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PERTURBATION OF TRANSLATION INVARIANT POSITIViTY
PRESERVING SEMIGROUPS ON L2(RN)

BY
IRA W. HERBST AND ALAN D. SLOAN1

Abstract. The theory of singular local perturbations of translation
invariant positivity preserving semigroups on L2(R", d"x) is developed. A
powerful approximation theorem is proved which allows the treatment of a
very general class of singular perturbations. Estimates on the local
singularities of the kernels of the semigroups, e~'H, are given. Eigenfunction
expansions are derived. The local singularities of the eigenfunction and
generalized eigenfunctions are discussed. Results are illustrated with
examples involving singular perturbations of —A.

I. Introduction. The sum of an operator, //0, which generates a positivity
preserving translation invariant semigroup on L2(RN, dNx) and a potential V
is the subject of the present work. In §11 the class of such H0's is discussed
more fully. Here we only remark that the operators corresponding to nonrel-
ativistic and relativistic energy in quantum mechanics are included. The
potentials considered are, in general, too singular to be operators and are
given as forms, so that H0 + V must be defined as a form sum. A detailed
description of the potentials is given in §111 and IV. The success of the
perturbation program for the investigation of operator sums is impressive [20].
For form sums such an analysis is more difficult because functions of forms
are generally undefined.

One technique for analyzing functions,/, of H0 + V is to:
(1) approximate Kby bounded functions V„;
(2) show f(H0 + V„) approximates/(//0 + V); and
(3) analyze f(H0 + V) by (2) and a direct analysis of f(H0 + V„).

Such a procedure for (1) and (2) was developed by Kato [20] and Faris [10],
using/(x) = (x + X)-1. It employs monotone convergence arguments and so
is applicable only when the potential V can be written as the sum of a rather
general nonnegative function V+ and a nonpositive function V_ which is a
small form perturbation of H0. One truncates V+ and K_ to obtain functions
V+ n and V_ „ which are absolutely bounded by the integer n. Then, for all
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326 I. W. HERBST AND A. D. SLOAN

nonnegative HQ one can show

strong limit strong limit (H0 + V+i„ + F.^ + X)~'
(1.2) **(HQ+v + xyl

for all sufficiently large X.
In contrast, we develop a technique to accommodate a potential V which is

the sum of a rather general nonnegative function V+ and a small form
perturbation Vd of H0 which is given by a distribution t. That is, Vd(f,
g) ** r(fg) for all /, g in Cc°° so that Vd need not be negative nor even a
function. By regularizing t we show the existence of Cc°° functions V„ such
that

(1.3) strong limit (H0 +Vn + X)"'= (H0 + V + X)"1
n-*oo

for all sufficiently large X. Note that (1.3) implies

(1.4) strong limit <?-'("«+ K ) ■ e-'<n,+ v)
n-*aa

for all t > 0.
The approximation theorem (see §V) is basic to our further developments.

It allows the use of techniques of proof which only work for smooth
perturbations so long as any estimates involved are uniform in the relevant
parameters and as long as the result involved is stable under strong resolvent
convergence. To our knowledge the approximation theorem is new even in
the case H0 = — A.

The approximation theorem is first used to show that e~'H is positivity
preserving for H = H0+ V. In §VTII we derive an inequality which is useful
in controlling the local singularities of the kernel of the integral operator
e~,H. We show this kernel is almost everywhere nonnegative and in L/^R*
X RN) for somep > 1.

These results and other Sobolev type inequalities are used in §IX to prove
local regularity theorems for the L2 eigenfunctions of H. We illustrate this
using HQ = — A and a potential behaving like -X2/r2 at r = 0.

In §X we consider a subclass of the unperturbed operators introduced in
§11. We show that if ± Vd < aH0 + b with a < | and V ** Vd + V+, then
e-HHo+n is a Carleman operator. Consequently we obtain a generalized
eigenfunction expansion for H0 + V. We analyze the local singularity struc-
ture of the generalized eigenfunctions by discussing their Lp properties.

II. The unperturbed operators. Throughout this paper our unperturbed
operators H0 will be selfadjoint operators on L2{RN, dx), dx being Lebesgue
measure on RN, and having the form
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SEMIGROUPS ON L2 (RN) 327

(2.1) Hq=<5M„¿5-x

where 3F denotes the Fourier transform and Mho denotes the selfadjoint
operator consisting of multiplication by a real valued function h0 satisfying
the conditions:

A,: h0: RN ->[0, oo) is continuous and Ao(0) = 0.
(2.2) A2: For each t > 0, e"** is in L1 (RN, dx).

A3: For each t > 0, <?~'*° is a positive definite function.

Such an h0 will be called a function of type A and the corresponding
operator, H0, will be called an operator of type A. The condition A0(0) = 0
has been chosen entirely for convenience. To evaluate the significance of
these conditions we state the following lemma. Its conclusions are a
consequence of Bochner's theorem and we omit the proof.

Lemma 2.1. Let H = ^M,ß~x be selfadjoint and bounded below on L2(RN,
dx). Fix t > 0. Then, e~'H is an integral operator with an a.e. nonnegative
kernel in L00 if and only ife~'h is in Lx and h — h* a.e., where h* is continuous
ande~'h* is positive definite.

We remark that A3 is a severe restriction on the class of functions h0 which
we will consider. However, the class is sufficiently rich to contain interesting
examples, which we will shortly present. The following characterization,
which is a specialization of the multi-dimensional version of the Levy-
Khintchine formula, can be useful. We set v2 = |i>|2 for v in RN where |t>| is
the Euclidean norm of v.

Lemma 2.2. The function h0 satisfies A, and A3 if and only if there exist a
finite regular Borel measure p on RN and a real positive semidefinite matrix C
such that

(2.3) h0(p) = f     X"2(l + X2)(l - cos(X -p)) dp(X) + 2 PiCyPj.
J\M>o ¡j

This formula follows from Theorem 3, p. 188 of [13]. Note that, in particular,
equation (2.3) implies h0(p) < a(l + p2) for some a > 0.

It is a familiar fact that second order elliptic differential operators with
constant coefficients generate Brownian motion. Writing the Fourier trans-
form of 1 - cos(X -p) as 8(x) - 15(x + X) - £ ô(x - X) shows that if h0 is
given by (2.3) then H0 = <$Mh ÍT ' is given by
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328 I. W. HERBST AND A. D. SLOAN

(/,#os)-2W.a,s)
¡J

(2.3)' + I J(f(x + X) - f(x))(g(x + X) - g(x))

• (1 + X)2X"2 «¿x dp(X).

Thus, in some sense, H0 generalizes the operator - 2,i/91Ci/3/. The represen-
tation of equation (2.3)' also leads to a simple proof that if H0 is given by
(2.3) then e~'H" is positivity preserving [2] and [12].

The requirement that h0 be nonnegative guarantees that {e~'H,,)l>0 is a
contraction semigroup on L2. We summarize some of the relevant properties
of e''"* in the following theorem. Here, and in what follows, HFH^ denotes
the norm of an operator T: L' -» Lq.

Theorem 2.3. Assume h0 is a function of type A. Then e~'H° extends to a
contraction semigroup on all the Lp spaces for p in [1, oo]. On each of these
spaces e'"*' is, for t > 0, a convolution operator:

e-'H<f-K?*f
with kernel Kj> in Lx n L°° and K° nonnegative. K,° is given by

(2.4) K,° - (2ir)-N/2$(e-"*).

In addition, for t > 0, e~'H" is a bounded map from L1 to L°° with

(2.5) K-ÍM.<'WV*lr
The proof of Theorem 2.3 follows from [16], duality and interpolation.
Because it may be difficult in practice to determine whether a given

function h0 satisfies condition A3 we now give some examples of type A
functions.

Example 2.4. The nonrelativistic kinetic energy h0(p) « p2 is of type A. We
have

(2.6) Kt°(x)**(AiTtyN/2e-^A'

and//o = -A.
Example 2.5. The relativistic kinetic energy h0(p) = (p2 + m2)l/2 - m,

m > 0, is of type A. Here2

(2.7) A-,°(x) = (2tr)-N(x2 + t2)~i/2temt f e-<*2+''>,/2(,W)"2 ^

Example 2.6. A direct sum of relativistic and nonrelativistic kinetic
energies

2One of the authors (I. H.) would like to thank L. J. Landau for a conversation during which
equation (2.7) was derived.
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SEMIGROUPS ON L2(RN) 329

hoiP) = 2 ipf + "Í) " - m,,+   2    ¿

is of type A, with N = 3M.
Given a function, Aq, of type A it is easy to find others. Suppose g is a

continuous map from [0, oo) to [0, oo) satisfying
(a)g(0) = 0;
(b) g is C00 away from 0 and (- l)"gln+l)(x) > 0 for x > 0; and
(c) e~'ig ' "<> is in L1 for each / > 0.

Then g « h0 is also a function of type ^4. This follows from the theory of
completely monotone functions [11]. Thus the fact that A0(p) = (p2 + m2)l/2
— m is of type A follows from Example 2.4.

