy 5 0, (28)Eb(t) ]t

21

which implies constant [z2] dy from which it follows1#21

that perturbations cannot grow in vorticity and therefore
cannot have positive Lyapunov exponent, as discussed
in section 3a.

4. The mechanism producing instability in
time-dependent flows with stable mean
operators

We will show that temporal variation of A in (3) with
sufficient amplitude leads generically to asymptotic in-
stability (by generically we mean unless very specific
conditions are met by A). We isolate this generic insta-

bility of time-dependent flows and understand how it is
essentially different from asymptotic instability of au-
tonomous dynamical systems by requiring again that at
each instant A have neutral or damped spectrum. It is
necessary for such a neutral or damped operator to be
nonnormal for even instantaneous perturbation growth
to occur. However, while it is well known that nonnor-
mality can lead to episodic growth, it is another matter
to sustain these instances of growth so as to produce
asymptotic instability. Key to understanding the mech-
anism of this generic asymptotic instability in time-de-
pendent operators is the observation that if the instan-
taneously evaluated operators do not commute with each
other then there is no single metric in which the time-
dependent operator is normal at all times. The instability
results from concatenating the finite growth achieved
by the optimal vectors of the instantaneous nonnormal
operator while avoiding through time dependence the
decay that would eventually occur if any of the instan-
taneous nonnormal but asymptotically stable operators
were to persist indefinitely.

This process of destabilization by time dependence
can be understood conceptually through an analysis
method proposed by Zel’dovich et al. (1984) to explain
the mean exponential increase in the length of material
lines embedded in a random divergenceless flow. The
analysis is simplified if the continuous operator A(t) is
approximated by a piecewise constant sequence of op-
erators, Ai, each of which represents the continuous op-
erator for a finite time interval t . The initial state c0

evolves to the following state at time nt :

n

tAic 5 e c . (29)Pn 01 2i51
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FIG. 4. The Lyapunov exponent as a function of the standard de-
viation of the optimal growths for a two-dimensional dissipationless
(curve 1) and a representative dissipative system (curve 2).

Passing to the limit of long time the Lyapunov exponent
given in (6) can be expressed as

t tA An 1\e c \ \e c \n21 0l 5 lim ln · · · nt1 2@\c \ \c \n→` n21 0

n

lnGO i
i51[ lim , (30)

ntn→`

where each element of the product is the incremental
growth of the Lyapunov vector magnitude, Gi, over the
interval t :

tAi\e c \i21G 5 . (31)i
\c \i21

Consequently, the time average of the logarithm of the
individual growths Gi approaches the Lyapunov expo-
nent in (6) as nt → `. The total perturbation growth
over nt can be expressed alternatively in terms of the
projection of the state vector on the optimal (or right
singular) vectors of the time-varying propagator:

n

2 2G 5 a s , (32)Oi k k!k51

where the ak are the projection coefficients of the unit
vector lying in the direction of the state vector on the
optimal (or right singular) vectors of the incremental
propagator and the sk are the associated optimalA tie
growths (singular values).

Consider a nondissipative operator that preserves vol-
ume in state space so that sk 5 1. If we assumenPk51

that the state vectors are uniformly distributed over the
state space hypersphere, then the Lyapunov exponent
would be the averaged growth rate over the hypersphere:

nlnG 1
2 2l 5 5 dS ln a s , (33)OE i i7 8 1 2!t t |S| i51S

where S is the surface of the sphere 5 1 andn 2S ai51 i

|S| its area. It can be shown that for all volume-pre-
serving distributions of si (so long as at least one si .
1), the Lyapunov exponent l . 0, so that the dynamical
system is asymptotically unstable despite the fact that
at each time step the system is neutral (appendix C).
The fundamental reason for this generic instability can
be traced to the convexity of the logarithmic function.
It is remarkable that growth is inevitable even when the
state vector projects uniformly on the optimal vectors
of the instantaneous operator. However, in practice for
atmospheric applications, expression (33) gives signif-
icantly more accurate estimates for the Lyapunov ex-
ponent if the observed statistical distribution of the state
vector on the optimal vectors is taken into account by
assigning the ai’s in (33) their observed statistical prop-
erties of variance and temporal correlation.

The magnitude of growth calculated using (33) can

be shown to depend primarily on the variance of the
incremental growths over the characteristic interval t ,
which can be conveniently measured by the standard
deviation (std) of the optimal growths about their mean,
which for nondissipative systems is unity. For nondis-
sipative systems if the std of the optimal growths about
unity is zero, the Lyapunov exponent is also zero, but
as we have seen, for any other value of the std of the
optimal growths of the incremental propagator the Lya-
punov exponent is positive. As the variance increases
the Lyapunov exponent approaches asymptotically the
logarithm of the std of the optimal growths of the in-
cremental propagators.

We illustrate the above by Monte Carlo evaluation of
(33). The dependence of the Lyapunov exponent on the
logarithm of the std of the optimal growths can be seen
in Fig. 4 an example with n 5 2 degrees of freedom,
and in Fig. 5 an example with n 5 20 degrees of free-
dom. An example with dissipation is also included in
these graphs. While for dissipative systems arbitrarily
small optimal growth std’s do not necessarily result in
positive Lyapunov exponent, even for dissipative sys-
tems the exponent soon asymptotes to that obtained in
the inviscid case as can be seen in the example in Fig.
4, demonstrating that this generic mechanism leading
to destabilization of time-dependent systems is robust.

