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2 A. Y. Kruger et al.

1 Introduction and Preliminaries

In this article, we mostly follow the standard terminology and notation used by the

optimization and variational analysis community, see, e.g., [21, 64]. Throughout, X

and X∗ stand for a real Banach space and its topological dual, respectively, while B

and B
∗ denote the corresponding unit balls. The norms in both spaces are denoted

by the same symbol ‖ · ‖. For a subset S, we denote its interior and boundary by intS

and bdS, respectively. The distance from a point x to a set S is denoted by d(x,S) :=
infu∈S ‖u− x‖, and we use the convention d(x,S) = +∞ whenever S = /0.

For an extended-real-valued function: f : X →R∞ :=R∪{+∞}, its domain is the

set dom f := {x ∈ X | f (x) < +∞}. A function f is said to be proper if dom f 6= /0.

We use the symbol f+(x) to denote max( f (x),0). The class of all extended-real-va-

lued proper convex lower semicontinuous functions on X is denoted by Γ0(X). For a

convex function f : X →R∞, its (Moreau) subdifferential at x ∈ dom f is given by

∂ f (x) := {x∗ ∈ X∗ | 〈x⋆,u− x〉 ≤ f (u)− f (x), ∀u ∈ X}.

It is a (possibly empty) weak∗-closed set in X∗.

The article is concerned with the study of the solution set of a single inequality

of the type

S f := {x ∈ X | f (x) ≤ 0}, (1)

where f : X → R∞. Such sets subsume, e.g., feasible sets in mathematical program-

ming. Indeed, solutions of a finite family of inequalities:

{x ∈ X | fi(x)≤ 0 for all i = 1, . . . ,n}

can be rewritten as (1) with function f defined by f (x) = max{ f1(x), . . . , fn(x)}.

An important issue when studying systems of the type (1) is to give an upper

estimate (error bound) of the distance from a point x ∈ X to the set S f in terms of a

computable function measuring the violation of the inequality in (1). This can, e.g.,

be the function f itself.

We say that a function f has (or admits) a local error bound at a point x̄ ∈ S f if

there exists a real τ > 0 such that

τd(x,S f )≤ f+(x) (2)

for all x near x̄. We similarly say that a function f has a global error bound if there

exists a real τ > 0 such that inequality (2) is satisfied for all x ∈ X .

The exact upper bound of all such τ (the error bound modulus; cf. [24]) equals

either

Er f (x̄) := liminf
x→x̄

f (x)>0

f (x)

d(x,S f )
(3)

in the local setting, or

Er f := inf
f (x)>0

f (x)

d(x,S f )
(4)

in the global case. Constants (3) and (4) provide quantitative estimates of the error

bound property.
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The starting point of the theory of error bounds goes back to the pioneering work

by Hoffman [31] (although some traces of the error bound property can be found in

an earlier publication by Rosenbloom [65]1) who established for a linear function in

finite dimensions the following result:

Given an m× n matrix A and a vector b ∈ R
m, there exists a positive number

κ > 0 such that the distance from x to the set S := {x ∈ R
n | Ax ≤ b} has an upper

bound given by κ‖(Ax−b)+‖, where for y :=(y1, . . . ,ym)∈R
m, y+ denotes the vector

(max(y1,0), . . . ,max(ym,0)).

After the work by Hoffmann and its extensions by Robinson [63], Mangasarian

[49], Auslender & Crouzeix [1], Pang [61], Lewis and Pang [46], Klatte & Li [38],

Jourani [37], there have been significant developments of various aspects of errors

bounds for convex and nonconvex functions in recent years. The interested reader

is referred to the articles by Ng & Zheng [52], Azé [2, 3], Azé & Corvellec [4],

Zălinescu [67], Huang & Ng [32], Corvellec & Motreanu [20], Fabian et al [24, 25],

Gfrerer [26], Ioffe [33, 34], Ioffe & Outrata [36], Ngai & Théra [54–57], Zheng &

Ng [68,69], Bednarczuk & Kruger [7,8], Meng & Yang [50], Kruger [39–41] and the

references therein.

Many authors have recently studied error bounds in connection with the metric

regularity and subregularity (cf. [21]) as well as Aubin property and calmness of set-

valued mappings: [3,15,16,26,33,34,36,39–41,54,56,58,59,68,69]. The connections

between the error bounds and weak sharp minima were studied in [13].

Another typical example where the theory of error bounds plays an important role

is the so-called feasibility problem [5, 6, 30, 42], which consists in finding a point in

the intersection of a finite family of closed (usually convex) sets and has a broad ap-

plicability in various areas such as, e.g., image reconstruction [18]. Several iterative

methods such as the method of successive orthogonal projections, the cyclic subgradi-

ent projections method, etc, are known to solve this problem (see [17]). Error bounds

are also used in the convergence analysis of projection algorithms. They allow one

to quantify the proximity of an iterate to the solution set of the problem. The reader

is referred to the recent survey paper by Ioffe [34, 35] and the references therein and

also to some recent contributions by Beck & Teboulle [6], Lewis et al [45], Hesse &

Luke [30], Borwein et al [11], Drusvyatskiy et al [22], Kruger & Thao [44], Noll &

Rondepierre [60], and Bolte et al [10].

In this article, we study stability of local and global error bounds under perturba-

tions. It was observed in Ngai et al [53, Theorem 1] and Kruger et al [43, Theorem 1],

that the requirement for the distance from the origin to the subdifferential of a func-

tion at a reference point to be strictly positive, while being a conventional sufficient

condition for a local error bound for the system (1), is far from being necessary. This

condition guaranties the local error bound property not just for the given function, but

also for a family of its small perturbations. In the setting of set-valued mappings and

the metric subregularity property, similar observations have been made recently by

Gfrerer [26, Theorem 3.2] and Li & Mordukhovch [47, Theorem 4.4] in terms of the

distance from the origin to the critical limit set [26, Definition 3.1] and the kernel of

1 Private communication by J.-B. Hiriart-Urruty
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the reversed mixed coderivative [51], respectively. We also mention the most recent

development in Gfrerer & Outrata [27, Theorem 2.6] where [26, Theorem 3.2] has

been upgraded (in finite dimensions) to an almost radius-type result.