While we have assumed type A functions to be continuous the additional
type A hypotheses imply that (h0 + X)1/2 is uniformly continuous for X > 0.
In more detail we have

Lemma 2.7. Suppose h0 is given by equation (2.3). Let X > 0. Then for any
e > 0 there is a c(e) < oo such that for allp, q in R"

(2.8) \(h0(p) + Xf2 - (hQ(q) + X)'/2| < c(e)\p -q\ + e.

Proof. Choose r large enough so that 2/w>f|X|-2(l +X2)dpQî) < e2/2
and set dv$) - (1 + X2)x>(X) dpQï) where x,(X) = 1 if 0 < |X| < r and zero
otherwise. Also set qx(p) = /|X|_2(1 - cos(X-p)) dv(X) and q2(p) = (p, Cp).
Note that

|V?2(p)|2=4|Cp|2<4||q|?2(p).

Also,

|(V(?,)(^)|</|X1sin(X.p)||X|-2c/KX)

<2/|Xr,|X,||Xr1|sin(^)|^(X)

so that

I V *,(/0|2< 2r(RN)f2\X\-2 sin2( ̂  ) dv(X) = 2KRA')?1(p).

Let q0 = ?, + ^2 and f=ho-qo>0. Note that / < e2/2. Using Taylor's
formula and the triangle inequality we find, for some z between p and q, that
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330 I. W. HERBST AND A. D. SLOAN

\(h0(p) + X)'/2 - (h0(q) + X)'/2|

<|(c70(p) + X+f(p)f/2 - (q0(q) + X +f(p))l/2\

+ \{q0(q) + X+ f(p))l/2 - {q0(q) +X+ f(q)f2\

<\\P - 1\ |V ?o(*)|(* +f(p) + q0(z))-l/2+\f(p) -f(q)\l/2

< c(e)\p- q\ + e.
We will later make use of the following corollary:

Corollary 2.8. Suppose g is in the Schwartz space S(R*) of rapidly
decreasing functions on RN. For X > 0 define Qx =* (H0 + X)x/2Mg - Mg(H0
+ X)x/2. Then for every e > 0 there is a constant b(e) such that

\\Q4<f(b(e)\p\ + e)\g(p)\dp.
Proof. ÏÏQfî'x is an integral operator with kernel

&(/>, q) = i»"" {(h0(p) + X)l/2 - (h0(q) + X),/2) g(p - q).

Thus by Lemma 2.7, for each 5 > 0

\Qx{p,q)\ < (2„)-N{c(8)\p - <7| + ô}|g(p - q)\.
The corollary now follows from Young's inequality.

In what follows we will derive certain relationships involving operators of
type A by verifying the relationships on CC°°(RN), the space of all infinitely
differentiable functions of compact support in RN. Extending the
relationships to the whole of the form domain of H0 will follow from the fact
that CC°°(RN) is a core for (H0 + X)I/2 for X > 0 and H0 of type A.

III. The singular potentials. In this section we define the class of local
perturbations which will be considered in later theorems. For details on the
relevant theory of quadratic forms the reader is referred to [10] and [20]. We
end the section with a partial characterization of this class (Proposition 3.4)
which will prove useful in §V.

In [10] we find
Theorem 3.1. Let S, U be bounded below self adjoint operators with Q(S) n

Q(U) dense. Let W be a small form perturbation of S, let u be the form
associated to U and let V = u + W. Then the form sum S + V is bounded
below and selfadjoint. Furthermore S + V = (S + u) + W = (S + W) + u
andQ(S+ V)=Q(S)nQ(U).

We next distinguish a class of perturbations in
Definition 3.2. Let H0 be an operator of type A. Let V be a nonnegative
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SEMIGROUPS ON L2(RN) 331

function. We also let V denote the form associated with the selfadjoint
operator consisting of multiplication by the function V on L2(RN). Let W be
a Hermitian form which is a small form perturbation of H0.

The Hermitian form Z given as the sum of the Hermitian forms V and W
is called an /fry-perturbation of type B providing:

(i) Q(V) n Q(Hq) is dense; and
(ii) W agrees with a distribution on CC°°(RN), i.e., there is a distribution t

such that for all/, g in Ccco(RN) we have

(3-1) W(f,g) = r(fg).
V is called a positive part of Z and W is called a distributional part of Z. t is
the distribution associated with W.

Directly from Theorem 3.1 there follows

Corollary 3.3. Let Z be an H0-perturbation of type B. Then H0 + Z is
selfadjoint and bounded below.

Remark. Let W be a small form perturbation of H0. A necessary and
sufficient condition that W be the distributional part of an .r70-perturbation of
type B is that, for all/, g, h in CCV(RN),

W(f,gh)=W(gf,h).
Furthermore, the distribution associated with W is tempered.
In the next result it will be shown that an associated distribution is locally

of the form (H0 + l)x/24> for some \p in L2. More precisely we have

Proposition 3.4. Let r be the distributional part of an H0-perturbation of
type B. Then, for every bounded open subset, A, of RN there is a function u>A in
L2(RN) such that

(3-2) T(g) = (^A,(7Y0+l),/2g)

for all g in CC°°(A).

Proof. Let x be in CCX(RN) and equal to one on A. Since the norm || ||+,
associated with the inner product (/, g)+, = (/, (H0 + l)g) satisfies ||/|| + , >
11/11 on Cf(RN) we may view 5C+„ the Hilbert space obtained by closing
CC°°(R") in || ||+ 1, as a subset of L2(R"). If X_„ with norm || ||_„ is the dual
of DC+, then we make the necessary identifications which permit the view
%+lcL2cX_x.

The distribution ta given as ta(/) = t(x/) satisfies, for some 0 < d < oo,
K(f)\ < ¿IIXaII + i 11/11 + i for all / in C™(RN). Thus ta extends to a
continuous linear functional on %+x. By the Riesz representation theorem,
there is an h in %_x such that rA(f) = (A, f) for all /in %+x. Since
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332 I. W. HERBST AND A. D. SLOAN

{H0 + l)~l/2 maps 0C_, onto L2 isometrically, the lemma follows with
*A-(#à+l)-'/2A.

IV. Examples of type B perturbations.
Example 4.1. Let //„ be any operator of type A on L2fRN). Let V be a

locally L1 function on the complement of a closed set of measure zero. If V is
bounded below then V is an //0-perturbation of type B [10].

Example 4.2. Let //„ = -A. Let W be in Lp + L00 for some p satisfying
p > 1 if JV - 1, p > 1 if A/ = 2 and p > N/2 if N > 3. Then W is the
distributional part of an //0-perturbation of type B and 0 is the H0 bound for
W[10].

Example 4.3. Let N — 1. Let the distribution associated with W be the
Fourier transform of an L°° function. Let H0 = — d2/dx2. Then 0 is the
//0-bound for W and W is the distributional part of an //o-perturbation of
type B. In particular, W may be given by a ô-function concentrated at any
point p of R1 or by the principal value of 1/x [10].

Example 4.4. (see [6Q. Let H0 = -A and V = {Vx,..., V„) with each V, a
real measurable function on RN. We assume 2£.i F)2 < îa2(//Q + 26) for
some a < 1 and 0 < b < oo. Define

£ t        9(/s)
*(/.!>--2/K,<*)-^<*)*

Then [6] ± W < fl(//0 + b). To see this, merely observe that

|IF(/,/)|-|2Re(F/-V/)|

< 2™|v-yi|2< «[(/, (Ho + 2b)f){f, H0f)]W2< a{f, {HQ + b)f).

Thus, W is the distributional part of an //„-perturbation of type B. In
particular if W is a distributional directional derivative of an L00 function,
then IF is a type B perturbation of //„ and zero is an //0-bound for W. Asa
concrete example one may choose W{x) = e* cos(«?*) with N *= 1.

Example 4.5. Suppose N > 3 and H0 ** -A. Let Z = 2fL,T, where t, is a
distribution which after a linear inhomogeneous change of variable becomes
a distribution S¡ on S(R3), form bounded relative to —A (on R3) with form
bound zero. Then Z is the distributional part of an //0-perturbation of type B.
Also 0 is the //0-bound for Z. In particular this is the case if S¡ is in
L2(R3) + L°°(R3) [26].

Example 4.6. Let N > 1 and let H0 = -A. Let S c RN be a compact C1
hypersurface, i.e. 5 = F_,({0}) where F: RN -»R1 is C1 and V F(x) =?*= 0 for
each x in S. Let 5^. be the delta function concentrated on 5 (as constructed in
[29]). Then SF is associated with the distributional part of an //0-perturbation
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of type B. Moreover, 0 is the /Y0-bound for 8F. See Example 9.11 and [29] for
more details.

V. The approximation theorem. The approximation theorem referred to in
the introduction is the main result of this section, see Theorem 5.4.
Throughout this section, H0 will be an operator of type A. p will be a CC°°(RN)
function satisfying

(i) p(x) = 1 whenever ||x|| < 1; and
(ii) 0 < p < 1.

We define ß„(x) = p(x/n) and y„(x) = p(nx)(Jp(nx) dx)~x.
If F is an /70-bounded Hermitian form then T can be viewed as a bounded

operator from the space %+x normed with ||/|| + 1 = \\(HQ+ l)1/2/|| to the
dual space %_, normed with

||g||_,= sup{|(/,g)|:||yi| + I<l}.