5. A Floquet approximation to the Lyapunov
exponent

A simple model atmospheric system provides an ex-
ample of the above results. Consider perturbations of a
time-varying flow U(y, t) governed by the barotropic
operator (4) restricted for simplicity to be dissipation-
less. Consider random flow states chosen discontinu-
ously every time interval t and obtain a further sim-
plification by assuming that the sequence of these ran-
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FIG. 5. The Lyapunov exponent as a function of the standard de-
viation of the optimal growths of a 20D dissipationless (curve 1) and
a representative dissipative system (curve 2). The spread in the values
is due to the fact that the optimal growths in a high-dimensional
system are not characterized completely by their standard deviation.
The continuous line provide a quadratic fit to the Lyapunov expo-
nents.

dom but piecewise steady flow states is repeated with
period T 5 nt . The assumption of periodicity allows
us to easily obtain an approximation to the Lyapunov
exponent by Floquet analysis. Because of the periodicity
the Lyapunov exponent is given by eigenanalysis of the
propagator, FT, that advances the state of the system a
time interval equal to the period, T, of the time-depen-
dent flow. The Lyapunov exponent is given by

1
l 5 log(|l |), (34)pT

where lp is the eigenvalue of the propagator with great-
est absolute value.

It is an assumption easily verified that as the period
nt is increased the growth rate of the first eigenmode
of the Floquet approximation approaches the growth rate
of the Lyapunov vector of the aperiodic flow, that is,
the growth rate obtained in the case the states never
repeat. We consider recurrence intervals n 5 2, 10, 50,
100 with each flow state constrained to be neutral by
imposition of a large nondimensional b 5 10, which
renders the mean vorticity gradient one-signed for the
velocity states chosen, assuring stability of the individ-
ual states by the Rayleigh theorem. We have verified
that the Lyapunov exponent for n large enough ap-
proaches the Lyapunov exponent of an aperiodic system
with the same fluctuation statistics of U(y, t) and the
approach to this limit is instructive. In the two-flow state
case (n 5 2) (upper left Fig. 6), we obtain islands of
instability that are characteristic of parametric instability
of time-dependent systems with strictly periodic vari-
ation of parameters. An example of such a system is
the harmonic oscillator with periodically varying re-

storing force, and analysis of this system reveals the
islands of instability of the familiar Mathieu equation.
The islands of instability in our example gradually blend
into a continuum as the number of states increases ul-
timately producing the universal instability for all t on
[0, `] (cf. the lower-right graph of Fig. 6 for n 5 100).
It can be verified that the Lyapunov exponent vanishes
on approach to both limits of this interval t → 0 and
t → ` and that the maximum Lyapunov exponent oc-
curs at an intermediate value of t .

The asymptotic behavior of the Lyapunov exponent
as t → 0 and t → ` found in the above example is
generally valid. It is shown in appendix D that for a
fixed number of independent piecewise constant reali-
zations if fluctuations of the operator are bounded, un-
correlated, and rapid, then in the limit t → 0 the Lya-
punov exponent vanishes. In this limit the stability prop-
erties of the time-dependent system approach the sta-
bility properties of the mean autonomous system. In the
large t limit l approaches the mean of the decay rates
of the least-damped modes of the incremental operators.
Given that for an operator that has a stable mean and
stable realizations at each time the Lyapunov exponent
vanishes for t → 0 and t → `, we anticipate that if
destabilized by noise the Lyapunov exponent reaches a
maximum at an intermediate t and that this t for which
the maximum Lyapunov exponent is obtained depends
on the timescale of transient growth. However, if the
instantaneous operators are not restricted to be stable,
then the Lyapunov exponent does not necessarily vanish
as t → ` but rather asymptotes to the average of the
maximum growth rates of the instantaneous states and
there may not be an intermediate maximum.

In order to sharpen the correspondence between our
general analysis of instability of time-dependent oper-
ators and the specific instability of the barotropic at-
mospheric model, we need to more closely relate the
parameters in the analysis to the model. While the at-
mospheric flow does not evolve in piecewise constant
steps, nevertheless the time variation of the flow state
is characterized by a finite decorrelation time of the
order of a few days, which we take to be the t appro-
priate for our analysis. In our example we assume a
timescale of jet vacillation and a mean state of the jet
as well as the spatial spectrum of variance about the
mean state. Such a model consists of a flow state de-
composed into a mean part and a time-dependent sto-
chastic part, which is adequately modeled for our pur-
poses as a red noise process with the observed spatial
structure, variance, and decorrelation time.

6. Error growth in a barotropic atmosphere

As a simple model of the above form, consider evo-
lution of errors in a zonally homogeneous barotropic
channel with constant nondimensional mean shear flow,
U 5 y, on which are superimposed time-dependent wind
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FIG. 6. The Lyapunov exponent as a function of the time step t in an inviscid barotropic flow
consisting of a periodic recurrence of (upper-left corner) two-flow states, (upper-right corner) ten-
flow states, (lower-left corner) 50 flow states, and (lower-right corner) 100 states. Although each
state is neutrally stable and obeys the Rayleigh criterion for stability, the resulting time-dependent
system is unstable, approaching neutral stability in the limit t → 0 and t → `.