In Section 2, we exploit the concept of local ε-perturbation from [43], define

subfamilies of convex and linear ε-perturbations, and establish in Theorem 2.2 the

exact formula for the ‘radius of local error bounds’ for families of arbitrary, convex

and linear perturbations in terms of the distance from the origin to the subdifferen-

tial. Theorem 2.2 in a sense continues the series of radius theorems from Dontchev–

Rockafellar [21], “furnishing a bound on how far perturbations of some sort in the

specification of a problem can go before some key property is lost” [21, page 364].

Note that, unlike the ‘stable’ properties of metric regularity, strong metric regular-

ity and strong metric subregularity studied in [21], the error bound property (as well

as the equivalent to it metric subregularity property, cf. [21, page 200]) can be lost

under infinitely small perturbations. That is why stronger conditions are required to

ensure stability. Unlike, e.g., [21, Theorem 6A.9] which gives the radius of strong

metric subregularity in terms of the subregularity modulus being an analogue of (the

reciprocal of) the error bound modulus Er f (x̄) (3), Theorem 2.2 utilizes the quan-

tity |∂ f |bd(x̄) (see Theorem 2.1 below). In view of Theorem 2.1, this quantity can be

smaller than Er f (x̄), and, thus, condition |∂ f |bd(x̄)> 0 used in Corollary 2.1 imposes

a strong requirement on the function f and |∂ f |bd(x̄) leads to a radius theorem of a

different type compared to those in [21].

The same idea applies partially when considering stability of global error bounds

in Section 3. In the global setting, we define families of convex and linear perturba-

tions as well as larger families of weak convex and weak linear perturbations, discuss

some limitations of these definitions, and establish in Theorem 3.2 lower and upper

estimates for the ‘radius of global error bounds’ for families of such perturbations.

The family of convex perturbations considered here is larger than the corresponding

one studied in [43]. In particular, the so called asymptotic qualification condition is

waived.

Some examples are given for the convenience of the reader to illustrate the differ-

ent concepts introduced along the presentation.

2 Stability of local error bounds

In this section we establish conditions for stability of local error bounds for the con-

straint system (1). We start with the following statement extracted from [43, The-

orem 1].

Theorem 2.1 Let f ∈ Γ0(X) and f (x̄) = 0. Then function f has a local error bound

at x̄, provided that one of the following two conditions is satisfied:

(i) |∂ f |>(x̄) := liminfx→x̄, f (x)> f (x̄) d(0,∂ f (x)) > 0;

(ii) |∂ f |bd(x̄) := d(0,bd∂ f (x̄))> 0.

Moreover, condition (i) is also necessary for f to have a local error bound at x̄ and

|∂ f |bd(x̄)≤ |∂ f |>(x̄) = Er f (x̄). (5)
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Constant |∂ f |>(x̄) is known as the strict outer subdifferential slope [24] of f at

x̄. We are going to call |∂ f |bd(x̄) the boundary subdifferential slope of f at x̄. The

sufficient criterion (i) was used in [36, Theorem 2.1 (c)], [57, Corollary 2 (ii)], [62,

Theorem 4.12], [66, Theorem 3.1]. Criterion (ii) was used in [28, Corollary 3.4], [29,

Theorem 4.2]. The equality in (5) is well known. See also characterizations of linear

and nonlinear conditionings in [19, Theorem 5.2].

The inequality in (5) can be strict.

Example 2.1 1. f (x) ≡ 0, x ∈ R. Obviously 0 ∈ bd∂ f (x̄), |∂ f |bd(x̄) = 0, while

|∂ f |>(0) = ∞ for any x̄ ∈R.

2. f (x) = 0 if x ≤ 0, and f (x) = x if x > 0. Then ∂ f (0) = [0,1] and 0 ∈ bd∂ f (0),
|∂ f |bd(0) = 0, while |∂ f |>(0) = 1.

3. If f : Rm → R is convex, thanks to [14, Theorem 3.1],

bd ∂ f (x) = limsup
x→x, x6=x

∂ f (x) ,

and |∂ f |bd(x̄) can be easily computed:

|∂ f |bd(x̄) = liminf
x→x, x6=x

d (0,∂ f (x)) .

In the particular case when f is a polyhedral function

f (x) := max
i=1,...,n

(〈ai,x〉− bi)

with ai ∈R
m, bi ∈R (i = 1, . . . ,n), thanks to [15, Theorem 3.1],

limsup
x→x, f (x)> f (x)

∂ f (x) =
⋃

D∈D(x)

conv{ai, i ∈ D} ,

where D (x) denotes the family of all subsets

D ⊂ I (x) := {i = 1, . . . ,n | fi (x) = f (x)},

such that the system
{

〈ai,d〉= 1, i ∈ D,
〈ai,d〉< 1, i ∈ I (x)\D

}

is consistent (in the variable d ∈ R
m). In other words, D ∈ D (x) if there exists a

hyperplane containing {ai, i ∈ D} and such that

{0}∪{ai, i ∈ I (x)\D}

lies in one of the open half-spaces determined by this hyperplane. Hence,

|∂ f |>(x̄) = d



0,
⋃

D∈D(x)

conv{ai, i ∈ D)



 .

For a function f : Rm → R which is regular and locally Lipschitz continuous at

x, [48, Theorem 3.1] provides lower and upper bounds for Er f (x) involving outer

limits of subdifferentials of the function f at x and the support function of ∂ f (x) at

0, respectively. △
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Thus, condition (ii) in Theorem 2.1 is in general stronger than condition (i). It

imposes restrictions on the behaviour of the function f near x̄ not only outside the

set S f , but also inside it, particularly excluding the situations as in parts 1 nd 2 of

Example 2.1. Condition (ii) characterizes a stronger property than just the existence

of a local error bound for f at x̄ which can be of interest by itself. In particular,

it guaranties the local error bound property for the family of functions being small

perturbations of f in the sense defined below.

Let f (x̄)< ∞ and ε ≥ 0. Following [43, Definition 5], we say that g : X → R∞ is

an ε-perturbation of f near x̄ if

g(x̄) = f (x̄) (6)

and

limsup
x→x̄

|g(x)− f (x)|

‖x− x̄‖
≤ ε. (7)

If both functions f and g are continuous at x̄, then equality (6) in the above definition

is obviously implied by condition (7).