Since (H0 + X)~x/2: L2 -+ %+x is bounded for all X > 0 we also have
(H0 + Xyx/2:%_X->L2

is bounded. Thus we may and will consider (H0 + X)~X^2T(H0 + X)~'/2 as a
bounded linear map from L2 to L2.

We put R¿/2(-X) = (H0 + X)"1/2.

Lemma 5.1. Let W be the distributional part of an H0-perturbation of type B
with associated distribution t. Let Wn(f, g) = t(y„ * (fg)), where * denotes
convolution.

(a) If±W<aH0 + b,a<l, then ±W„< aH0 + b.
(b) IfX > 0 then Rq1/2(-X)(W„ - W)R¿/2(-X) converges strongly to zero.

Proof. Let/be in ^(R*). For y in RN define fy(x) = f(x - y). Because
the Riemann sum approximations to the integral fy„(z)\f\2(x — z) dz
converge in the topology of S we may interchange the action of / and
integration to get

± W„(f,f) = ±t(yn * \f\2) = ±/y„(y),(|//) ay.
Thus ± W < aH0 + b implies

\Wn(f,f)\ <jy„(y) ay ((aH0 + b)f,f).
Since /y„(y) dy = 1 part (a) of this lemma follows from the fact that Cc°° is a
core for (iY0+ l)'/2.

To prove part (b) suppose that / and g are in Q" and choose r so that
p(x) = 0 for |x| > r. Choose A to be a bounded open set containing

{x £ RN: x = x, + x2, x, G supp(g), |x2| < r).
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We then have, using \¡/A from Proposition 3.4,

WH(f, g) - W{f, g) = t(y„ . (/g)) - t(fg)

= (*A, {H0 + l),/2(y„ * Mj-Mj))

- (*a, (y« * ("o + i)1/2m, - (H0 + l?/2Mg)f)

= (r>^A-^A.(^o+i),/2AV)

where y'„{x) =* y„{-x). The third equality follows from the fact that convo-
lution becomes multiplication under the Fourier transform.

Thus,

\Wn{f,g)-W{f,g)\

<\\y'n * *A - *aB |("0 + l)'/2M,(//0 + l)-'/2| \\f\Uv
Setting h = {H0 + X)x/2g and w = (//„ + X)1/2/ this inequality may be
rewritten as

\(w,R¿/2{-X){W„ - W)Rx/2{-X)h)\

< cx\\w\\ \\y'n * *A - *A|| \\{H0 + l)1/2Mg{H0 + l)-,/2|.

From the facts that \\y'„ * xbA - M -*0, that \\{H0 + l)I/2Mg(//0 + l)-'/2||
< oo and that Q00 is a core for (//0 + X)1/2 we have R¿/2{-X){rVa -
W)R¿/2{-X)h -> 0 for all h of the form h=*{H0 + X)'/2g, g in Cc°°. However,
from part (a) of this lemma {R¿/2{-X){W„ - lV)R¿/2{-X): n ** 1, 2,... }
is uniformly bounded in operator norm. Consequently part (b) follows since
{{H0 + X)'/2g: g e C~} is dense.

Lemma 5.2. Let Wand t be as in Lemma 5.1. Define W'n{f, g) ** t{ßjß„g).
Suppose ± W < aH0 + b, 0 < a < 1 andO < b < oo. Then

(a) ± W'n <{a + e,(n))Z/0 + b + e2{n) with e¡{n) -> 0 as n -> co and e¡{ri)
dependent only on a, b, p and H0; and

(b) ifX > 0 then R0x/2{-X){W^ - W)RQx/2{-X) converges strongly to zero
and in fact for all g in L2,

\\R¿/2(-X)W-W)Rx/2{-X)g\\

< *{!("* - l)^ll + |(^o + A)'/2MA(//„ + X)"'/2 - Mj ||g||}.

Proof. Let

an=\\{aH0 + bf2Mß, - MA{aH0 + b)x/2\\.

Corollary 2.8 implies that for each e > 0
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an <J(c{e)\p\ + e)\ßn(p)\ dp =/( ^ |p| + e)|p(p)| dp

so that a„ -» 0 as n -» oo. Note however that

Wn(f,f)<\\(aHQ + b)i/2Mßnff

<(an||yi| + ||(ai/0+/3)'/2y]|)2

< a2(l + 8~x)\\ff+ (1 + 8)(f, (aH0 + b)f)
for any 8 > 0. Taking 5 = a„ completes the proof of part (a).

To prove (b) note that W'n(f, g) - W(f,g) = t((ßn + l)f(ß„ - l)g) so
that

mf,g) - W(f,g)\ < c|(MA + l)f\\ + i |(MA - l)g|+i.
If we note that

IK + W + *r1/2.l,
< q(i +11(^0 + x)1/2a/a(/f0 h- x)-,/2||)||/l| < cm

we then also see that

sup \((H0 + X)"'/2/, (W'n - W)(Hq + X)-,/2g)l

< ^x{||(MÄ - l)g| + |(tfo + X)"X(ffo + W'n - tfj|*l}
so that by Lemma 2.8

(Hq + xyx/2(wn - w)(Hq + X)-,/2g->o.
This proves part (b).

For a preliminary version of the approximation theorem we consider only
type B perturbations with zero positive parts.

Lemma 5.3. Let W, t be as in Lemma 5.1. There are C™ functions, wn, such
that {(Hq + wn)) is uniformly bounded from below and such that (H0 + >v„ +
X)- ' converges strongly to (H0 + W + X)~ ' for all sufficiently large positive X.

Proof. Let Wn(f, g) = t(yn *fg) and W„¡m(f g) = /(y„ * (ßjßmg)). Wn is
integration against a C00 function while W„m is integration against a C0°°
function, wnm; that is

Wn,m (/, g) = / J (xK>m(x) g(x) dx.

From Lemma 5.2, part (b), it follows that for any g in L2
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lR¿/2(-X)(W„im-WH)R¿/2(-X)g\\

< MllÄ. - l)s|| + ||("o + ̂ /2M^(HQ + X)"'/2 - Mßm\\ \\g\\}
which is a bound independent of n. Thus

¡R¿/2(-\)(W-Wntm)R¿/2(-X)gl

<\\R¿/2(-X)(Wn>m- Wn)R¿/2(-X)g\\

+ \\R¿/2(-X)(W- rV„)Rx/2(-X)g¡

which converges to zero as n, m -> oo by lemmas 5.1 and 5.2.
Define A = R¿/2(-X)WRqX/2(-X) and An = Rx/2(-X)WntnRx/2(-X).

From (a) of Lemmas 5.1 and 5.2 it follows that there is a 0 < r/ < 1 such that
if X > 0 is large enough then \\A„\\, \\A\\ < tj < 1 for all sufficiently large n.
Finally observe that if w„ = w„n then {H0 + w„) is uniformly bounded from
below by (a) of Lemmas 5.1 and 5.2 while

(Hq + W + X)"'- (Hq +w„ + xyx

- (*o,/2(->0)((l + A)'1 - (1 + A„)-1)(RqX/2(-X))

= Rq1'2(-X)((1 + A„)-\An - A)(l + A)~x)Rx/2(-X)

converges strongly to zero since {||(1 + An)~x\\: n ■» 1, 2,... } is uniformly
bounded and since An — A converges strongly to zero.

Approximation Theorem 5.4. Let Z be an H0-perturbation of type B. There
are exjunctions Z„ such that (H0 + Z„ + X)~ ' converges strongly to (Hq + Z
+ X)- ' for all sufficiently large and positive X.

Proof. Let V be the positive part and W be the distributional part of Z.
Let V„(x) = V(x) if 0 < V(x) < n and zero otherwise. That (H0+ W + VH
+ X)"1 converges strongly to (H0 + W + V + X)"1 » (H0 + Z + X)~l
follows from a monotone convergence argument [10].

Consider Vn + W as the distributional part of an FT0-perturbation of type
B. By the previous lemma there are C/° functions, znjn such that Bnm « (H0
+ **jm + À)"1 converges strongly to B„ = (#<,+ V„ + W -f- X)-'. Let 5 =
(/f0 + Z + A)"'. Let {d«,}?!, be an orthonormal basis of L2(RN). Fix n.
Choose mx(n) so that if m > /M](/i) then ||(J5„jm — Bn)4>x\\ < 1/n. Inductively,
suppose mx(n) < m2(n) < ■ • • < mj_x(n) have been chosen so that if m >
mj_x(n) then ||(x9„im - Btt)4>¡\\ < 1/n fot / = 1, 2,...,/ - 1. Then choose
mj(n) > m,_,(/i) so that if m > m.j(n) then

KB^-B^Kl/n.
Thus, if / < n we have m„(n) > mj(n) so that \\(BIV%M - B^\\ < 1/n.
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Set Z„ » zn¡mm{Hy Then for each/

|((//0 + Z„ + X)"' - {H0 + Z + X)->,|

< l/n+\\({H0+ Vn+ fF + X)-'-(//0 + Z + X)->,||

for all » >/. That is, (//<> + Z„ + X)-1 converges strongly to {H0 + Z +
X)-1 on a dense set. Since {(//„ + Z„ +X)"1} is uniformly bounded we
conclude that (//0 + Z„ + X)~x converges strongly to {H0 + Z + X)-1.