FIG. 7. The velocity profile that results from modulation of the five
gravest harmonics in the barotropic flow example. The rms velocity
fluctuation is 0.3.

components produced by modulation of the six gravest
latitudinal harmonics

3 2m 2 1
U (y, t) 5 e (t) cos pyOf m 1 22m51

3

1 e (t) sinmpy, (35)O m
m51

where e(t) are red noise processes, with identical vari-
ance and decorrelation time, Tc, and zero mean. The
magnitude of the velocity fluctuation is characterized
by its nondimensional rms average. Typical velocity
profile realizations for rms velocity fluctuations of mag-
nitude 0.3 nondimensionalized by the mean shear and
the half-channel width are shown in Fig. 7.

Consider the viscously damped barotropic vorticity
Eq. (1), made nondimensional by spatial scale of the
half-channel width, L, and timescale of the inverse shear
1/a. In these variables the Reynolds number is Re 5
a/n where n is the coefficient of viscosity, the nondi-
mensional magnitude of the noise process is related to
its dimensional magnitude, by /aL, and the nondi-ẽ, ẽ
mensional b parameter is related to its dimensional val-
ue, by /a. Note that in this nondimensionalizationb̃, b̃L
as the dimensional value of the shear a → `, the non-
dimensional value of the rms fluctuations e → 0 while

Re → `. In the calculations that follow we do not require
that each realization be stable.

The nondimensional barotropic operator (4) can be
decomposed into a mean part A , which is the barotropic
operator governing evolution of perturbations on the
Couette profile U 5 y,
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FIG. 8. The Lyapunov exponent as a function of rms velocity fluc-
tuation for different decorrelation times of the noise process. The
decorrelation times are marked on the curves. The Reynolds number
is Re 5 200 and the zonal wavenumber k 5 1 and b 5 0. For Tc 5
100 the Lyapunov exponent has approached its asymptotic t → `
limit, which is equal to the mean over the maximum real parts of the
eigenvalues of the instantaneous operators (marked with crosses).

FIG. 9. The Lyapunov exponent as a function of Reynolds number
and rms fluctuation about a mean Couette velocity profile. The case
is for zonal wavenumber k 5 1, b 5 0, and noise decorrelation time
Tc 5 1.

1
22 2 4A 5 ¹ 2iky¹ 2 ikb 1 ¹ , (36)1 2Re

and a deviation part,

2d U (y, t)f
22 2N 5 ¹ 2ikU (y, t)¹ 1 ik . (37)f 21 2dy

Mean and deviation operators do not commute with each
other and furthermore the deviation operator mixes the
modes of A . Consequently, we expect the stable mean
flow to be destabilized by introduction of velocity fluc-
tuations of sufficient magnitude.

Forward integration yields the Lyapunov exponent.
We have verified that the same Lyapunov exponent is
obtained if the flow is approximated by a sequence of
steady states each with time duration t equal to the
decorrelation time of the red noise process. The depen-
dence of the Lyapunov exponent on the rms value of
the velocity fluctuations for various decorrelation times
of the noise, Tc, is shown in Fig. 8 for zonal wave-
number k 5 1, Re 5 200, and b 5 0. As the decor-
relation time decreases the Lyapunov exponent ap-
proaches the decay rate of the stable mean operator
(36).4 As the decorrelation time increases the Lyapunov
exponent asymptotes to the average of the maximum

4 It should be noted that the limit Tc → 0 is not the white noise
limit. The white noise limit requires also that the fluctuations in-
creased in amplitude as so that as Tc → 0 the noise approaches21/2T c

unit delta correlation in time. This white noise limit implies divergent
velocity fluctuations that are unphysical. In the white noise limit the
Lyapunov exponent does not vanish, as shown in F&I.

growth rates of the instantaneous realizations. Because
the individual flows have not been restricted to be stable
as Tc → `, the Lyapunov exponent approaches a positive
limit. This contrasts with the Tc → ` limit shown in
Fig. 6 in which case the individual realizations were
chosen to be stable and therefore the Lyapunov exponent
tended to zero. The relevant regime for atmospheric
examples is the case in which each realization is stable.

A contour plot of the resulting Lyapunov exponent
as a function of nondimensional rms velocity fluctua-
tions and Reynolds number is shown in Fig. 9 for zonal
wavenumber k 5 1 and a red noise process with de-
correlation time Tc 5 1. As expected the growth in-
creases with increasing Reynolds number, and with in-
creasing velocity fluctuations.

We expect that as b increases the Lyapunov exponent
will decrease because the nonnormality of the operator
is suppressed by b. The typical dependence is shown
in Fig. 10, which shows the Lyapunov exponent as a
function of b for Re 5 200, wavenumber k 5 1, rms
velocity fluctuations 0.4, and decorrelation time Tc 5
1. We also expect the Lyapunov exponent to be sup-
pressed at high zonal wavenumbers again because non-
normality is suppressed at large k. We verify this by
considering the flow damped with Rayleigh friction (Ek-
man damping) to avoid confusing this effect with the
decrease of the Lyapunov exponent with wavenumber
arising due to the wavenumber dependence of viscous
damping. Figure 11 shows the typical dependence of
Lyapunov exponent on zonal wavenumber.