The collection of all ε-perturbations of f near x̄ will be denoted by Ptb( f , x̄,ε).
Obviously, if g∈ Ptb( f , x̄,ε), then f ∈ Ptb(g, x̄,ε), and neither f nor g are required to

be convex. If both f and g are convex, then the actual perturbation function p := g− f

needs not to be convex; it is in general a d.c. function (difference of convex functions).

The following subsets of Ptb( f , x̄,ε) corresponding, respectively, to convex and

linear ε-perturbations of f near x̄ can be of interest:

Ptb c( f , x̄,ε) :={g ∈ Ptb( f , x̄,ε) | g− f ∈ Γ0(X)}, (8)

Ptb l( f , x̄,ε) :={g | g(u)− f (u) = 〈x∗,u− x̄〉 (u ∈ X), x∗ ∈ εB∗}.

Obviously,

Ptb l( f , x̄,ε)⊂ Ptb c( f , x̄,ε)⊂ Ptb( f , x̄,ε). (9)

The next proposition provides a sufficient condition for a function g to be a convex

ε-perturbation of f near x̄.

Proposition 2.1 Let f (x̄) < ∞ and ε ≥ 0. Suppose g = f + p where p : X → R∞

is convex and Lipschitz continuous near x̄ with constant ε and p(x̄) = 0. Then g ∈
Ptb c( f , x̄,ε).

Proof Thanks to the Lipschitz continuity of p, ∂ p(x̄) 6= /0 and ‖x∗‖ ≤ ε for all x∗ ∈
∂ p(x̄); cf. [12, Proposition 4.1.25 and its proof]. Given an x∗ ∈ ∂ p(x̄), for any x ∈
X \ {x̄}, we have:

g(x)− f (x)

‖x− x̄‖
=

p(x)

‖x− x̄‖
≥

〈x∗,x− x̄〉

‖x− x̄‖
≥ −ε.

On the other hand,

limsup
x→x̄

g(x)− f (x)

‖x− x̄‖
= limsup

x→x̄

p(x)

‖x− x̄‖
≤ ε.

Combining the two inequalities proves (7). ⊓⊔
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The assumption of the Lipschitz continuity of p in the above proposition is es-

sential.

Example 2.2 Let f , p,g : R→R∞, f (x) = 0 for all x ∈R and

p(x) = g(x) =

{

0 if x ≤ 0,

+∞ if x > 0.

Then f ,g, p ∈ Γ0(X) and

limsup
x→0

|g(x)− f (x)|

|x|
=+∞.

△

Given a function f ∈ Γ0(X) with f (x̄) = 0 and a number ε ≥ 0, denote

Er{Ptb( f , x̄,ε)}(x̄) := inf
g∈Γ0(X)∩Ptb ( f ,x̄,ε)

Erg(x̄), (10)

Er{Ptb c( f , x̄,ε)}(x̄) := inf
g∈Ptbc( f ,x̄,ε)

Erg(x̄),

Er{Ptb l( f , x̄,ε)}(x̄) := inf
g∈Ptb l ( f ,x̄,ε)

Erg(x̄).

These numbers characterize the error bound property for families of ε-perturbations

of f near x̄. Thanks to (9), it holds

Er{Ptb( f , x̄,ε)}(x̄)≤ Er{Ptb c( f , x̄,ε)}(x̄)

≤ Er{Ptb l( f , x̄,ε)}(x̄)≤ Er f (x̄) (11)

for any ε ≥ 0.

Theorem 2.2 Let f ∈ Γ0(X) and f (x̄) = 0. Then

|∂ f |bd(x̄) = inf{ε > 0 | Er{Ptb( f , x̄,ε)}(x̄) = 0}

= inf{ε > 0 | Er{Ptb c( f , x̄,ε)}(x̄) = 0}

= inf{ε > 0 | Er{Ptb l( f , x̄,ε)}(x̄) = 0}. (12)

Proof Thanks to the first two inequalities in (11), we always have

inf{ε > 0 | Er{Ptb( f , x̄,ε)}(x̄) = 0}

≤ inf{ε > 0 | Er{Ptb c( f , x̄,ε)}(x̄) = 0}

≤ inf{ε > 0 | Er{Ptb l( f , x̄,ε)}(x̄) = 0}. (13)

We are going to show that

|∂ f |bd(x̄)≤ inf{ε > 0 | Er{Ptb( f , x̄,ε)}(x̄) = 0} (14)

and

inf{ε > 0 | Er{Ptb l( f , x̄,ε)}(x̄) = 0} ≤ |∂ f |bd(x̄). (15)
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By [43, Theorem 8 (i)], Erg(x̄) ≥ |∂ f |bd(x̄)− ε for any ε > 0 and any g ∈ Γ0(X)∩
Ptb( f , x̄,ε). By definition (10), we have

|∂ f |bd(x̄)≤ Er{Ptb( f , x̄,ε)}(x̄)+ ε

for any ε > 0, and consequently |∂ f |bd(x̄) ≤ ε if Er{Ptb( f , x̄,ε)}(x̄) = 0, which

yields inequality (14).

If ς( f , x̄) =∞, inequality (15) holds trivially. Let |∂ f |bd(x̄)< ε <∞. We are going

to show that Er{Ptb l( f , x̄,ε)}(x̄) = 0. By the definition of |∂ f |bd(x̄), there exists an

x∗ ∈ bd∂ f (x̄) such that ‖x∗‖< ε . Choose a positive number ξ < ε −‖x∗‖. Thus,

f (u)≥ 〈x∗,u− x̄〉 for all u ∈ X , (16)

and there exists an x̂∗ ∈ X∗ such that ‖x̂∗−x∗‖< ξ and x̂∗ /∈ ∂ f (x̄), which means that

there exists a point x̂ ∈ X \ {x̄} satisfying

f (x̂) = f (x̂)− f (x̄)< 〈x̂∗, x̂− x̄〉.