Corollary 5.5. Let Z be an H0-perturbation of type B. There are Cc°°
functions, ZH, such that {H0 + Z„) is uniformly bounded from below and such
that t?-'<//<>+3>> converges strongly to e~">H*+Z).

Proof. The previous theorem and a theorem of Kato [20] yield the result.

VI. Positivity preserving semigroups. An operator T on L2 is positivity
preserving if T{f) > 0 almost everywhere whenever/ > 0 almost everywhere.

Example 6.1. Let H0 be an operator of type A. Then e~'"9 is positivity
preserving for all / > 0. This follows from Lemma 2.1.

Theorem 6.2. Let H0 be an operator of type A. Let Z be an H0-perturbation
of type B. Then e"'(W»+Z) is positivity perserving for all t > 0.

Proof. First observe that strong limits of positivity preserving operators are
positivity preserving. The Trotter product formula [36] shows that <>-'W>+z) ¡s
positivity preserving in case Z is a real L00 function. The corollary to the
approximation theorem completes the proof.

Corollary 6.3. Let H0 be an operator of type A. Let Z be an H0-
perturbation of type B. Then for all sufficiently large and positive X, {H0 + Z +
X)-1 is positivity preserving.

Proof. This corollary follows from the previous theorem upon writing the
resolvent as a Laplace transform in terms of the semigroup [20].

VII. Weak limits of integral operators. This section contains two technical
lemmas which not only permit the conclusion that certain weak limits of
integral operators are integral operators but also preserve certain pointwise
inequalities for kernels under weak limits. The lemmas will be used in the
following section.

Notation, (a) If 1 <p < oo thenp' denotes the number satisfyingp~x +
(pT1 = 1. Also oo' - 1 and 1' = oo.

(b) If Q is any measurable subset of R* and if / is a measurable function
defined on Q then for 1 < q < oo the local Lq norms are defined by
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cc*(/)-(/i/(*)rÄ) *.  !<*<»,
(7.1) W i

Ce,oo(/)= ess-sup |/(x)|.

Here ¿x denotes Lebesgue measure as will ay, dp, and dk.
(c) By a partition of R* we mean a countable collection of mutually

disjoint subsets of finite Lebesgue measure having union RN.

Lemma 7.1. Let [Tk) be a sequence of bounded linear integral operators on
L2{RN) which converge weakly to the bounded linear operator T. Let the
kernels, Sk, of Tk be almost everywhere nonnegative. Suppose there is a
partition, 9H, ofRN anda 1 < p < oo such that
(7.2) sup CQj){Sk)<co

k
for each QinVlX 911.

Then T is an integral operator with an almost everywhere nonnegative kernel
S satisfying
(7.3) CQJ,{S) <sup CQ,{Sk)

and

(7.4) lim   ffSkdx=[fSdx
k-*oo  Jq Jq

for all fin LP'{Q, dx) and Q in 9!t X 911.

Proof. For each Q ** M2 x Mx in 911 x 911 define a linear functional lQ
on the dense vector subspace of LP'{Q) consisting of all finite sums of the
form

n

2  &2 ® &I
i-l

where gtJ E L^iMj), by the formula

(7-5) /fl(/)-lim   2(&»n(&i))-

Iq is well defined since it is also given by the formula

/ß(/)=hm   ( fdvk
^ k-*<x>  Jq

where dvk{x,y) = Sk{x,y) dx ay.
Since sup* CQj,{Sk) =* CQ < oo it follows from equation (7.5) that for/of

the above form

\W)\ < CqWAIs-
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Consequently, lQ extends uniquely to a bounded linear functional on LP'(Q)
and is therefore given by integration against some LP(Q) function, SQ. Let
dvQ" SQdx dy. Since the above class of functions is dense in V'(Q) it
follows from (7.5) that

for all/in LP'(Q). Consequently
(7.6) SQ > 0   a.e.

If gj is a nonnegative function in L2(Mj), let {g^} be a sequence of
nonnegative L^Mj) functions which increase to gj. Then by dominated
convergence, gnJ converges to gj in L2(MJ) so that

}mio(gn2,T(gnX))^(g2,T(gx))

while by monotone convergence

„lim / g„2 ®gn\dvQ=j g2® gi dvQ.

Consequently,

ig2>Tgl)=fg2<B)gxdpQ
for all nonnegative gy in L2(Mj).

Since each point of R2N is in exactly one Q of 911 X 911, a measurable
function S may be defined by

S (x, y) = SQ (x, y)   if (x, y) E Q.
Let gj in L2(RN) be nonnegative. Then

(7-7)    (g2, Tgx) =      2        [g2®gxSQdxdy=(g2®gxSdxdy

using a monotone convergence argument. Since any L2 function may be
written as a complex combination of four nonnegative L2 functions the
equalities of (7.7) are true for all gj in L2(RN) and so express F as an integral
operator. The kernel of T, S, is nonnegative a.e. by (7.6).

Remarks, (a) Strong (and so weak) limits of integral operators are, in
general, not integral operators.

(b) It does not follow that the kernels of Tk converge a.e. to the kernel of T.
Nevertheless, the convergence of the linear functionals, obtained as

integration against the kernels locally, may be used to preserve pointwise
inequalities for kernels. This has already been demonstrated for nonnegativity
of kernels. The next lemma gives another inequality which is preserved and
which will be useful in what follows.
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Notation. If T is an integral operator we may write T{-, •) for its kernel.

Lemma 7.2. Let [Sk) and (Rk) be sequences of bounded linear operators on
L2{RN) converging weakly to the bounded linear operators S and R, respectively.
Suppose the hypotheses of Lemma 7.1 are satisfied for both sequences, with
identicalp's and 9H'i. Let G be an a.e. nonnegative function in Loa{Q)for each
Q in 911 X 91L. Fix 1 < q < oo. If

Sk{x,y)<G{x,y)(Rk{x,y)y/'1   a.e.

for each k then
S{x,y)<G{x,y)(R{x,y))l/''   a.e.

Proof. Taylor's theorem implies that for every c > 0

{Rk{x,y) + e)l/''-{R{x,y) + ey/',

< {Rk{x,y) - R{x,y)){l/q)(R{x,y) + i/,-i

Consequently, for any Q in 9IL x 91L and any nonnegative / in L°°(ö) we
find

lim sup  ( Gf({Rk + e)x/q - {R + e)1/q) <lim sup  f L{Rk - R) ** 0
k        JQ k        JQ

by Lemma 7.1 since

L(x, y) = {l/q)G{x, y)f{x, y){R{x, y) + e)'7'-1
is in L°°(g) and so in LP'{Q). But then

(Sf** lim   fSfc/^limsup  f Gf{Rk)x/q
Jq k-K>o Jq k        Jq

<[ fG{R + e)x/q+ lim sup  f Gf({Rk + e)x/q - {R + e)l/q)
JO lr JO '

'Q

up
>Q k       JQ

f fGRx'q+ ex/q-\\Gf\\  • measure(Ô).
Jo

< 'Q

Since c > 0 is arbitrary we find that for all nonnegative /in L°°(g)

f Sf< f GRx'qf.Jq       Jq
The lemma thus follows.
Remark. The hypothesis of identical p's and 9H's in the previous lemma

was made only for convenience. If in fact the p's are different choose a new q
equal to the minimum of these and if the partitions are different let 91L be a
partition which is a refinement of both partitions. Then the proof proceeds as
before.
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VIII. Kernels of semigroups. As a result of the approximation theorem and
Lemma 7.2 we are able to show that the semigroup, generated by H0 + pZ
for all //„-perturbations of type B, Z, and allp > 1 sufficiently small, consists
of integral operators with a.e. nonnegative kernels. In addition, if Kp denotes
the kernel of e~'H", for some fixed / > 0, then

Kx<(Kq)x"Xkp)x/p   a.e.
for all sufficiently small p > 1. This inequality (see [7] and the remarks
following Lemma 8.1) will be used in the last two sections.

Notation. If V is a real measurable function on R" then multiplication by V
is a selfadjoint operator on L2(RN). We let V additionally denote this
selfadjoint operator and also its corresponding quadratic form.

Lemma 8.1. Let H0 be an operator of type A. Let V be a real function in
L°°(RN). Then the operator sum, Hp, of H0 andpV is, for every 0 < p < oo,
selfadjoint and bounded below. For t > 0, e~'H' is an integral operator with a
kernel which satisfies

0 < e-'H'(x,y) <ie-'"°(x,y))i/p'(e-'H'(x,y))1/p

for almost every (x, y) in R2N and every 1 < p < oo.

Proof. That Hp is selfadjoint and bounded below is well known [20]. The
Trotter product formula [36]:

e-tH, m strong limit   jqV
n—xx)

where Tf = (e-'"Jne-">v/n)n, and the observation that Tf is explicitly an
integral operator with kernel satisfying

0 < Tf (x,y) < eqt™~e-,H*(x,y)
show the hypotheses of Lemma 7.1 are satisfied with any partition 911 and
any 1 < p < oo because e~'"°(-, •) E L°°. Consequently, e~lH' is an integral
operator with an a.e. nonnegative kernel. Further, e~'H'(-, • ) is in L"°(R2N)
because

O,,» (e"'"') < e'^-C^ (e-'H°) < e*"l^||<T"'°||oo.
Let Kn(x,y) = e-,H^n(x,y) and let L„(x) = e-'vWn = <?-"V"(x). Then

K„(x,zx)L„(zx)Kn(zx,z2)Ln(z2)- • • Kn(zn_x,y)Ln(y)

= (K„(x,zx)Ka(zx,z2)- • • K„(zn_x,y))l/P'

• (Kn(x,zx)Ln/p(zx) - • • Kn(zn_x,y)Ln/p(y))l/p.