In general, if the mean operator A is unstable, then
in the limit Tc → 0 the Lyapunov exponent and structure
approach the growth rate and structure of the most un-
stable mode of A . In the limit Tc → `, the growth rate
becomes the average of the growth rates of the indi-
vidual realizations and the structure assumes the form



3632 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 10. The Lyapunov exponent as a function of b. The case is
for rms velocity fluctuation 0.4 about a constant shear flow, Reynolds
number Re 5 200, zonal wavenumber k 5 1, and noise decorrelation
time Tc 5 1.

FIG. 11. The Lyapunov exponent as a function of zonal wave-
number k. The case is for rms velocity fluctuation 0.4 about a constant
shear flow, b 5 0, and noise decorrelation time, Tc 5 1. The dissi-
pation here is Ekman damping with coefficient R1 5 0.1.

of the most unstable mode of the operator at a given
time. For intermediate Tc assuming that the modes of
A are mixed, the structure becomes a mixture of modes
and the time-dependent operator may be stabilized if
the highly decaying modes are preferentially mixed; al-
ternatively the nonnormal subspace of the time-depen-
dent operator may dominate the Lyapunov exponent
producing a first Lyapunov exponent and structure un-
related to the most unstable eigenmode of the mean
operator; more likely, however, is for the unstable ei-
genmode to be part of the mixed and nonnormal sub-
space producing the growth. If now, as in the case at
hand, the mean operator is stable the structure of the
Lyapunov vector in the Tc → 0 and Tc → ` limit is as
in the case of unstable A: for Tc → 0 it is the structure
of the least damped mode, for Tc → ` it assumes the
form of the maximally growing (alternatively least
damped) structure of each flow realization. This brings
up the question of how to most economically charac-
terize the structure of the Lyapunov vector for inter-
mediate Tc and we consider the typical case of Tc 5 1.
A snapshot of the time-varying Lyapunov vector at four
consecutive time instants, each a decorrelation time in-
terval apart, is shown in Fig. 12. The zonal wavenumber
is k 5 2, the Reynolds number is Re 5 800, b 5 0,
the rms velocity fluctuation is 0.16, and the associated
Lyapunov exponent is l 5 0.2.

The Lyapunov vector assumes with time a statistically
steady structure. We first determine the statistics of its
structure on the basis of the eigenvectors of the mean
operator. The streamfunction eigenvectors of the mean
operator are highly nonnormal, and expansion of the
Lyapunov vector in this basis should not be confused
with projection on an orthogonal basis. We pursue this
expansion following the discussion of section of 3b, in
order to clarify the mechanism of destabilization. We

transform the time-dependent barotropic equation to the
normal coordinates of the mean operator proceeding as
in (20). In the variable y 5 U21c, where U is the ei-
genvector matrix of the mean operator (36), the time-
dependent perturbation vorticity equation is governed
by a diagonal mean operator whose eigenvectors can
serve as an orthogonal basis for expansion of the Lya-
punov vector; it is the coordinate basis of the projection
on the eigenvectors of A . The eigenvectors are ordered
in ascending order of their decay rate. The distribution
of the eigenvalues of the mean operator is shown in Fig.
13 for zonal wavenumber k 5 2, b 5 0, and Re 5 800.
The mean coefficient of projection of the normalized
Lyapunov vector on the eigenvectors of the mean op-
erator and its standard deviation is shown in Fig. 14.
The Lyapunov vector is found to be primarily a super-
position of the eigenvectors associated with the num-
bered eigenvalues shown in Fig. 13. These eigenvectors
form the eigenvector subspace of the operator, which is
most nearly linearly dependent. As a result their exci-
tation leads to robust growth, which through time de-
pendence, can lead in the manner discussed in section
3b, to a positive Lyapunov exponent. Perhaps the most
direct way to measure the contribution of an eigenvector,
e, to the nonnormality of A is to consider

|b| |e|
n(e) 5 , (38)

(b, e)

where b is the biorthogonal5 of e and the inner product

5 If U denotes the matrix with columns, the eigenvectors, the biorth-
ogonal b of the eigenvector u, corresponding to a given column of
U, is the corresponding column of the matrix (U21)† († denotes the
Hermitian transpose). The biorthogonal of u is orthogonal to all other
eigenvectors.
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FIG. 12. The structure of the Lyapunov vector in the zonal (x), meridional (y) plane at four
consecutive times separated by Tc. The rms velocity fluctuation is 0.16 and the noise decorrelation
time is Tc 5 1. The zonal wavenumber is k 5 2, b 5 0, and the Reynolds number is Re 5 800.
The Lyapunov exponent is l 5 0.2. At first (top panel) the Lyapunov vector is configured to
grow producing an increase over Tc of 1.7, in the next period the Lyapunov vector has assumed
a decay configuration (second panel from top) and suffers a decrease of 0.7, subsequently (third
panel from top) it enjoys a slight growth of 1.1, and finally (bottom panel) a growth by 1.8.

FIG. 14. Mean projection of the Lyapunov vector on the eigen-
vectors of the mean operator (36). The eigenvectors are indexed in
ascending order of their decay rates. The error bars show the standard
deviation of the projection coefficients. The Reynolds number is Re
5 800, the zonal wavenumber is k 5 2, b 5 0, and the rms velocity
fluctuation about the constant shear is 0.16. Note that the Lyapunov
vector consists primarily of superposition of eigenvectors with ei-
genvalues denoted by their order number in Fig. 13.