Thanks to the convexity of f , one also has

f (xk)< 〈x̂∗,xk − x̄〉, k = 1,2, . . . , (17)

where xk := x̄+ 1
k
(x̂− x̄). Now select a z∗ ∈ X∗ such that ‖z∗‖ = 1 and 〈z∗, x̂− x̄〉 =

‖x̂− x̄‖, and define

g(u) := f (u)+ 〈−x∗+ ξ z∗,u− x̄〉, u ∈ X . (18)

One has ‖−x∗+ξ z∗‖ ≤ ‖x∗‖+ξ < ε, and consequently, g ∈ Ptb l( f , x̄,ε). It follows

from (16) and (18) that

g(u)≥ ξ 〈z∗,u− x̄〉 for all u ∈ X . (19)

In particular,

g(xk)≥ ξ 〈z∗,xk − x̄〉=
ξ

k
‖x̂− x̄‖> 0, k = 1,2, . . . (20)

At the same time, by (17) and (18),

g(xk)< 〈x̂∗− x∗+ ξ z∗,xk − x̄〉, k = 1,2, . . . (21)

For a fixed k, choose a positive t < 1 such that g(xk) < t〈x̂∗− x∗ + ξ z∗,xk − x̄〉 and

denote

η := t〈x̂∗− x∗+ ξ z∗,xk − x̄〉> 0, λ :=
t

k
‖x̂− x̄‖> 0.

Thus, g(xk) < η . By virtue of the Ekeland variational principle [23] (see also [12,

Theorem 4.3.1], [21, Theorem 4B.5]) applied to the function u 7→ g+(u) :=max{g(u),0},

there exists a point uk ∈ X such that

‖uk − xk‖ ≤ λ , (22)

g+(u)+
η

λ
‖u− uk‖ ≥ g+(uk) for all u ∈ X . (23)
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By (22) and the definitions of λ and xk, we have

‖uk − x̄‖ ≤ ‖uk − xk‖+ ‖xk− x̄‖ ≤ λ + ‖xk − x̄‖<
2

k
‖x̂− x̄‖. (24)

By (19) and (22) and the definitions of xk, λ and z∗,

g(uk)≥ ξ 〈z∗,uk − x̄〉= ξ 〈z∗,xk − x̄〉+ ξ 〈z∗,uk − xk〉

≥
ξ

k
‖x̂− x̄‖− ξ λ = (1− t)

ξ

k
‖x̂− x̄‖> 0, (25)

and consequently, g+(uk)= g(uk). Thanks to this observation and the fact that g+(u)≥
g(u) for all u ∈ X , it follows from (23) that uk is a global minimum of the convex

function

u 7→ h(u) := g(u)+
η

λ
‖u− uk‖ ,

and so, 0 ∈ ∂h(uk) = ∂g(uk)+
η
λ B

∗, i.e.,

d(0,∂g(uk))≤
η

λ
=

〈x̂∗− x∗+ ξ z∗,xk − x̄〉
1
k ‖x̂− x̄‖

=
k〈x̂∗− x∗,xk − x̄〉

‖x̂− x̄‖
+ ξ

≤ ‖x̂∗− x∗‖+ ξ < 2ξ . (26)

By (24), we have uk → x̄ as k → ∞. Thanks to (25) and (26), it follows from Theo-

rem 2.1 that Erg(x̄)≤ 2ξ . As ξ > 0 can be chosen arbitrarily small, we conclude that

Er{Ptb l( f , x̄,ε)}(x̄) = 0, which proves (15). ⊓⊔

Corollary 2.1 Let f ∈ Γ0(X), f (x̄) = 0 and ε ≥ 0. Then

ε < |∂ f |bd(x̄) ⇒ Er{Ptb( f , x̄,ε)}(x̄)> 0

⇒ Er{Ptb c( f , x̄,ε)}(x̄)> 0

⇒ Er{Ptb l( f , x̄,ε)}(x̄)> 0 ⇒ ε ≤ |∂ f |bd(x̄).

Remark 2.1 1. Theorem 2.2 strengthens [43, Theorem 8 and Corollary 9] which es-

tablish inequality (14) for any |∂ f |bd(x̄) as well as the first equality in (12) in the case

|∂ f |bd(x̄) = 0. The above proof of inequality (14) is more straightforward than that

of the corresponding one in [43, Theorem 8 (ii)].

2. Thanks to Theorem 2.2, the quantity |∂ f |bd(x̄) can be interpreted as the radius

of error bounds for a family of (arbitrary or convex or linear) perturbations of f at x̄.

3. The given above proof of the inequality (15) is constructive: for an ε > |∂ f |bd(x̄)
and an arbitrarily small ξ > 0, the linear ε-perturbation g of f near x̄ satisfying

Erg(x̄)≤ 2ξ is given by (18) where x∗ is any element from bd∂ f (x̄) satisfying ‖x∗‖<
ε while element ẑ∗ is fully determined by an arbitrary x̂∗ /∈ ∂ f (x̄) with ‖x̂∗− x∗‖ <
ξ . △
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3 Stability of global error bounds

This section deals with the global error bound property for the constraint system (1)

with a convex function f : X → R∞. The next theorem extracted from [43, Theo-

rem 22] represents a nonlocal analogue of Theorem 2.1.

Theorem 3.1 Let f ∈ Γ0(X) and S f 6= /0. Function f has a global error bound pro-

vided that one of the following two conditions is satisfied:

(i) |∂ f |> := inf f (x)>0 d(0,∂ f (x)) > 0;

(ii) |∂ f |bd := inf f (x)=0 d(0,bd∂ f (x)) > 0.

Moreover, condition (i) is also necessary for f to have a global error bound and

|∂ f |bd ≤ |∂ f |> = Er f . (27)

We are going to call |∂ f |> and |∂ f |bd, respectively, the outer subdifferential slope

and the boundary subdifferential slope of f .

Obviously, for any x ∈ X with f (x) = 0, |∂ f |> ≤ |∂ f |>(x) and

|∂ f |bd = inf
x∈S=f

|∂ f |bd(x), (28)

where S=f := {x ∈ X | f (x) = 0}. The inequality in (27) guarantees, in particular,

that ‖x∗‖ ≥ |∂ f |bd for any x∗ ∈ ∂ f (x) with f (x) > 0. Parts 1 and 2 of Example 2.1

in Section 2 are also applicable to global error bounds to show that this inequality

can be strict. We shall prove in this section, that condition (ii) in Theorem 3.1 corre-

sponds to the existence of a global error bound for a family of functions being small

perturbations of f .

