P-67 Perturbation of Dirichlet forms and stability of fundamental solutions

Masaki Wada *

March 4, 2013

1 Notions and Notations

The jump type Markov process on \mathbb{R}^d describes the random motion of particle in the state space \mathbb{R}^d . We can characterize this by means of Dirichlet form \mathscr{E} as follows:

$$\mathscr{E}(u,v) = \iint_{\mathbb{R}^d \times \mathbb{R}^d} (u(y) - u(x))(v(y) - v(x))J(x,y)dxdy$$

Here J(x,y) is a symmetric function and describes the frequency of jump from x to y. In particular, if $J(x,y) \approx 1/|x-y|^{d+\alpha}$ holds for some $0 < \alpha < 2$, we call the associated Markov process α -stable-like. If $J(x,y) \approx \exp(-m|x-y|)/|x-y|^{d+\alpha}$ holds for some $0 < \alpha < 2$ and m > 0, we call the associated Markov process relativistic α -stable-like. In the sequel, we deal with these two kinds of jump Markov process.

2 Preceding Results

The transition density function p(t,x,y) is one of the important notions in order to analyze Markov processes. This is the probability with which the particle in *x* at time 0 exists in *y* at time *t*. Moreover it is known that p(t,x,y) coincides with the fundamental solution of $\partial u/\partial t = \mathcal{L}u$, where \mathcal{L} is a non-local operator satisfying

$$\mathscr{E}(u,v) = -\int_{\mathbb{R}^d} \mathscr{L}u(x)v(x)dx$$

Z. Q. Chen, P. Kim and T. Kumagai showed that p(t,x,y) admits the two-sided estimates as follows:

$$C_1\phi(C_2t, C_3|x-y|) \le p(t, x, y) \le C_4\phi(C_5t, C_6|x-y|),$$

where ϕ is an appropriate function and C_i 's are positive constants [1, 2].

3 **Problem in Consideration**

In the sequel we assume that the Markov process is transient, namely it holds that

$$G(x,y) := \int_0^\infty p(t,x,y) < \infty$$

First we define some classes of small measure μ .

Definition 1. (i) A measure μ is said to be in Kato class if it holds that

$$\lim_{a \to 0} \sup_{x \in \mathbb{R}^d} \int_{|x-y| \le a} G(x, y) \mu(dy) = 0$$
⁽¹⁾

*Mathematical Institute, Tohoku University. Mail: sbldl4@math.tohoku.ac.jp (ii) A Kato class measure μ is said to be Green tight if it holds that

$$\lim_{r \to \infty} \sup_{x \in \mathbb{R}^d} \int_{|y| > r} G(x, y) \mu(dy) = 0.$$
⁽²⁾

Here we consider the perturbation of Dirichlet form \mathscr{E} by Green tight measure μ as follows:

$$\mathscr{E}^{\mu}(u,u) = \mathscr{E}(u,u) - \int_{\mathbb{R}^d} u^2 d\mu.$$
(3)

It is known that \mathscr{E}^{μ} (or corresponding operator $\mathscr{L}^{\mu} := \mathscr{L} + \mu$) also admits the fundamental solution $p^{\mu}(t,x,y)$. We consider the condition on μ under which $p^{\mu}(t,x,y)$ admits the same two sided estimates as p(t,x,y) up to the choice of positive constants. We call this phenomenon stability of fundamental solution.

4 Main Result

The main result is the necessary and sufficient condition on μ for the stability of fundamental solution. The precise statement is as follows:

Theorem 2. (W. 2012)

Assume that the Green tight measure $\boldsymbol{\mu}$ satisfies

$$\iint_{\mathbb{R}^d \times \mathbb{R}^d} G(x, y) \mu(dx) \mu(dy) < \infty.$$

Then the stability of fundamental solution holds if and only if

$$\inf\{\mathscr{E}(u,u) \mid u \in \mathscr{F}, \int_{\mathbb{R}^d} u^2 d\mu = 1\} > 1,$$
(4)

where \mathscr{F} is the domain of the Dirichlet form \mathscr{E} .

Note that the formula (4) describes the smallness of measure μ compared with the initial Dirichlet form \mathscr{E} . Furthermore, this result is the same as that in Takeda [3], which deals with the same problem in the framework of transient Brownian motion.

References

- Chen, Z.-Q., Kumagai, T.: Heat kernel estimates for stable-like processes on d-sets, Stoc. Proc. Appli. 108, 27-62, (2003).
- [2] Chen, Z.-Q., Kim, P., Kumagai, T.: Global heat kernel estimates for symmetric jump processes, Trans. Amer. Math. Soc. 363, 5021-5055, (2011).
- [3] Takeda, M.: Gaussian bounds of heat kernels for Schrödinger oeprators on Riemannian manifolds, Bull. London Math. Soc. 39, 85-94, (2007).