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Abstract
Iterative algorithms aimed at solving some problems are discussed. For certain problems, such as
finding a common point in the intersection of a finite number of convex sets, there often exist iterative
algorithms that impose very little demand on computer resources. For other problems, such as finding
that point in the intersection at which the value of a given function is optimal, algorithms tend to
need more computer memory and longer execution time. A methodology is presented whose aim is
to produce automatically for an iterative algorithm of the first kind a “superiorized version” of it that
retains its computational efficiency but nevertheless goes a long way towards solving an optimization
problem. This is possible to do if the original algorithm is “perturbation resilient,” which is shown
to be the case for various projection algorithms for solving the consistent convex feasibility problem.
The superiorized versions of such algorithms use perturbations that steer the process in the direction
of a superior feasible point, which is not necessarily optimal, with respect to the given function. After
presenting these intuitive ideas in a precise mathematical form, they are illustrated in image
reconstruction from projections for two different projection algorithms superiorized for the function
whose value is the total variation of the image.
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1. Introduction
Computational tractability with limited computing resources is a major barrier for the ever
increasing problem sizes of constrained optimization models (that seek a minimum of an
objective function satisfying a set of constraints). On the other hand, there exist efficient (and
computationally much less demanding) iterative methods for finding a feasible solution that
only fulfills the constraints. These methods can handle problem sizes beyond which existing
optimization algorithms cannot function. To bridge this gap we have been working on the new
concept called superiorization, envisioned methodologically as lying between optimization
and feasibility seeking. It enables us to use efficient iterative methods to steer the iterates
towards a point that is feasible and superior, but not necessarily optimal, with respect to the
given objective/merit function.
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Using efficient iterative methods to do “superiorization” instead of “full constrained
optimization” or only “feasibility” is a new tool for handling mathematical models that include
constraints and a merit function. The target improvement of the superiorization methodology
is to affect the computational treatment of the mathematical models so that we can reach
solutions that are desirable from the point of view of the application at hand at a relatively
small computational cost. The key to superiorization is our recent discovery [6,23] that two
principal prototypical algorithmic schemes: string-averaging projections (SAP) and block-
iterative projections (BIP), which include many projection methods, are bounded perturbations
resilient. Superiorization uses perturbations proactively to reach superior feasible points.

The work done to date on superiorization has been very specific: superiorization has been
applied to certain algorithms for certain tasks. The main contribution of the current paper is
the introduction of terminology and theory that allows us to superiorize automatically any
iterative algorithm for a problem set from a very general class of problem sets. It is shown that
under reasonable conditions such superiorized algorithms are guaranteed to halt. In fact, the
method of superiorization introduced in the current paper is slightly different from the specific
superiorized algorithms published earlier; in particular, in order to guarantee that those
algorithms halt we needed more complex termination conditions (as discussed, for example,
below the pseudocode on p. 10 of [28]) than what is needed for the algorithms produced by
the method of the current paper. This new method of superiorization is illustrated by applying
it to an SAP and to a BIP algorithm. These illustrations are for image reconstruction from
projection and demonstrate an important practical aspect of our work, which is that the output
of superiorization can be as useful as anything that may be obtained by full optimization
because the value of the objective function for the image provided by superiorization is already
smaller than that for the true image that we are trying to reconstruct. All this is explained in
greater detail below.

We first motivate and describe our ideas in a not fully general context. Many significant real-
world problems are modeled by constraints that force the sought-after solution point to fulfill
conditions imposed by the physical nature of the problem. Such a modeling approach often
leads to a convex feasibility problem of the form

(1)

where the sets Ci ⊆ ℝJ are closed convex subsets of the Euclidean space ℝJ, see [2,9,17] or
[16, Chapter 5] for this broad topic. In many real-world problems the underlying system is very
large (huge values of I and J) and often very sparse. In these circumstances projection
methods have proved to be effective. They are iterative algorithms that use projections onto
sets while relying on the general principle that when a family of closed and convex sets is
present, then projections onto the individual sets are easier to perform than projections onto
other sets, such as their intersection as in (1), that are derived from them.