Thus, the semigroup property and Holder's inequality show

0 < F/(x,y) <(e-'»°(x,y)y/p(T'/(x,y))1/p.
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The lemma now follows from the Trotter product formula and Lemma 7.2.
Remarks, (a) Similar techniques show that if W, V are real functions in

L^iRA-) tnen> aimost everywhere,

e-**+w*v\x,y) < {e-'(Ho+p'w\x,y)fP\e-'^*pV\x,y))X/'.

(b) If one begins with the Feynman-Kacs formula for H0=* -A:

e-««.+v}(x>y) -Je-W^^dp^iw)
where pXJf denotes conditional Wiener measure, then the inequality follows
directly from Holder's inequality. Using this intuition, Deift and Simon [7]
independently proved a similar inequality for H0 = -A.

Theorem 8.2. Let //„ be an operator of type A. Let Z be an H0-perturbation
of type B. Suppose the distributional part, W, ofZ satisfies

±W<aHa + b  for 0 < a < 1, oo > b > 0.
Then, for 1 < p < 1/a, e~'(-H°+pZ) is an integral operator satisfying

(8.1)     0 < e-'<"°+z>(x, v) < {e-'Ho{x,y)fp\e-^H^pZ\x,y))X/p

almost everywhere.

Proof. It is clear from Corollary 5.5 and from the proof of Theorem 5.4
that we can choose Z„ G Cc°° so that t?~'W+rZ«) converges strongly to
e-HHa+rZ) for all 0 < r < p.

Let Q = g, X Q2 where each Q¡ is a measurable subset of R^ with finite
measure. Let Xq, Xq¡, Xq2 he the characteristic functions of Q, Qx, Q2,
respectively. Fix t > 6. Denote e-'{H°+rZ) by Er and e-'(w«+'z.) by Ern. Let
1 < a < 1/a and choose ß > 1 so that 1 < q = aß < 1/a. Let/ G Lß'{Q).

By Lemma 8.1, Ean is an integral operator with an a.e. nonnegative kernel
satisfying

|/£ f(x,y)Ea<n{x,y)dxdy
Q

<SQ\f(^y)\(Eo(^y))yß'(Eq,n(x,y))x/ß dx dy

<(f\f{x,y)f'E0{x,y)dxdy}     (fXe{x,y)E(ltn{x,y)dxdy}

<IK"H^0||^Ce./}'(/)(xöl^,«Xe2),//î.
Since Eqn converges strongly to Eq we find that, after choosing ß in (1, 1/pa),
(8.2) sup CQiß{Eu)< oo

ft

and
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(8.3) sup CQiß(Ep„)<cx>.
ft

Lemmas 7.1, 7.2, 8.1 and Corollary 5.5 complete the proof of the theorem.
Using the Laplace transform formula for the resolvent, Theorem 8.2 leads

to

Corollary 8.3. Under the hypotheses of the previous theorem, (H0 + pZ +
X)~x is, for all X > 0 sufficiently large, an integral operator with an a.e.
nonnegative kernel satisfying

(Hq+Z + Xyl(x,y) < ((H0 + Xy\x,y))l/P'((H0 + pZ + Xy\x,y)fP

almost everywhere.

Corollary 8.4. Under the hypotheses of the previous theorem the kernel of
e-i(H0+z) ¡s ¡n Lß(Q) for every bounded measurable subset Q of R2N for
1< ß < l/ö.

Proof. This follows from (8.2) and (7.3).

IX. Regularity properties of eigenfunctions. It is well known that singu-
larities of the potential, V, can cause singularities in the eigenfunctions of
— A + V. We consider to what extent these singularities are absent under
suitable conditions on the perturbations. We consider all unperturbed H0 of
type A, but we later impose further restrictions on these unperturbed opera-
tors to extend our results.

For most of the purposes of this section, an eigenfunction is considered to
be free of singularities if it belongs to L°°. However in Theorem 9.7 we isolate
a class of H = H0 + W for which the eigenfunctions are Holder continuous
of some order.

Theorem 9.1. Let HQ be an operator of type A and suppose X0Z is an
H0-perturbation of type B for some X0 > 1. Then for all t > 0, e~,(-H°+Z)
extends to a bounded map of Lq into Lr for q < r and q, r in [(2X0)', (2X0)]
where (2X0)' = (l-(2X0yxyx.

Proof. Define Hx = H0 + XZ for X in [1, X0].
Suppose q is in [2, 2X0] andp is in [q/2, X0]. Then define s in [0, 1] by the

equation

s/p' + q/2p = 1.
If/is a nonnegative function in L* we have by Theorem 8.2 that

Je-'"(x,y)f(y) dy < ¡(e-"<>(x,y)f(y)sfp(e-»>(x,y)f(y)<"2)X/pdy.

By Holder's inequality we find, for almost every x,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



344 I. W. HERBST AND A. D. SLOAN

(9.1) {e-'"f){x) < {e-'Hr )i/P'{x)(e-'H^2 )l/p{x).

Thus

(9.2) K^<K^C*"^'Mr
By Theorem 2.3 and The Riesz-Thorin interpolation theorem, ||e_/'ffo||J.>00 <
c{t) < oo for all r in [1, oo]. Hence (9.2) implies

*'%,< °°
if «7 G [2, 2X0] andp G [<7, 2Xq].

The rest of the theorem is proved using duality and the semigroup property.

Corollary 9.2. Under the hypotheses of Theorem 9.1 all L2 eigenfunctions of
H0 + Zare in Vforp in [2, 2XJ.

Remark. In cases where hQ{p) grows like a power of |p| at oo, Corollary 9.2
will not be optimal. This is because all eigenfunctions of H are in the domain
of (//0 + 1),/2 and {H0 + l)~l/2 has smoothing properties. We consider the
details of this remark in the next lemma and its corollary.

Notation. If h0 is a function of type A and if in addition there is an a > 0
so that h0{p) > y\p\" for some y > 0 and all |p| sufficiently large, we say that
//„ is of type C0.

Lemma 9.3. Let R0{z) = (//„ - z)~x and for X > 0 let R¿/2{-X) be the
nonnegative self adjoint square root of R0{—X). Then if H0 is of type A,
/?0,/2(-X) is a convolution operator on L2{RN) with a convolution kernel which
is nonnegative and in LlÇRN). Additionally R¿/2{—X) extends to a bounded map
on Lp{RN)forp in [1, oo] with

oo IK/2(-a)IL<a-,/2.
Moreover, if H0 is of type Ca then

llÄo'/VX)^ < oo   1/2 < p < 2(1 - a/N)-\ a < N,
\\Ro/2(-m2j, < °o   if 2 < P < oo,a > N.

Proof. We use the spectral theorem and the formula

X-s**T{s)-x[°0t'-xe-x'dt
Jq

to write

R¿/2{-X) = 7T-'/2 rV'/^e-'». dt.
Jq

Since e~'HHT) = 1, it follows that the convolution kernel of R¿/2{-X), which
we also denote by R¿/2{—X) and which may be defined by
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R¿/2(-X) = *-x'2 rrxl2e-*K« dt,
Jo

where K,° is the convolution kernel of e~'H°, satisfies Rq^2(—X) * 1 = X-1^2
and thus (a) follows as in Theorem 2.3.

Using \\K,°\\X = 1 and interpolation we have for q in [1, 2] that

so that if h0(p) > y\p\a for large |p| then

(9.3) |A?|f<c(l + rw)
and thus

(9.4) W2i-m< cf" r'/V*!**!, dt< oo
if i is in [1, 2] and ¿+N/aq' < 1. The inequalities of (b) now follow from
Young's inequality.

Corollary 9.4. Let H0 be an operator of type Ctt and let Z be an
H0-perturbation of type B.LetH = H0 + Z and set R(-X) = (// + X)-'. For
X large enough, t > 0 and p in [2, oo] satisfying p~x >\(1 — a/N) there
follows

l*(-*),/2IL<o°*   »«-'%<«•
Proof. Choose X so that H + X > 1. Then since the domain of (H + X)'/2

is contained in the domain of (H0 + X)x/2, the closed graph theorem assures
us that

¡(//o+xy/^/z + xr'/^oo

so that \\R(-X)X/2\\2J) < Po(-A),/2ll2,ll(tfo + WXH + Xy^Wu < oo. In
addition,

IK'X<II*(-*)'XII(" + x)'/v%-
Notation. Define ya = ooifa > N and ya = 2(1 - a/N)~x otherwise.
We now combine the techniques of Theorem 9.1 and Corollary 9.4 to

obtain

Theorem 9.5. Suppose the hypotheses of Theorem 9.1 hold and additionally
Hq is of type Ca. Then

ifqE [2, 2Xq] and ifr E [q, yaX0) when a < N and r E [q, oo] when a > N.