Alongside |∂ f |bd and |∂ f |>, we are going to consider a “localized” quantity as-

sociated with a point x ∈ S=f (and depending also on numbers ε ≥ 0 and δ ≥ 0):

τ( f ,x,ε,δ ) :=

{

inf f (u)≥−ε‖u−x‖−δ d(0,∂ f (u)) if 0 /∈ int∂ f (x),

d(0,bd∂ f (x)) if 0 ∈ int∂ f (x).
(29)

The two cases in definition (29) are mutually exclusive in the sense that they cannot

happen simultaneously for the same function even at different points: if 0 ∈ int∂ f (x)
for some x ∈ S=f , then S f = S=f = {x}, and consequently, there are no points x ∈ S=f
where 0 /∈ int∂ f (x). In the second case, we are actually dealing with local error

bounds at x. This case has been added for completeness to ensure that τ( f ,x,ε,δ )
is defined for all x ∈ S=f . For the purposes of the current paper, only the first case

is important. Unlike |∂ f |bd and |∂ f |>, when 0 /∈ int∂ f (x) for all x ∈ S=f and either

ε > 0 or δ > 0, this definition takes into account also certain points u with f (u)< 0.

Obviously,

τ( f ,x,ε,δ ) ≤ |∂ f |bd (30)

for all x ∈ S=f , ε ≥ 0 and δ ≥ 0, and the equality holds when ε = δ = 0 or 0 ∈ ∂ f (x).
Observe that τ( f ,x,0,δ ) does not depend on x, and τ( f ,x,ε,δ ) does not depend on
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ε and δ when 0 ∈ ∂ f (x). The function (ε,δ ) 7→ τ( f ,x,ε,δ ) is nonincreasing in the

sense that

τ( f ,x,ε2,δ2)≤ τ( f ,x,ε1,δ1)

if 0 ≤ ε1 ≤ ε2 and 0 ≤ δ1 ≤ δ2.

The next example illustrates the computation and properties of the localized con-

stant (29).

Example 3.1 Consider the piecewise linear function f : R→R given by

f (x) := max{−2x+ 2,−x+ 1,2x− 5}=











−2x+ 2 if x ≤ 1,

−x+ 1 if 1 < x ≤ 2,

2x− 5 if x > 2.

It can be easily verified that S=f = {1,2.5}, |∂ f |bd = 1, |∂ f |> = 2, and the only point

u where 0 ∈ ∂ f (u) is u = 2. When computing (29) with x = 1 (and nonnegative ε and

δ ), we see that 2 ∈ {u | f (u)≥−ε |u− 1|− δ} if and only if ε + δ ≥ 1. Hence,

τ( f ,1,ε,δ ) = inf
f (u)≥−ε|u−1|−δ

d(0,∂ f (u)) =

{

1 if ε + δ < 1,

0 if ε + δ ≥ 1.
(31)

For small ε and δ (satisfying ε + δ < 1), we have τ( f ,1,ε,δ ) = |∂ f |bd. △

When examining stability issues of global error bounds, estimates of the differ-

ence |∂ f |bd − τ( f ,x,ε,δ ) (which is always nonnegative, cf. (30)) are needed. This

quantity plays an important role in the next definition.

Let S f 6= /0 and ε ≥ 0. We say that g : X →R∞ is an ε-perturbation of f if Sg 6= /0,

g = f + p where p : X → R is convex, and there exist a point x ∈ S=f and a number

ξ ≥ 0 such that

ξ + |∂ f |bd − τ( f ,x,ξ , |p(x)|)≤ ε (32)

and

|p(u)− p(x)| ≤ ξ‖u− x‖ for all u ∈ X . (33)

The collection of all ε-perturbations of f will be denoted Ptb( f ,ε).

Remark 3.1 The above definition of an ε-perturbation is dependent on the existence

of a special point x ∈ S=f and contains two main components. First, the perturbing

convex function p is required to be globally calm relative to this point with a small

calmness constant ξ . Secondly, the difference |∂ f |bd−τ( f ,x,ξ , |p(x)|) must be small

too. In view of the definition (29), the last condition means that the norms of subgra-

dients of f computed at the points within the set S f allowed by this definition cannot

be much smaller than |∂ f |bd. △
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In view (30), condition (32) implies ξ ≤ ε . Conditions (32) and (33) are obviously

satisfied with g ≡ f , any x ∈ S=f and ξ = 0. Hence, f ∈ Ptb( f ,ε) for any ε ≥ 0. If

τ( f ,x,ε,δ ) = |∂ f |bd for some x ∈ S=f and all δ ≥ 0 (for instance, if 0 ∈ ∂ f (x)), then

any function p satisfying condition (33) with ξ = ε defines an ε-perturbation f + p

of f .

Function p in (33) enjoys some nice properties. The next lemma is unlikely to be

new, cf. e.g., [12, Exercise 4.1.28]. We provide the proof for completeness.

Lemma 3.1 Suppose p : X → R is convex and satisfies condition (33) with some

ξ ≥ 0. Then p is Lipschitz continuous with constant ξ and, for any u ∈ X and any

x∗ ∈ ∂ p(u), it holds ‖x∗‖ ≤ ξ .

Proof Let u1,u2 ∈ X , u1 6= u2. Denote λ := ‖u1 − u2‖ and take an arbitrary t > 0.