Projection methods can have various algorithmic structures (some of which are particularly
suitable for parallel computing) and they also possess desirable convergence properties and
good initial behavior patterns [2,16,18,19,20,27,32]. The main advantage of projection
methods, which makes them successful in real-world applications, is computational. They
commonly have the ability to handle huge-size problems of dimensions beyond which more
sophisticated methods cease to be efficient or even applicable due to memory requirements.
(For a justification of this claim see the various examples provided in [10].) This is so because
the building bricks of a projection algorithm (which are the projections onto the given
individual sets) are easy to perform, and because the algorithmic structure is either sequential
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or simultaneous, or in-between, as in the block-iterative projection methods or in the more
recently invented string-averaging projection methods. The number of sets used
simultaneously in each iteration in block-iterative methods and the number and lengths of
strings used in each iteration in string-averaging methods are variable, which provides great
flexibility in matching the implementation of the algorithm with the parallel architecture at
hand; for block-iterative methods see, e.g., [1,3,5,13,20,23,25,26,29,30,31] and for string-
averaging methods see, e.g., [4,6,11,14,15,22,31,33].

The key to superiorization is our recent discovery [6,23,28] that two principal prototypical
algorithmic schemes of projection methods: string-averaging projections (SAP) and block-
iterative projections (BIP), which include as special cases a variety of projection methods for
the convex feasibility problem, are bounded perturbations resilient in the sense that the
convergence of sequences generated by them continues to hold even if the iterates are perturbed
in every iteration. We harness this resilience to bounded perturbations to steer the iterates to
not just any feasible point but to a superior (in a well-defined sense) feasible point of (1).

Our motivation is the desire to create a new methodology that will significantly improve
methods for the solution of inverse problems in image reconstruction from projections,
intensity-modulated radiation/proton therapy (IMRT/IMPT) and in other real-world problems
such as electron microscopy (EM). Our work [6,23], as well as the examples given below,
indicate that our objective is achievable and show how algorithms can incorporate perturbations
in order to perform superiorization.

The superiorization methodology has in fact broader applicability than what has been discussed
until now and its mathematical specification in the next section reflects this. However, all our
specific examples will be chosen from the field that we used as our motivation in this
introductory section.

2. Specification of the superiorization methodology
The superiorization principle relies on the bounded perturbation resilience of algorithms.
Therefore we define this notion next in a general setting within ℝJ. (We note in passing that
there is an immediate generalization of our approach by considering problems that are defined
over a closed subset of ℝJ rather than necessarily the whole of ℝJ. We chose not to do this in
this paper for reasons that are given at the end in Section 4.)

We introduce the notion of a problem structure 〈 , r〉, where  is a nonempty problem set
and r is a function on  such that, for all T ∈ , rT : ℝJ → ℝ+, where ℝ+ is the set of
nonnegative real numbers. Intuitively we think of rT (x) as a measure of how “far” x is from
being a solution of T. In fact, we call x a solution of T if rT (x) = 0.

For example, for the convex feasibility problem (1)

(2)

and

(3)
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where d (x,Ci) is the Euclidean distance of x from the set Ci. Clearly, in this case x is a solution
of {C1,…,CI} as defined in the previous paragraph if, and only if, x ∈ C as defined in (1).

Definition 1. An algorithm P for 〈 , r〉 assigns to each T ∈  an algorithmic operator PT :
ℝJ → ℝJ. P is said to be bounded perturbations resilient if, for all T ∈ , the following is the

case: if the sequence  converges to a solution of T for all x ∈ ℝJ, then any sequence

 of points in ℝJ also converges to a solution of T provided that, for all k ≥ 0,

(4)

where βkυk are bounded perturbations, meaning that βk are real nonnegative numbers such that

 and the sequence  is bounded.

We give next specific instances of bounded perturbations resilient algorithms for solving the
convex feasibility problem as in (2) and (3), from the classes of SAP and BIP methods. We do
this by defining P{C1,…,CI} for an arbitrary but fixed element {C1,…,CI} of  of (2) for the
different algorithms P. For any nonempty closed convex subset M of ℝJ and any x ∈ ℝJ, the
orthogonal projection of x onto M is the point in M that is nearest (by the Euclidean distance)
to x; it is denoted by PMx.

To define P{C1,…,CI} for the SAP instances, we make use of index vectors, which are nonempty
ordered sets t = (t1,…,tN), where N is an arbitrary positive integer, whose elements tn are in the
set {1,…,I}. For an index vector t we define the composite operator

(5)

A finite set Ω of index vectors is called fit if, for each i ∈ {1,…,I}, there exists t = (t1,…,tN)
∈ Ω such that tn = i for some n ∈ {1,…,N}. If Ω is a fit set of index vectors, then a function
ω:Ω → ℝ++ = (0,∞) is called a fit weight function if ∑t∈Ω ω(t) = 1. A pair (Ω, ω) consisting of
a fit set of index vectors and a fit weight function defined on it was called an amalgamator in
[6]. For each amalgamator (Ω, ω), we define the algorithmic operator P{C1,…,CI} : ℝJ → ℝJ

by

(6)

For this algorithmic operator we have the following bounded perturbations resilience theorem.