Proof. We use the inequality (9.1) to write
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\\e->"f\\r< (\\e-»>\\2,r/p) /P(\\e-'H%/S.MU
forp in [<7/2, ÄJ, q in [2, 2X0] andp/r > {-{I - a/A/).

The finiteness of \\e~'"'\\Xr/p for r/p as above follows from Corollary 9.4.

Corollary 9.6. Under the hypotheses of Theorem 9.5 all L2 eigenfunctions of
H are in U for r in [2, yaXfj) ifa<N and in U for r in [2, oo] if a > N.

Example 9.7. Consider the operator H =* H0+ V where H0 = -A and
V{x) - -ß\x\-2 if |x| < 1, \V{x)\ < c for |x| > 1 and Kin C">{RN - {0}).
For simplicity we discuss the case N =* 3. Then V is an //0-perturbation of
type B if and only if ß < \ [5]. If H has bound states it is known that the
angular momentum zero eigenstates behave like |x|~J, s = \ —{{■ —ß)x/2 in a
neighborhood of the origin [24]. All other eigenstates vanish at the origin and
thus all eigenstates of H are in Lp forp <p{ß) wherep{ß) = 6(1 — (1 —
4j8)1/2)_I. Corollary 9.6 gives the result that all eigenstates of H are in Lp for
p < 6(4/?)~ ' <p{ß) since 0 < ß < \, which, although not optimal, does
give the correct behavior near ß ** \.

However, in this special case another method of estimation does give the
exact result:

For a in [0, 1] set b - 1 - a and Ba = {H0 + X)-"V{H0 + X)-". We note
that if ||5fl|| < 1 then

(// + x)-'= {hq + xyb{i + Bayx{H0 + xy°
so that

|(// + X)-||^<c|(//0 + X)-*|v
But

(9.5) ||(//0 + l)-°r-2{H0 + l)-é||<||r-2"(//0 + lpf \\r-2»{H0 + iyb\\

and \\r~2a{H0 + l)~a\\ can be computed exactly for all a [15], giving

|(//0 + iy"r-2{H0 +iyb\\ <[4((l/4)2 - {a - 1/2)2)]"'

if \a- j\<\. Thus, for some X > 0, \\Ba{X)\\ < 1 if y < \{1 + j(l -
4ß)x/2) and hence, by Sobolev's inequality \\{H + X)-1^ < oo ifp < 6(1 -
(1-4/?)'/2)-'.

Until now we have not imposed any restrictions on the perturbations, Z,
except those inherent in the definition of type B perturbations. The preceding
example shows that without such restrictions the eigenfunctions of H =* H0
+ Z will generally have singularities. In the next theorem we isolate a
condition which eliminates these singularities.

Theorem 9.7. Suppose H0 is of type Ca and W is the distributional part of an
H0-perturbation of type B. Fix X > 0. Suppose that the operator
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Qx = R¿/2(-X)WRqX/2(-X)
extends to a bounded map on Lq for some q satisfying

(9.6) 1< q < 2   and   q <(1 - a/2N)~x
and suppose

HÖa||m<1   and   ||öx||w<l.
(a) If V is the positive part of an H0-perturbation of type B then there exists

anL>0 such that (H0+ V + W+ X)~L is bounded from L2 to L"°.
(b) There exists a positive number £ = £(a, q, N) such that iff is in L2 then

g « (Hq + W + Xy^ satisfies

\g(x)-g(y)\<c\x-y\ «n
112-

Proof. Define H = H0 + W and Hx = H0 + V + W. Note that by the
Trotter product formula and the approximation theorem the kernel of e~,H is
pointwise greater or equal to the kernel of e~'H>. The formula R = (H + X)"1
= Soe~'e~,H dt shows that a similar statement is true of the kernels of
(H + X)~x and (//, + X)-1. Consequently it suffices to prove the theorem in
case V = 0.

Ths significance of the range of allowable q is that, as was shown in the
proof of Lemma 9.3, for q satisfying inequalities (9.6), /?0,/2(-X) E L*.

Define the function y: [1, q']-*[q, oo] by the formula y(r) = (r~l + q~l
— \)~x. Then by Young's inequality, interpolation and Lemma 9.3, part (a)
there is a constant c so that \\Ro/2(-X)\\r¿ <cifl<r<í< y(r) and
r < q' while ||/?rj/2(-X)||r)00 < c if r > q'.

Define y0 = 1 and y„ = y(y„_i) for n = 1, 2,..., Af where M is the first
positive integer such that yM > «/. We claim there is a constant d < oo so
that

(9 T) ll*"ll   <d    ifl<F<?<''<wor

To prove (9.7) it suffices to show

(9-8) |ÄX<oo,   l*"lM<«   and   ||/c*||lao< oo.

The fact that (9.8) implies (9.7) follows from duality and Riesz-Thorin
interpolation.

Let C = (1 + Qxyx and R¿'2 = R¿/2(-X). Then R = RqX/2CR¿'2 so that

ll*IL<ll*o,/2IUcILv    llÄllu<llÄo,/2||,?liqii.J*o,/2||c>i.
These two inequalities prove the first two inequalities in (9.8).

To show that ||/t"H,,«, < oo we use
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FW«..co<l|Äo,/2I,.yiiqiW»Äo,/2«r,.T,

(9.9) •Wl^nwWl^-

where the fact that HCH^, < c' < oo forp in [«7, «7'] follows from duality and
interpolation. (9.7) proves part (a) with L = M.

The proof of part (b) will consist of verifying the following estimate for h in
L<

(9.10) |(*o,/2A)(*) - (R¿/2h)(y)\ < c\x - vfllAU,
since if/ G L2 we can write RLf ** R¿/2h where h =* CRo/2RL~xf. It is clear
from a glance at (9.9) that P£",||2,</ < 00 so that ||A||,. < C||/||2. Here we
have assumed L > 1 but this involves no loss of generality since ||/?L+l||ii0O
< 00 providing ||/?L||,>eo < 00. The proof of (9.10) will involve

Lemma 9.8. Suppose H0 is of type Ca. Then for t > 0 the convolution kernel,
K°, ofe~'Ht is in Ca3rRN) and there are nonnegative constants A, ß, I, with ß
and ¡functions of a alone, such that

WVKriKAt-eil.+ t').
Proof. We have

(9.11) K° (x) = {2wyNfelxpe-"">(p) dNp

which is clearly in C00. By Lemma 2.2, hQ is given by the Levy-Khintchine
formula with some finite measure p. Let

M/0 -if 0 + A2)(X)"2(1 - cos(X -p)) dp{X) + I (p, Cp)¿ •/1>|X|>0 *

and
h2(P) - h0{p) - hx{p).

It is clear that if H¡ = ^M,^~x, then each H¡ is also of type Ca for i = 1, 2.
If e~'H' is given by convolution with Kj then we have

K¡> ** Kx * K2

so that V Kt° = V Kx * K2 satisfies

Thus it suffices to consider HQ of type Ca for which the measure in the
Levy-Khintchine formula is supported on a bounded subset of RN. For such
//a, the gradient of the Kt° of (9.11) can be estimated explicitly. We use the
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fact that
|V/T0|2<C/t0

as proved in Lemma 2.7 to conclude that for \n\ > 2
p(»>e-'*o| < c(n)t(l + /W)e-'V2.

Thus integrating by parts we find for |«| > 3

|(Vä;°)(x)| < bm\xf"t{l + /")/e-'V2(1 H-lpD^p
< a„|xf V-("+,)/"(l + t").

Consequently,
||v a;0!^ c|v à-,°||2+ c'(/(,-(A,+1)/a))(i + tN+x)

where the first term comes from estimating f\x\<x\ V AT,°|(x) dNx. The lemma
follows by explicitly estimating || V A)°||2 using the Plancherel theorem.

Remark. In special cases our estimate for ß(a) is poor. For example, if
ho(p) - |p|a then, by scaling, || V Ä",0||, = crx/a. A better estimate for /?(«)
leads to a better estimate on the modulus of Holder continuity in Theorem
9.7.

We now complete the proof of Theorem 9.7 by proving (9.10).
Suppose h E V'. Then

(9.12) |(tf° • h)(x) - (A? * h)(y)\ <\\Krx - A-,0||JA||?.
where K,x(z) = K?(z + x). Now

K*(z) - K?(z) = f x- V K?(z + sx) ,
•'o

as
. , ,    jo

so that

(9.13) ll^-^II^WUV^X.
Since q E [1, 2] we have

where 1/t/ = i/1 + (1 - j)/2 which gives, for some ßx>\,

(9.14) KF-flf<-i|*K~A0+ '*')■
We also have

(9.15) ¡fi? - Aj)|f < 2|A?|f < c2/-A(l + ,A)
from (9.3) where 0 < ß2 < ±.

If we express the region of integration in the inequality
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|(/?0'/*A)(x) - (R¿/2h){y)\ < [cj"t-V2e-»\\Krx - K?\\q <a)||A||?.

as the union of [0, s] and {s, oo), then using (9.15) in [0, s] and (9.14) in {s, oo)
gives (9.10) with £ = (£ -ßf)/{ßx - ß^ after optimizing the power p in
s**\x-y\p.