FIG. 13. Distribution of eigenvalues for the Couette flow at k 5 2
and Re 5 800. Only the least decaying eigenvalues are shown (dots).
The remaining eigenvalues are highly damped diffusive modes with
zero phase speed (cr 5 0). The Lyapunov vector for the time-depen-
dent flow with velocity fluctuating about the constant shear profile
as in (35) is predominantly a superposition of the numbered eigen-
vectors (cf. Fig. 14). These numbered eigenvalues denote the most
nonorthogonal eigenvectors (cf. Fig. 15).
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FIG. 15. Degree of nonorthogonality as defined in (38) for the first
40 eigenvectors (ordered in ascending order of their decay rate) of
the mean Couette flow at k 5 2 and Re 5 800. The most nonnormal
eigenvectors are those that correspond to eigenvalues denoted by their
number in Fig. 13.

FIG. 16. Probability distribution of the percentage projection of Lyapunov vector on its three
dominant eigenvector components: modes with index 21, 22, 20. The example is that of Figs.

13, 14, and 15.

in the denominator of (38) is the dot product of the two
vectors. For real eigenvectors we recognize that (38) is
the secant of the angle between the eigenvector and its
biorthogonal. We also recognize that n(e) gives the gain
in initial projection obtained when an eigenvector is

optimally excited by introducing at the initial time its
biorthogonal rather than the eigenvector itself (cf. Far-
rell and Ioannou 1996a). Figure 15 shows the contri-
bution of the eigenvectors of the mean operator to the
nonnormality of A as measured by n. Comparison of
Figs. 14 and Fig. 15 confirms that the Lyapunov vector
results from destabilization of the dominant nonnormal
subspace of the mean operator. The probability distri-
bution of the three dominant eigenvector components
of the Lyapunov vector is shown in Fig. 16. It should
be noticed that the probability distribution is not normal,
but similar to the distribution expected if the Lyapunov
vector were the sum of a dominant vector (the common
structure of the nonorthogonal vectors) and a vector in
a random direction (see appendix C).

The nonorthogonal eigenvectors provide insight into
the mechanism of time-dependent instabilities but be-
cause of their nonorthogonality the eigenvectors do not
provide an economical basis for investigating the struc-
ture of the Lyapunov vector. We inquire now how Lya-
punov vectors project on the orthogonal set of the op-
timal vectors and evolved optimal vectors (the right and
left singular vectors). Projections of the Lyapunov vec-
tor on the optimal vectors and on the time-evolved op-
timal vectors of the mean flow propagator over a period
Tc in the energy inner product are shown in Fig. 17. We
observe that the Lyapunov vector does not project uni-
formly on the optimal vectors. In the energy inner prod-
uct the Lyapunov vector projects primarily on the top
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FIG. 17. (top) Mean projection and standard deviation of the Lya-
punov vector on the optimal vectors of the mean flow calculated for
a time interval equal to Tc in the energy norm. (bottom) The mean
projection and standard deviation of the Lyapunov vector on the Tc

evolved optimal vectors of the mean flow in the energy norm.

FIG. 18. Probability distribution of the magnitude of the projection
on a coordinate axis of a vector in n-space distributed uniformly on
the surface of the unit hypersphere. The case n 5 3 yields a uniform
distribution. Cases n 5 2 and n 5 20 are also shown.

10 optimal vectors. It follows that we can obtain an
improved upper bound on the Lyapunov exponent if we
take account in the calculation (33) of the probability
distribution of the projection of the Lyapunov vector on
these optimal vectors of the propagator over a decor-
relation time. This suggests that it is possible to obtain
a good upper-bound estimate for the Lyapunov exponent
of the large-scale atmospheric flow using the routinely
collected analyses of optimal growth distributions. We
observe that the Lyapunov vector projects strongly on
the top evolved optimal vectors, and consequently the
Lyapunov vector can be usefully characterized statis-
tically as having the spatial structure of the top optimal
or time-evolved optimal vectors over the decorrelation
time Tc.

7. Discussion and conclusions

It is useful to distinguish between two problems ad-
dressed by analysis of the linear stability of time-de-
pendent operators: the growth of errors and the growth
of perturbations. Calculation of error growth involves
the tangent linear equations in which the linearization
has been performed about a known time-dependent tra-
jectory and the perturbation is regarded as a small error
in specification of the initial conditions. The result of
the calculation is the difference between the perturbed
and the unperturbed trajectories and for an initial error
of specified magnitude this trajectory difference is valid
until nonlinear effects become important. If a positive
Lyapunov exponent exists then an arbitrarily small per-
turbation to initial conditions assumes after a period of
adjustment the form of the time-dependent first Lya-
punov vector after which it proceeds to grow at the mean

rate of the first Lyapunov exponent. In this case the
asymptotic stability calculation is interpreted as con-
straining the predictability of the system and the Lya-
punov exponent, the structure of the Lyapunov vector,
and the time interval required for it to be established
as an asymptotic are of practical importance for forecast.

The growth of perturbation problems by contrast en-
visions development to finite amplitude of a disturbance
on a time-dependent flow such as the stratospheric flow
forced from below by the temporally varying tropo-
spheric flow and the result is interpreted in this context
as a generalization of the transient growth to finite am-
plitude of perturbations on stationary flows. Another
example of this type of problem would be an instability
calculation studied as a model for cyclogenesis. Such
instability problems have almost always been examined
assuming that the underlying operator is autonomous.
This assumption is seldom critically examined and it
would be of interest, for example, to find that the mid-
latitude jet while stable if its time mean were analyzed
were found to be unstable if realistic variation of the
jet with time were included in its specification. It could
be that stable mean jets support unstable perturbations
in the form of the Lyapunov vector when their temporal
variability is included. The nature of these perturbations
and their relationship to cyclogenesis and the mainte-
nance of waves of synoptic and planetary scale would
be of great interest.