Since,

u1 =
t

t +λ
u2 +

λ

t +λ

(

u1 +
t

λ
(u1 − u2)

)

,

using the convexity of p and condition (33), we obtain

p(u1) ≤
t

t +λ
p(u2)+

λ

t +λ
p
(

u1 +
t

λ
(u1 − u2)

)

≤
t

t +λ
p(u2)+

λ

t +λ

(

ξ
∥

∥

∥u1 +
t

λ
(u1 − u2)− x

∥

∥

∥+ p(x)
)

≤
t

t +λ
p(u2)+

λ

t +λ
(ξ (‖u1‖+ t+ ‖x‖)+ p(x))

=
t

t +λ
p(u2)+

λ

t +λ
(ξ (‖u1‖+ ‖x‖)+ p(x))+

λ ξ t

t +λ
,

and after passing to the limit as t → ∞, we conclude that p(u1) ≤ p(u2)+λ ξ . The

same inequality obviously holds true with u1 and u2 reversed. Hence,

|p(u1)− p(u2)| ≤ λ ξ = ξ‖u1− u2‖,

and consequently, p is Lipschitz continuous with constant ξ . If u∈ X and x∗ ∈ ∂ p(u),
then

〈x∗,x〉 ≤ p(u+ x)− p(u)≤ ξ‖x‖

for any x ∈ X . Hence, ‖x∗‖ ≤ ξ . ⊓⊔

Observe that the above “global” definition of an ε-perturbation contains a local

element: it requires the existence of a point x ∈ S=f , and the perturbation is defined

by (32) and (33) relative to this point and depends on the number ξ . If ξ = 0 in (33),

then p(u) = p(x) for all u ∈ X .
Condition (32) imposes a strong restriction on the choice of such a point and a

number: for all points u ∈ X with f (u)≥−ξ‖u− x‖− |p(x)|, the norms of subgradi-

ents of f must not be much smaller than |∂ f |bd. This is also a restriction on the class

of functions which admit nontrivial ε-perturbations.
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Proposition 3.1 Let f ∈ Γ0(X) and S=f 6= /0. If there exist sequences {xk} ⊂ X and

{x∗k}⊂ X∗ such that x∗k ∈ ∂ f (xk) (k = 1,2, . . .), ‖xk‖→∞, ‖x∗k‖→ 0 as k →∞ and the

sequence { f (xk)} is bounded below, then, for any ε ∈ [0, |∂ f |bd] and g ∈ Ptb( f ,ε),
it holds g− f = const.

Proof Let ε ∈ [0, |∂ f |bd], g ∈ Ptb( f ,ε), and sequences {xk} ⊂ X and {x∗k} ⊂ X∗ sat-

isfy the conditions of the proposition. Since g∈ Ptb( f ,ε), there are a convex function

p, an x ∈ S=f and a ξ ≥ 0 satisfying (32) and (33). If ξ > 0, then, because { f (xk)} is

bounded below, it holds f (xk)≥ −ξ‖xk − x‖− |p(x)| for all sufficiently large k, and

consequently, τ( f ,x,ξ , |p(x)|) = 0. This contradicts (32) in view of the assumption

that ε ≤ |∂ f |bd. Hence, ξ = 0, and it follows from (33) that p(u) = p(x) for all u ∈ X .

⊓⊔

Remark 3.2 The conclusion of Proposition 3.1 remains valid if condition ‖x∗k‖ → 0

as k → ∞ is replaced by a weaker one: limk→∞ ‖x∗k‖≤ |∂ f |bd−ε . The assumption that

the sequence { f (xk)} is bounded below can be relaxed too: it is sufficient to assume

that min{ f (xk),0}/‖xk‖→ 0 as k → ∞. △

The conditions of Proposition 3.1 are satisfied, for instance, when the set S :=
argmin f is nonempty and unbounded. Then, obviously, 0 ∈ ∂ f (x) for all x ∈ S, and

any sequence {xk} ⊂ S with ‖xk‖ → ∞ as k → ∞ will do the job. Below are some

specific examples.

Example 3.2 1. f (x) ≡ 0, x ∈R (cf. Example 2.1.1). Then S f = S=f = argmin f =R,

τ( f ,x,ε,δ ) = |∂ f |bd = 0 for all x∈R, ε ≥ 0, δ ≥ 0. Thus, Ptb( f ,0) = {g≡ c | c≤ 0}.

If ε > 0, then g ∈ Ptb( f ,ε) if and only if Sg 6= /0 and

|g(u)− g(x)| ≤ ε |u− x| for some x ∈ R and all u ∈ R.

2. f (x) := max{x,−1}, x ∈ R. Then S f =]− ∞,0], S=f = {0}, argmin f =]−
∞,−1], |∂ f |bd = 1, and

τ( f ,0,ξ ,δ ) =

{

0 if ξ > 0,δ ≥ 0 or ξ = 0,δ ≥ 1,

1 if ξ = 0,0 ≤ δ < 1.

When 0 ≤ ε < 1, then condition (32) with x = 0 is satisfied only when ξ = 0 and

|g(0)|< 1. Hence, Ptb( f ,ε) = { f + c | |c|< 1}.

3. f : R→R is defined by

f (x) :=































−2x if x ≤ 0,
−x if x ∈]0,1],

−1− 1
2
(x− 1) if x ∈]1,2],

... ...
−1− 1

2
− ...− 1

2n−1 −
1
2n (x− n) if x ∈]n,n+ 1],

... ...

Then S f = [0,∞[, S=f = {0}, |∂ f |bd = 1, and inf f = −2, Observe that in this ex-

ample argmin f = /0 and the graph has no horizontal parts. Nevertheless, it is easy
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to construct sequences satisfying the assumptions of Proposition 3.1. To determine

the exact representation of the collection of ε-perturbations, similar to the previous

example, τ( f ,0,ξ ,δ ) needs to be computed:

τ( f ,0,ξ ,δ ) =































0 if ξ > 0,δ ≥ 0 or ξ = 0,δ ≥ 2,
1 if ξ = 0,0 ≤ δ < 1,
1
2

if ξ = 0,1 ≤ δ < 3
2
,

... ...
1
2n if ξ = 0,2− 1

2n−1 ≤ δ < 2− 1
2n ,

... ...

When 0 ≤ ε < 1, then condition (32) with x = 0 is satisfied only when ξ = 0 and

τ( f ,0,0, |g(0)|) ≥ 1− ε . In particular, if 0 ≤ ε < 1/2, then it must hold |g(0)| < 1.