This completes the proof of Theorem 9.7.
Remark. If //„ = -A in RN then by scaling, || V K?\\a = ^-(i/zxi+AW)

and ||A;0||? = c2t~N/2q'. The procedure used in the proof of Theorem 9.7
gives 1=1- iV/«/.

Example 9.9. Suppose H0 = -A in R", N > 1, and suppose IT is a real
distribution with W = 7,^jvj + ^ where Vj ELp,p> N, and V E Lq +
L00, «7 G {N/2, oo). Then W satisfies the hypotheses of Theorem 9.7.

For the proof of this statement first note that without loss of generality we
may assume V E Lq and V > 0. Then

\w{f,g)\ <2ia(ivi,i*ii. nwMi) +r v/2*!i,
where p~l + r~x + s~x - u~x + v~x + p~x — r~x + r"x =* 1. Since
||9,(-A + X)"1/2||?.? < c(«7) < oo, independent of X for «7 in (1, 00) [34], we
have

\W(R¿'2(-\)f,R¿'2{-X)8)\

< <\mR¿/2(-v4,ns\i\K2(-mi)
+ \\Vx/2Rx/2{-X)f\\r\\Vx/2R¿/2{-X)gl.

Suppose r G [(2«7)', 2«7]. Then by Young's inequality and Holder's
inequality \\Vx/2R¿/2{-X)\\r7r and \\Vx/2Rr)/2{-X)\\,s approach zero as X->
00. Also, Po1/2(-^)ll^ and \\rq/2{-*)\\u:v approach zero as X-» 00 by
Young's inequahty. Taking u =* r' we thus have

Urn       sup     \(f,R¿'2{-X)WRy2i-X)g)\ = 0

so that for X sufficiently large

\\R¿/2{-\)WRx/2{-X)l< 1
if/G[(2«7)',2«7].

Example 9.10. If H0 = - d2/dx2 in R1 then any distributional part, W, of
an //0-perturbation of type B satisfies the hypotheses of Theorem 9.7.

Remark. Smoothness properties of the eigenfunctions of N-hody Schröd-
inger Hamiltonians have been investigated by Kato [23] and Simon [33].
These authors are mainly interested in the case where the perturbations are
sums of two-body potentials which are relatively bounded with respect to
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Hq = —A in R3. With these stronger hypotheses, the eigenfunctions are
smoother than the result given by Theorem 9.7.

Example 9.11. Let H0 = -A in RN, N > 1. Let 8F be a delta function
concentrated on a compact C1 hypersurface, 5 = F-1({0}) as in Example
4.6. If W is the associated form then W satisfies the hypotheses of Theorem
9.7.

To prove this we will use the inequality

(9.16)      \Map\W*{-\)f)ixu-)\ < ̂ -,/vM.
II ¿«0»/»-1,^-1,)

for q in (1, oo),/ G S (R*), which we will shortly prove. After decomposing S
into finitely many pieces which can be straightened out, (9.16) is easily seen
to give

\W(f,g)\ < ß^-x'2\\(-A + X)x%\\(-* + X)x'2gl.
Thus

\\RQX/2(-X)WRx/2(-X)lq< ßqX~x'2
for ci in (1, oo).

All that remains is to verify (9.16) which we now do.
First observe that from \\Ro/2(-X)\\q < c(qp\-x^2q and Holder's inequality

there follows

(9.17) ||/î0'/2(-X)y||oo< c(q')X-V2«\\f\\q,       N - 1.
If/ e %(RN) then (9.17) implies

(9.18) TKW^)""2')«*..*»>|
< c((r>-'/v(/|/(x„

which in turn implies

(9.19) |sup|((p2 + X)-/2/)(x„ • ) I < c(q')X-x^\\f\\q.
II   *'   ,V ' ll¿«(R"-',<faw-')

Let R01/2(-X)g = (p2 + X)"'/2/. Then from (9.19)

sup\(R¿/2(-X)g)(xx, .)||

<c(9')a-,/2'|(f? + X),/V + A)"'/24-

Now it follows from the equivalence of the norms (2?=iP,g||9 + ||g||fl) and
||(p2 + l)l/2g\\q as shown in [34] for q in (1, oo) that \\(p2 + X)x/2(p2 +

<      \X/q
>xn)\   <&i)
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A)~ l/2ll</,i Ä CÍQ, X) < oo. The fact that c(<7, X) is independent of X follows by
a scaling argument.

X. Generalized eigenfunctions. While many selfadjoint operators have no
eigenfunctions in the Hubert space sense they may possess generalized
eigenfunctions. For example

-d2(eikx)/dx2**k2elkx

and if V is multiplication by the coordinate function on L2(R') then VÔ = 0
in the sense of distributions but V has no eigenfunctions in the L2(R') sense.
Here S is the delta function. Generalized eigenfunctions, such as 5 and e'kx,
are useful in giving mathematical meaning to common heuristic expressions
(see [8] for example) such as

H\g> = fH\t>(Z\g)di
where the |£> form a complete set of eigenvectors for the observable H.

We begin this section with a review of results concerning generalized
eigenfunction expansions of selfadjoint operators. There are various
approaches and an extensive literature on this subject, see for example [1], [3],
[9], [13], [17], [18], [22], [25], [27], and [35]. We simultaneously consider the
question of when the generalized eigenfunctions are functions rather than
more general distributions. We end this section by discussing the singularity
structure of the generalized eigenfunctions in the sense that we describe
functions p such that the generalized eigenfunctions belong to L2(pdx).

In this section T will denote a selfadjoint operator on a separable Hubert
space L2(A", dp) where p is a o-finite and positive measure. By the spectral
theorem there is a o-finite positive measure space (Z, dv), a real measurable
function o on Z and a unitary operator U: L2{X, dp) -*■ L2{Z, dv) such that
UHU~X is multiplication by o.

If v and w are measurable functions on some measure space we will write
<u, w) for the integral of vw in case vw is integrable.

Definition. A selfadjoint operator S on L2(X, dp) is called a Carieman
operator if S is a bounded operator with kernel satisfying

(10.1) J|5 (X(y^2 jpfy) < oo   for almost every x

A weight function for a Carieman operator S is a nonnegative measurable
function p on X such that

(10.2) ff\S(x,y)\2p(y) dp(y) dp(x) < oo.
Observe that positive weight functions always exist for Carieman operators

S. In fact if y > 0 is in LX(X, dp), setting
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M = (j>(x,y)|2¿u(x))   y(y)    if 0 </|S(x,y)|2^(x) < oo,

[ 1 otherwise,
gives a positive weight function for S.

Definition. A Carieman function for the selfadjoint operator F is a Borel
function ß which does not vanish on the spectrum of T and for which ß (T) is
a Carieman operator.

Notation. T+ = {p: p is a nonnegative measurable function on X), TT = {p
eT+: Mpuiß(T) is a Hubert Schmidt operator for some bounded Borel
function ß which is nonvanishing on the spectrum of T).

We remark that rr is a convex cone so that

VT= U L2(X,p~xdp)
pery

is a linear space. (Note that we allow the set E = {x: p(x) = 0} to have
positive measure. In this case L2(X, p~xdp) = set of all / with Xe/=0,
WI/lV * < oo.)

Minor modifications of techniques developed in [1] and [9] yield the
following generalization of results found there:

Theorem 10.1. Suppose TT contains an a.e. positive function. Then there is a
set of generalized eigenfunctions {fy: z E Z) such that

(a) For all p E TT, almost every generalized eigenfunction is in L2(X, pdp),
i.e. fy E L2(X, pdp) for v-almost every z.

(b)
(10.3) ( Uh)(z) = (fy, h)   for all hEVTnL2 (X, dp).

(c) If y is a bounded Borel junction then

if y(F)g) =/</, fy)yia{z)Xfy, g) dr(z)
for all f, g E VTnL2(X,dp).

Remarks, (a) VT n L2(X, dp) is dense in L2(X, dp).
(b) The statement that rr contains an a.e. positive function is equivalent to

the statement that there exists a Carieman function for the operator T.
(c) Since U may not be an integral operator, as in the case of the Fourier

transform, (10.3) cannot in general be extended to all of L2(X, dp). However
in this direction we do have

Corollary 10.2. Let {E„) be an increasing sequence of p-measurable
subsets of X with U„E„ = X. Suppose each characteristic junction, x„, of EH
belongs to TT. Then for all h E L2(X, dp)
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U&-L2-Km<tf.,x,A>.n—*oo

Proof. By (10.3), Uix,h) = <*., Xnh) and jg,A ->L' A.   Q.E.D.
Note that if p > 0 is in TT, E„ = {x: 1/n < p(x)} satisfies the hypotheses

of the corollary.
We now turn our attention to the case of X = L2{RN, dx) and T ** H0 + Z

where now and for the rest of this section H0 denotes an operator of type A
and Z denotes an //„-perturbation of type B with distributional part W and
positive part V. Our first goal is to show that H0 + Z has a set of generalized
eigenfunctions. By Theorem 10.1 this goal will be attained upon finding a
Borel function ß, not vanishing on the spectrum of H0 + Z, such that
ß{HQ + Z) is a Carieman operator. Secondly we shall describe functions p
such that the generalized eigenfunctions are in L2{RN, pdx). Here the results
may be compared to the case of -A where the generalized eigenfunctions,
e~Ucx, are in L2(RN, pdx) for all p in L'íR", dx). See also [9]. With reference
to such a comparison a most satisfactory result (and recalling the examples
following Theorem 9.7, an interesting result) is contained in

Theorem 10.3. Let //0, X and Z satisfy the hypotheses of Theorem 9.7. 77«en
there is a positive integer L such that {H0 + Z + X)~L isa Carieman operator.