In a more general context, given that all physical
problems are to a greater or lesser extent time dependent,
the stability of realistic flows whether interpreted as an
analysis of error or as the development of a perturbation
must, if it is to be comprehensive, be assessed taking
into account the time dependence of the flow.

For short enough time intervals, the time dependence
of forecast model tangent linear trajectories may be ig-
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nored without unacceptable effect on the growth of er-
rors in synoptic forecast (Vukicevic 1991; Errico et al.
1993). In addition, the dominant energetics of the mid-
latitude atmosphere appear to be associated with growth
on synoptic timescales so that the statistics of the at-
mosphere can be accurately modeled using autonomous
time-mean operators (Farrell and Ioannou 1994, 1995;
Whitaker and Sardeshmukh 1998). For longer time pe-
riods, such as are associated with medium and longer
range forecast, explicit account of time dependence
needs to be taken. In addition, time-dependent insta-
bilities while not dominant in terms of variance and
fluxes at synoptic and planetary scale may be important
episodically in the growth of some perturbations to finite
amplitude.

For the purpose of understanding these phenomena
the methods of nonnormal dynamics can be extended
from the study of perturbation growth over finite time
in autonomous systems to address the perturbation
growth over finite time in nonautonomous systems
(F&I). In the limit of long time the analog of the most
rapidly growing normal mode, which asymptotically
dominates in the autonomous system, is the first Lya-
punov vector that asymptotically dominates in the non-
autonomous system. This asymptotic growth in the non-
autonomous system can also be analyzed through the
nonnormal dynamics of the underlying time-dependent
dynamical operator. But this raises an issue concerning
methods in the study of nonautonomous operators.
While a stationary state can be easily specified by a
deterministic function, a time-dependent system such as
the atmosphere can be examined only in generality
through its statistical properties. We have turned this to
advantage to obtain results that transcend the particu-
larities of a realization of the system but depend rather
on the general statistical properties of the system’s time
dependence. We have studied this problem by using
stochastic perturbation of the mean operator with the
perturbations chosen to model statistically the observed
deviations from the mean. We have found that the as-
ymptotic stability properties of time-dependent systems
with stable time-mean operators can be understood in
general terms through considerations employed by
Zel’dovich et al. (1984) in his analysis of vector growth
in random unitary systems; that is instability in time-
dependent systems results because transient growth giv-
en by the propagator over a time interval can dominate
over decay even if the system is stable at each instant,
a mechanism that can be traced to the general property
of the convexity of the logarithm. We have seen that
this general mechanism of destabilization in time-de-
pendent systems can be modeled by extension of Floquet
analysis to approximate aperiodic systems.

Using these methods and with knowledge of the sta-
tistical properties of the time dependence of the operator,
the asymptotic stability properties and the nature of the
associated Lyapunov vector can be obtained. This al-
lows us to evaluate circumstances under which desta-

bilization of the system due to time dependence occurs
and to understand the nature of the resulting growing
structures. For the example of the barotropic jet we have
found that increasing the amplitude of jet vacillation is
destabilizing provided the vacillation does not have the
same functional form as the mean flow. We found that
increasing b is stabilizing because nonnormality of the
mean operator decreases with increased b, although no
generalization of the Rayleigh theorem exists: examples
demonstrate that it is possible for a time-dependent sys-
tem that satisfies necessary conditions for stability at
each instant of time to be unstable. Sufficient spatial
and temporal variation of effective b was found to be
destabilizing and this is identified as the mechanism by
which variation of jet structure with time produces in-
stability. In the case of a stable mean operator, asymp-
totic stability is obtained when the temporal correlation
of the time dependence of the jet vacillation is either
too long or too short, while the optimal correlation time
for growth is at an intermediate value.

Identification of the mechanism by which stable mean
operators are destabilized by mode mixing induced by
time dependence of stable mean operators shows that
the Lyapunov vector is not in general the least stable
mode of the mean operator; rather mode mixing in the
nonorthogonal subspace of the operator produces the
unstable Lyapunov vector, which includes structural
characteristics from the entire excited subspace.

If the atmosphere is asymptotically unstable due to
time dependence of the jet6 those instabilities may ex-
plain the existence of structures that are not easily ex-
plained by appeal to the modes of the mean jet—the
origin of short waves being one particular example. A
more detailed analysis of the asymptotic stability of re-
alistic flows is needed to answer this and other questions
concerning the asymptotic stability of the atmosphere.
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APPENDIX A
The Lyapunov Exponent is Independent of the

Norm
The Lyapunov exponent in a norm p is given by

ln(\x(t)\ )p
l 5 lim , (A1)p tt→`

6 It is not necessary for a turbulent flow to have a positive Lyapunov
exponent. Consider a forced but highly damped flow; the forcing can
produce an arbitrarily complex flow field that is completely deter-
mined by the, in principle, known forcing. Meanwhile the damping
can be sufficiently great that no positive Lyapunov exponent exists.
While this would mean that an arbitrarily small perturbation would
not result in a completely different state after sufficient time has
passed, it would not mean that the state would be predictable given
that the forcing is unknown. It may be of interest to remark in this
connection that even unforced turbulence has not been established to
exist on a chaotic attractor and therefore to have a positive Lyapunov
exponent (Brosa 1989).