Hence, in this case, Ptb( f ,ε) = { f + c | |c|< 1}. △

In [43], when investigating stability of global error bounds, a special asymptotic

qualification condition (A QC ) (generalizing the corresponding finite dimensional

condition from [53]) was imposed on function f :

(A QC ) liminfk→∞ ‖x∗k‖ ≥ |∂ f |bd for any sequences xk ∈ X with f (xk) < 0 and x∗k ∈
∂ f (xk), k = 1,2, . . ., satisfying the following:

(a) either the sequence {xk} is bounded and limk→∞ f (xk) = 0,

(b) or limk→∞ ‖xk‖= ∞ and limk→∞ f (xk)/‖xk‖= 0.

If infx∈X f (x) < 0, then, under this condition, thanks to [43, Proposition 23], for any

point x ∈ S=f and any ε > 0, one can find a positive number ξ such that condition (32)

is satisfied as long as |p(x)| ≤ ξ . Due to this observation and Lemma 3.1, under the

(A QC ) the collection Ptb( f ,ε) of ε-perturbations defined above is larger than the

corresponding one considered in [43].

The next example illustrates the computation of ε-perturbations.

Example 3.3 Consider again the piecewise linear function f : R→R examined in

Example 3.1. We target small perturbations of this function related to the point x =
1 ∈ S=f . Let ε ∈ [0,1[. Since |∂ f |bd = 1 and τ( f ,1,ε,δ ) equals either 0 or 1 (cf. (31)),

condition (32) can only be satisfied when τ( f ,1,ξ , |p(1)|) = 1, i.e., when 0 ≤ ξ ≤ ε
and ξ + |p(1)|< 1. Condition (33) takes the following form:

|p(u)− p(1)| ≤ ξ |u− 1| for all u ∈ R.

In particular, when ε = 0, all 0-perturbations are of the form f + c with |c|< 1. △

If condition (32) in the definition of ε-perturbation is dropped we will talk about

weak ε-perturbations: g : X → R∞ is a weak ε-perturbation of f if Sg 6= /0, g = f + p

where p : X → R is convex, and there exists a point x ∈ S=f such that

|p(u)− p(x)| ≤ ε‖u− x‖ for all u ∈ X .

In this case, one obviously has g− p(x) ∈ Ptb c( f ,x,ε). The collection of all weak

ε-perturbations of f will be denoted Ptb w( f ,ε). Obviously Ptb( f ,ε) ⊂ Ptb w( f ,ε).
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The following subsets of Ptb( f ,ε) and Ptb w( f ,ε) corresponding to linear ε-per-

turbations of f can be of interest:

Ptb l( f ,ε) :={g | g(u)− f (u) = 〈x∗,u− x〉(u ∈ X),

x ∈ S=f , ξ ≥ 0, x∗ ∈ ξB∗, ξ + |∂ f |bd − τ( f ,x,ξ ,0)≤ ε},

Ptb w
l ( f ,ε) :={g | g(u)− f (u) = 〈x∗,u− x〉(u ∈ X), x ∈ S=f , x∗ ∈ εB∗}.

Obviously,

Ptb l( f ,ε) ⊂ Ptb( f ,ε), Ptb w
l ( f ,ε) ⊂ Ptb w( f ,ε), (34)

Ptb w
l ( f ,ε) =

⋃

x∈S=f

Ptb l( f ,x,ε). (35)

Given a function f ∈ Γ0(X) and a number ε ≥ 0, denote

Er{Ptb( f ,ε)} := inf
g∈Ptb( f ,ε)

Erg,

Er{Ptb l( f ,ε)} := inf
g∈Ptb l ( f ,ε)

Erg,

Er{Ptbw( f ,ε)} := inf
g∈Ptbw( f ,ε)

Erg,

Er{Ptbw
l ( f ,ε)} := inf

g∈Ptbw
l ( f ,ε)

Erg.

These numbers characterize the error bound property for families of ε-perturbations

of f . Thanks to (34) and (35), it holds for all ε ≥ 0:

Er{Ptb( f ,ε)} ≤ Er{Ptb l( f ,ε)} ≤ Er f , (36)

Er{Ptb w( f ,ε)} ≤ Er{Ptb w
l ( f ,ε)} = inf

x∈S=f

Er{Ptb l( f ,x,ε)}(x). (37)

Theorem 3.2 Let f ∈ Γ0(X), S f 6= /0. Then

inf{ε > 0 | Er{Ptb w( f ,ε)} = 0}

≤ inf{ε > 0 | Er{Ptb w
l ( f ,ε)} = 0} ≤ |∂ f |bd ≤ inf{ε > 0 | Er{Ptb( f ,ε)} = 0}

≤ inf{ε > 0 | Er{Ptb l( f ,ε)} = 0}.
(38)

Proof Thanks to (36) and (37), we always have

inf{ε > 0 | Er{Ptb( f ,ε)} = 0} ≤ inf{ε > 0 | Er{Ptb l( f ,ε)} = 0}, (39)

inf{ε > 0 | Er{Ptbw( f ,ε)} = 0} ≤ inf{ε > 0 | Er{Ptbw
l ( f ,ε)} = 0}. (40)

We first show that

|∂ f |bd ≤ inf{ε > 0 | Er{Ptb( f ,ε)} = 0}. (41)

If |∂ f |bd = 0, the inequality holds true trivially. Let 0< ε < |∂ f |bd and g ∈ Ptb( f ,ε),
i.e. conditions (32) and (33) are satisfied for some convex function p : X →R, a point

x ∈ S=f and a number ξ ≥ 0. Two cases are possible.
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If 0 ∈ int∂ f (x̄) for some x̄ ∈ S=f , then S f = S=f = {x̄}, x = x̄, |∂ f |bd = |∂ f |bd(x̄),

and

|∂ f |bdB
∗ ⊂ ∂ f (x̄). (42)

We need to show that

∂ f (x̄)⊂ ∂g(x̄)+ ξB∗. (43)

Let x∗ ∈ ∂ f (x̄), i.e.,

f (u)− f (x̄)−〈x∗,u− x̄〉 ≥ 0 for all u ∈ X .