Moreover, Lx Ç T„a+Z and thus for every p in LX(RN, dx) almost every
generalized eigenfunction ofH0 + Z is in L2{RN, pdx).

Proof. Let S = (//„ + Z + X)~L where L is as in Theorem 9.7. From
inequality (9.7) of the proof of Theorem 9.7 integration against the kernel of
S gives a bounded map of L1 into L°° and by the Dunford-Pettis theorem [37]
the kernel of S is bounded, say by the constant c. Let p be a nonnegative
function in Ll{RN, dx). Then

ff\S{x,y)\2p{y) dydx< c f jS(x, y)p{y) dy dx
= c||5(p)|1<c||5||li,||p||I.

Again from (9.7), ||5||,, < oo. This completes the proof of Theorem 10.3.
Remarks, (a) This theorem and Example 9.9 generalize a result of Faris [9].
(b) For H0 and Z as in the previous theorem, we may conclude that

e-HH0+z) js a Carieman operator for all t > 0.
(c) If H0 and Z satisfy the hypothesis of Theorem 10.3 then the

characteristic function of any measurable subset of R* with finite Lebesgue
measure belongs to Wß(Ho+Z) where ß{x) = (x + X)~L. Consequently,
Corollary 10.2 is applicable in this case.

(d) From Theorem 2.3 it may be seen that t?-'*0 is the Fourier transform of
an L1 function which implies that e~'h" vanishes at oo. The hypothesis of
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Theorem 10.3 which requires H0 to be of type C„ restricts the rate of
vanishing.

Since the convolution kernel, K,°, of e~'ha is the Fourier transform of the L1
function e~'\ it likewise vanishes at oo. We next consider a class of //0's for
which this decrease property is made more quantitative.

Definition. A nonnegative function,/, is said to be decreasing with respect
to the norm || • ||, if f(x) < f(y) whenever ||x|| > ||y||.

Let D = {/ > 0: f(x) < g(x) for some g in L2 which is decreasing with
respect to the norm || • ||}.

We remark that D is independent of the norm, || • ||, which we use to define
it.

Definition. H0 is of type D if it is of type A and in addition A)0 is in D for
all/>0.

We will soon obtain eigenfunction expansions for a large class of perturbed
HqS of type D. For now we note that this class is quite large.

Proposition 10.4. Suppose h0 is of type A. Each of the following is a
sufficient condition for H0 = ^Mhß~x to be of type D:

®Ä0ecw(R-).
(ii) //„ = //, + H2; //„ H2 are of type D.
(iii) HQ = g » hx, where h, is of type A, <3e~,hx is for each t > 0 decreasing

with respect to a fixed norm, and g is a function of the type discussed after
Example 2.6.

The proof of this proposition is given at the end of this section.
Remarks, (a) It is an interesting fact (which we include in our proof of

Proposition 10.4) that if hQ is of type A and is C°° in a neighborhood of zero,
then h0 E C"(R").

(b) Since e'A has a decreasing convolution kernel, condition (iii) above
gives many examples of H0's of type D. For example H0 = <3:M\p\a<3~x for
0 < a < 2.

Theorem 10.5. Suppose H0 is of type D and that 2Z is an H0-perturbation of
type B.

Then e~'W>+z) is a Carieman operator for each t > 0.

Remark. Deift and Simon [7] have proved Theorem 10.5 with H0 = -A
assuming only that Z is an H0 perturbation of type B. Their method is very
different from ours and uses techniques which are special to HQ = —A.
However it is not all clear that Theorem 10.5 cannot be improved in general.

Proof. pZ is an Z/0-perturbation of type B for some p > 2. Let ß = (p —
l)(p - 2)"'. Let p be a positive function in L1 n Lß(RN) which is decreasing
with respect to some norm. Let Kr be the kernel of e~'H' where Hr = H0 +
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rZ, 0 < r < p. From Theorem 8.2 we have

jj\Kx(x,y)\2p(y)dydx

<//(A-0(x,y)p'/2(y))2/'(A;(x,y)p^W)2/>^

</c/x{[/(A'0(x,y)p'/2(y)f-2>/^-2^](P"2)/;'

.[/tf,(x,y)p^(y)^j2/'J
r i í B"\ ̂ 'P*

<^dx[jdyK0(x,y)2pp(yf)     j     ||'-'V/2|f.

The first factor is controlled using our assumptions on K° andp: we have
Ko(x,y) < g(x - y) with g E D so that

[K0(x,y)2ßp(y)ßdy < [ g(x- y)2ßpß(y) dy

+ ( KQ(x,y)2ppP(y)dy

<A^)2ß¥\\ßß^f>ßi^)WC
so that

fdx^dyK0(x,y)2ßp(y)dy)j

<ci{«äiI/.+M>ii,}<c2(iip||/

The second factor is controlled with the estimate

»«-'V^INi'V'"'»«
so that finally we have

f\Kx (x,y)\2p(y) dydx< c(t)\\pf/Pi\p\\ß +||p||,),/''
which completes the proof.

We now consider the set THg+z and thus to some extent the singularity
structure of the generalized eigenfunctions.

Notation. L?(RN) = LP(RN) n {/: supp/is compact}.

Proposition 10.6. Suppose H0 is of type D andX0Z is an H0-perturbation of
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type Bfor some Xq > 2. Then

{p>0:pEL^{RN)}QTHo+z
and thus if p > 0, p E L*°, then almost every generalized eigenfunction of
H0+ Zis in L2{RN, pdx).

Remarks, (a) Corollary 9.2 shows that under the hypotheses of Proposition
10.6 every eigenfunction is in L2X°(RN) and thus in L2(pdx) for every
nonnegative p G L^R*). Thus Proposition 10.6 should be considered a local
version of Corollary 9.2 for generalized eigenfunctions.

(b) The proof of Theorem 10.5 shows that {p > 0: p G L1 n Lß, ß = (X„
- l)(Xo - 2)-1, p(x - a) = h{x) decreasing with respect to some norm} Ç
THo+z. However, since ß > X¡¡, Proposition 10.6 is a better result locally.

Proof. We use the notation of Theorem 10.5. Withp = X,, we have

//I Kx{x,y)\2p{y)dxdy

<jdxj dy K0{x,yfp-p{y)^(Kp{x,y)p{y)p'/2)

< \fdx(fdyK0{x,y)2ßp{y)p))

\fdx{JKp{x,y)o{yY/2<fy}

i/ßlx/p'

ii/>

The second factor is dominated by ||«?~'w'||24f||p||^''' while the first is
controlled using the fact that //„ is of type D and p(x) vanishes for ||x|| > c.
Thus note that if K0{x, y) < g{x - y) where g E D we have

(fdy K0 {x, y)2ßp{v)')     < \\K0\\2Jp\\pp/ß   for x arbitrary,

and also < g(lx)2||p||^ for ||x|| > 2c so that

f dx dy\Kx (x,y)\2p{y) <||p||;,,c(supp p, t)
and the proposition is proved.

We end this section with the proof of Proposition 10.4:
(i) Let A0 be given by equation (2.3) and suppose A0 is C00 in a neigh-

borhood of the closed ball B centered at the origin. Choose g0 G S {RN) with
¿?o(°) = »i ¿?o(*) = go(-*) > 0. suppg0 C B and let ga{x) = g<J(ax). Define
% = 60 — 2ijC¡jP¡Pj and suppose m is a positive integer. Then by equation
(2.3)

/((-A)mga)(p)?o(/0 * = ef      \\?m-»{I + X2)ga{X) dp{X).
J J\\\>v
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If a E [0, 1], supp ga Q B so that an integration by parts gives

< i-m||cl«||,= C

Using Fatou's lemma and the fact that lim„i0 ga{X) = 1 if X ̂ = 0, we find

(10.4) j dp(X)(l + X2f< oo   for each m > 0.

Thus again by equation (2.3), h0 G C^fR"). By the proof of Lemma 2.7,
l(9A)(F)|2 < c'Ao(/0, and by (10.4) and (2.3), ||D«AqIL < «> ̂ r all |n| > 1
so that integration by parts shows

(1 + x2)mK?(x) < cf\(l - A)"V-"o0»| dp < ym.

(ii) If the convolution kernel of e~'H' is/, i = 1, 2, then A",°(x) = fjx(x —
y)h(y) dy. If/i < g„ gf E L2 and g¡ is decreasing with respect to || • ||, then

Kt°(x)<f gl{x-y)j2(y)dy
JM<\M\/2

+ [. fiix-y)g2(y)dy

(iii) From the theory of completely monotone functions [11],

e-'*'h, = e-,h° = f °° dv,(X)e-^

for some probability measure -,. Thus A)°(x) is a weighted average of
decreasing functions and therefore itself decreasing.

This completes the proof.
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