1 NOVEMBER 1999 3637F A R R E L L A N D I O A N N O U

where x(t) is the state at time t. We show that the Lya-
punov exponent does not depend on the norm.

Consider any two norms (not necessarily associated
with an inner product). In finite-dimensional spaces, the
two norms are equivalent so that there are constants a
and b for which

a\x\ # \x\ # b\x\ . (A2)1 2 1

Consequently

ln(a\x(t)\ ) ln(\x(t)\ ) ln(b\x(t)\ )1 2 1
# # , (A3)

t t t

and in the limit t → `, we have l1 # l2 # l1 and the
Lyapunov exponent is independent of norm.

APPENDIX B

Schematic Example of Violation of the Momentum
Integral Constraint in Time-Dependent Flows

If Qy(y) does not depend on time, the time derivative
can be moved out of the integrand in (25). We thus
obtain that z(t, y) satisfies

1 12 2[z (t, y)] [z (0, y)]
dy 5 dy. (B1)E EQ (y) Q (y)y y21 21

If Qy(y) has no zero in the flow, then for all times
1 11Qy2 2[z (t, y)] dy , [z (0, y)] dy, (B2)E E2Qy21 21

where is the minimum value of |Qy(y)| and the2 1Q Qy y

maximum value of |Qy(y)|. This proves Rayleigh’s the-
orem: if Qy(y) ± 0, perturbations with nonvanishing
vorticity cannot grow without bound in the integral
sense of (B2).

This proof does not carry over to time-dependent
flows because the inequality needed,

b b

2f (y, t)/Q . f (y, t)/Q (y, t)E y E y

a a

b

1. f (y, t)/Q , (B3)E y

a

in which Qy(y, t) . 0 everywhere over the interval [a, b]
and # Qy(y, t) # , is true only when f (y, t) is2 1Q Qy y

everywhere positive. For example, consider f (y) 5 2y
siny and Qy(y) 5 y on the interval [p/2, 3p/2], then

f (y)/G(y) 5 0 but f (y) . 0, contradicting the3p/2 3p/2# #p/2 p/2

inequality. Consequently in time-dependent flows epi-
sodic decrease of [z2] at locations with small values of
Qy can lead to exponential growth of perturbations while
maintaining the constraint (25) obtained from momen-
tum conservation.

Consider the following discrete two-state schematic
that illustrates such a situation. Assume A(t, y) 5
1/Qy(t, y) takes the following discrete values:

1 2
A 5 , (B4)1 22 1

where the rows correspond to time intervals and the
columns to spatial regions. An interpretation might be
that during half the year A is 1 at low latitudes and 2
at high latitudes, while during the other half A is 2 at
low latitudes and 1 at high latitudes. Observe that Qy

has been chosen to be always positive.
It is demanded from momentum conservation (25)

that the enstrophy growth weighted by 1/Qy for each of
the time period vanishes. An enstrophy growth B(t, y)
5 ][z2]/]t that satisfies the above condition is

1 21/2
B 5 . (B5)1 221/2 1

Indeed, during half the year the weighted enstrophy
growth is A(1, 1)B(1, 1) 1 A(1, 2)B(1, 2) 5 1 2 1 5
0, and during the other half we also have A(2, 1)B(2, 1)
1 A(2, 2)B(2, 2) 5 21 1 1 5 0. In this example we
have enstrophy growth in the time mean at each latitude,
that is, B(1, 1) 1 B(2, 1) 5 1 2 ½ . 0 and B(1, 2) 1
B(2, 2) 5 2½ 1 1 . 0. Clearly, positivity of the mean
vorticity gradient in time-dependent systems does not
rule out the existence of mean growth at every latitude.

While this example demonstrates that it is impossible
to exclude the possibility of growth when the potential
vorticity is of one sign in time-dependent flows, it does
not prove that exponential growth is possible in a dy-
namical system corresponding to a fluid stability prob-
lem. A constructive example of asymptotic exponential
growth in a two-state periodic system is given in section
3c.

APPENDIX C

Mechanism of Universal Destabilization

Consider singular value decomposition of the prop-
agator for a finite interval of time t . The action of the
propagator on a unit sphere is to distort the sphere in
the direction of the optimal vectors producing an ellipse
with semiaxes given by the corresponding optimal
growths si. We order the optimal growths in descending
order: s1 $ s2 $ · · · $ 0.

Consider now the action of this propagator on a ran-
dom unit vector. We show that the amplification of unit
perturbations is a monotonic function of the optimal
growths. The random vectors are considered to be equal-
ly distributed on the unit sphere. The mean growth rate
over the time interval t is given by

n1
2 2l 5 ln a s dS, (C1)OE i i1 22t |S| i51S

where ai are the projections of a state vector on the
coordinate axes of the optimal vectors, si are the optimal
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growths, and S is the surface of the unit hypersphere
of area |S|.