At the same time, by (33),

p(u)− p(x̄)≥−ξ‖u− x̄‖ for all u ∈ X . (44)

Adding the last two inequalities, we obtain

g(u)− g(x̄)+ ξ‖u− x̄‖−〈x∗,u− x̄〉 ≥ 0 for all u ∈ X ,

i.e., x∗ is a subgradient at x̄ of the sum of two convex functions: g and u 7→ ϕ(u) :=
ξ‖u− x̄‖. Function ϕ is Lipschitz continuous and ∂ϕ(x̄) = ξB∗. Hence, x∗ ∈ ∂g(x̄)+
ξB∗, which proves (43). Since ξ ≤ ε , it follows from (42) and (43) that

|∂ f |bdB
∗ ⊂ ∂g(x̄)+ εB∗.

Then, thanks to the Rådström cancellation principle (cf. Beer [9, 7.4.1]),

(|∂ f |bd − ε)B∗ ⊂ ∂g(x̄),

and consequently, x̄ is a minimum point of g. Since Sg 6= /0, we have x̄ ∈ Sg. We next

show that ‖x∗‖ ≥ |∂ f |bd − ε as long as x∗ ∈ ∂g(u) for some u 6= x̄. Indeed, for any

u 6= x̄, x∗ ∈ ∂g(u) and u∗ ∈ ∂g(x̄), one has

g(u)≥ g(x̄)+ 〈u∗,u− x̄〉 , g(x̄)≥ g(u)+ 〈x∗, x̄− u〉 .

Hence,

〈x∗,u− x̄〉 ≥ 〈u∗,u− x̄〉,

and consequently, taking supremum in the right-hand side over all u∗ ∈ (|∂ f |bd −
ε)B∗,

〈x∗,u− x̄〉 ≥ (|∂ f |bd − ε)‖u− x̄‖.

Since u 6= x̄, it follows immediately from the last inequality that ‖x∗‖ ≥ |∂ f |bd − ε .

Thus, ‖x∗‖ ≥ |∂ f |bd − ε for all x∗ ∈ ∂g(u) with u 6= x̄, particularly, for all x∗ ∈ ∂g(u)
with g(u)> 0. Hence, Er{Ptb( f ,ε)} ≥ |∂ f |bd − ε > 0 which yields (41).

0 /∈ int∂ f (x) for all x ∈ S=f . If g(u) > 0, then, in view of (33), f (u) > −ξ‖u−

x‖− |p(x)| and, by (32), ‖u∗‖ ≥ |∂ f |bd + ξ − ε for all u∗ ∈ ∂ f (u). If x∗ ∈ ∂g(u),
then, in view of Lemma 3.1, x∗ ∈ ∂ f (u)+ ∂ p(u) ⊂ ∂ f (u)+ ξB∗, and consequently,
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‖x∗‖ ≥ |∂ f |bd − ε . Hence, Er{Ptb( f ,ε)} ≥ |∂ f |bd − ε > 0, and consequently, (41)

holds true. Together with (39), this proves the second group of inequalities in (38).

Next we show that

inf{ε > 0 | Er{Ptbw
l ( f ,ε)} = 0} ≤ |∂ f |bd. (45)

If |∂ f |bd = ∞, the inequality holds trivially. Let |∂ f |bd < ε < ∞. By (28), there is an

x∈ S=f such that |∂ f |bd(x)< ε . By Theorem 2.2, Er{Ptb l( f ,x,ε)}(x) = 0. Finally, by

the equality in (37), Er{Ptb w
l ( f ,ε)}= 0, and consequently, (45) holds true. Together

with (40), this proves the first group of inequalities in (38). ⊓⊔

Corollary 3.1 Let f ∈ Γ0(X), S f 6= /0, ε ≥ 0. Then

Er{Ptb w( f ,ε)} > 0 ⇒ Er{Ptb w
l ( f ,ε)} > 0 ⇒ ε ≤ |∂ f |bd,

ε < |∂ f |bd ⇒ Er{Ptb( f ,ε)} > 0 ⇒ Er{Ptb l( f ,ε)} > 0.

Remark 3.3 1. Theorem 3.2 strengthens [43, Theorem 25]. Nonnegative number

|∂ f |bd provides an estimate for the radius of error bounds for families of convex

or linear perturbations of f .

2. The proof of Theorem 3.2 does not use the completeness of the underlying

space. The assertion seems to be valid in arbitrary normed linear spaces.

3. On different stages of the above proof of Theorem 3.2, different features of the

definition (32), (33) of an ε-perturbation were used. Accordingly, the statement of the

theorem can be strengthened by cutting it into pieces and, for each piece, assuming

exactly those features of the definition of an ε-perturbation, that are needed there.

In the proof of the inequality (41) when 0 ∈ int∂ f (x̄) for some x̄ ∈ S=f , the one-

sided estimate (44) was used instead of the ‘full’ inequality (33) in the definition of

an ε-perturbation while the inequality (32) was not needed at all. Similarly, in the

proof of the same inequality (41) in the case when 0 /∈ int∂ f (x) for all x ∈ S=f , the

opposite one-sided estimate

p(u)− p(x̄)≤ ξ‖u− x̄‖ for all u ∈ X (46)

was used.

In the proof of the inequality (45) we worked with ‘weak’ ε-perturbations and,

again, only the one-sided estimate (46) was used. △

4 Concluding remarks and perspectives

The main results of this article establish the exact formula for the radius of local

error bounds (Theorem 2.2) and estimates of global error bounds (Theorem 3.2) for

families of convex and linear perturbations of a convex inequality system.

The next natural step would be to consider possible applications of the obtained

estimates in sensitivity analysis of variational problems and convergence analysis

of computational algorithms. Attacking the stability of error bounds for inequality

systems defined by non-convex functions is also on the agenda. The recent article by

Zheng & Wei [70] suggests some important classes of such systems to be studied as

a starting point. Investigating nonlinear, particularly Hölder type stability estimates

can be of interest.



18 A. Y. Kruger et al.

Acknowledgements The authors thank the referees for the careful reading of the manuscript and many

constructive comments and suggestions. We particularly thank one of the reviewers for attracting our

attention to [26, Theorem 3.2] and [47, Theorem 4.4].

References

1. Auslender, A., Crouzeix, J.P.: Global regularity theorems. Math. Oper. Res. 13(2), 243–253 (1988).

DOI 10.1287/moor.13.2.243
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