Assuming si 5 p only n 2 1 of the optimalnPi51

growths are independent. Without loss of generality, we
choose to eliminate s2. Then

2 2 2 2]l 1 a s 2 a s1 1 2 25 dS $ 0. (C2)E n]s s t |S|1 1 S 2 2a sO i i
i51

The inequality follows from the observation:

1
2 2 2 2 2 2 2 2 2s (a 1 a 1 a s /s 1 · · · 1 a s /s )2 1 2 3 3 1 n n 1

1
$ n

2 2a sO i i
i51

1
$ . (C3)

2 2 2 2 2 2 2 2 2s (a 1 a 1 a s /s 1 · · · 1 a s /s )1 1 2 3 3 1 n n 1

This demonstrates that l is an increasing function of
s1, the greatest optimal growth. (Note that a decrease
in s3 also leads to an increase of the growth rate, as
then s2 must increase to keep the product constant.)

It is immediate from (C2) that the minimum growth
rate is attained when all the optimal growths are equal
to p1/n. The minimum is lmin 5 1np1/ N/t.

For nondissipative dynamics (p 5 1) these results
demonstrate that when all the optimal growths are equal
to unity the growth rate is zero, and that the slightest
distribution of the optimal growths around unity guar-
antees growth.

The mean growth rate (C1) is the mean over all the
growth rates of unit vectors uniformly distributed on
the unit sphere. This growth rate is smaller than the
growth rate of the vector that projects equally on each
of the optimal vectors, that is,

n 
2 sO i1  i51 ln $ l. (C4)

2t n 

It is a remarkable fact that a vector projecting equally
on each of the optimal vectors will by necessity amplify
if the operator is nondissipative and the optimal growths
are not all equal. It should be noted that equal projection
on another orthogonal basis distinct from the basis of
the optimal vectors does not ensure growth.

Inequality (C4) follows from the convexity of the
logarithmic function and the observation that the av-
erage square projection of a uniformly distributed vector
on a given axis in n dimensions is for all i:

1 1
2a dS 5 . (C5)E i|S| n

S

The above statement follows from the realization that
the probability distribution, P, of the magnitude, x, of

the projection on a coordinate axis of a vector uniformly
distributed on the sphere obeys the following distribu-
tion on [21, 1]:

n
G1 221

2 (n23)/2P(x) 5 (1 2 x ) , (C6)
Ïp n 2 1

G1 22

where n is the dimension of the space (n $ 2). The
probability distribution is shown in Fig. 18. It is the
ratio of the area of the projection of a coordinate axis
increment dx onto the shell of a hypersphere to the total
area of the hypersphere.

It is remarkable that while in two dimensions it is
more probable for a random unit vector to project along
the coordinate axes, as the dimension increases the prob-
ability distribution becomes highly concentrated near
zero indicating that projection on a coordinate axis is
increasingly unlikely (in three dimensions the distri-
bution is uniform).

This probability distribution is useful in assessing the
randomness of a given perturbation distribution. If the
mean projections of the normalized perturbations to any
orthogonal basis are distributed as in (C6), then the
perturbations are uniformly distributed on the unit
sphere. In practice uniform distributions over the unit
hypersphere surface in n-dimensions can be obtained by
choosing n uniformly distributed components on
[21, 1] and normalizing them to unity.

APPENDIX D

An Approximate Expression for the Propagator

It can be easily verified that the product of two ex-
ponentials in the limit t → 0 can be written as

exp(A t) exp(A t)1 2

1
25 exp((A 1 A )t) exp [A , A ]t1 2 1 21 22

31 O(t ). (D1)

Application of (D1) for a finite number of times n pro-
duces the following small t approximation of the prop-
agator that advances a system state over the interval nt :

n

tAiF(nt) 5 eP
i51

n n i1
25 exp A t exp [A , A ]tO O Oi i j1 2 1 22i51 i51 j51

31 O(t ). (D2)

This expression shows that if the number of states is
fixed at n the propagator of the time-dependent flow in
the limit t → 0 approaches the propagator of the mean
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flow with operator Ai/n. Consequently if the flownSi51

is periodic with period nt , with n fixed, and t → 0 the
stability of the periodic flow will be determined from
the stability of the mean flow, and consequently if the
mean flow is stable the periodic flow will also be stable.
Expression (D2) also shows that the next-order correc-
tion to the stability of the time-dependent flow involves
the commutators among the operators of the flows.

The propagator of time-dependent flows on an arbi-
trary time interval with uncorrelated time-dependent de-
viations also approaches the propagator of the mean as
the correlation time of the derivations t → 0. This can
be seen by considering a subdivision of a finite time
interval T in n subintervals of duration t and assuming
that as t → 0 the operators Ai remain uncorrelated. The
reason is that as n → ` the O(n2) terms in the sum of
commutators in the second exponential of (D2) add to
a sum that by the central limit theorem is O(n) while
the t 2 term multiplying this sum decreases as O(1/n2)
making the second exponential of (D2) inferior to the
first. This shows that the stability of a time-dependent
state consisting of a sum of a mean operator and un-
correlated time-dependent operators is governed by the
stability of the mean operator.

Note that the above argument is not valid if the time-
dependent part of the operators Ai are correlated. The
reason is that in that case

Tn

lim A t 5 dtA(t), (D3)O i E
n→` i51 0

T tn i

2lim [A , A ]t 5 dt ds[A(t), A(s)], (D4)OO i j E E
n→` i51 j51 0 0

where T 5 nt . For bounded A (D3) is order O(T) while
(D4) is O(T 2), which is inferior to the first term only
in the usually uninteresting case of T K 1.
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