Theorem 1. [6, Section II] If C of (1) is nonempty,  is a sequence of nonnegative real

numbers such that  is a bounded sequence of points in ℝJ, then for any
amalgamator (Ω, ω) and any x0 ∈ ℝJ, the sequence  generated by

(7)

converges, and its limit is in C. (The statement of this theorem in [6] is for positive βks, but the
proof given there applies to nonnegative βks.)
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Corollary 1. For any amalgamator (Ω, ω), the algorithm P defined by the algorithmic
operator P{C1,…,CI} is bounded perturbations resilient.

Proof. Assume that for T = {C1,…,CI} the sequence  converges to a solution of T
for all x ∈ ℝJ. This implies, in particular, that C of (1) is nonempty. By Definition 1, we need
to show that any sequence  of points in ℝJ also converges to a solution of T provided
that, for all k ≥ 0, (4) is satisfied when the βkυk are bounded perturbations. Under our
assumptions, this follows from Theorem 1.

Next we look at a member of the family of BIP methods. Considering the convex feasibility
problem (1), for 1 ≤ u ≤ U, let Bu be a set {bu,1,…,bu,|Bu|} of elements of {1,…,I} (|Bu| denotes
the cardinality of Bu). We call such a Bu a block and define the (composite) algorithmic operator
Q{C1,…,CI}:ℝJ → ℝJ by

(8)

where, for x ∈ ℝJ and 1 ≤ u ≤ U,

(9)

and

(10)

The iterative procedure xk+1 = Q{C1,…,CI}x
k is a member of the family of BIP methods. For

this algorithmic operator we have the following bounded perturbations resilience theorem.

Theorem 2. [23] If C of (1) is nonempty,  is a sequence of

nonnegative real numbers such that  is a bounded sequence of points
in ℝJ, then for any x0 ∈ ℝJ, the sequence  generated by

(11)

converges, and its limit is in C. (This is a special case of Theorem 2 in [23] given here without
a relaxation parameter. Also, that theorem is stated for positive βks, but the proof given there
applies to nonnegative βks.)

Corollary 2. The algorithm Q defined by the algorithmic operator Q{C1,…,CI} is bounded
perturbations resilient.

Proof. Replace in the proof of Corollary 1 P by Q and Theorem 1 by Theorem 2.

Further bounded perturbations resilience theorems are available in a Banach space setting, see
[7,8]. Thus the theory of bounded perturbations resilient algorithms already contains some
solid mathematical results. As opposed to this, the superiorization theory that we present next
is at the stage of being a collection of heuristic ideas, a full mathematical theory still needs to
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be developed. However, there are practical demonstrations of its potential usefulness; see [6,
23,28] and the illustrations in Section 3 below.

For a problem structure 〈 , r〉, T ∈ , ε ∈ ℝ++ and a sequence  of points in ℝJ, we
use O (T, ε, S) to denote the x ∈ ℝJ that has the the following properties: rT (x) ≤ ε and there
is a nonnegative integer K such that xK = x and, for all nonnegative integers ℓ < K, rT (xℓ) >
ε. Clearly, if there is such an x, then it is unique. If there is no such x, then we say that O (T,
ε, S) is undefined. The intuition behind this definition is the following: if we think of S as the
(infinite) sequence of points that is produced by an algorithm (intended for the problem T)
without a termination criterion, then O (T, ε, S) is the output produced by that algorithm when
we add to it instructions that make it terminate as soon as it reaches a point at which the value
of rT is not greater than ε. The following result is obvious.

Lemma 1. If rT is continuous and the sequence S converges to a solution of T, then O (T, ε,
S) is defined and rT (O (T, ε, S)) ≤ ε.

Given an algorithm P for a problem structure 〈 , r〉, a T ∈  and an x̄ ∈ ℝJ, let
. For a function ϕ : ℝJ → ℝ, the  superiorization methodology should

provide us with an algorithm that produces a sequence , such that for any ε
∈ ℝ++ and x̄ ∈ ℝJ for which rT (x̄) > ε and O (T, ε, R (T, x̄)) is defined, O (T, ε, S (T, x̄, ϕ))
is also defined and ϕ (O (T, ε, S (T, x̄, ϕ))) < ϕ (O (T, ε, R (T, x̄))). This is of course too ambitious
in its full generality and so here we analyze only a special case, but one that is still quite general.
We now list our assumptions for the special case for which we discuss details of the
superiorization methodology.

Assumptions

i. 〈 , r〉 is a problem structure such that rT is continuous for all T ∈ .

ii. P is a bounded perturbation resilient algorithm for 〈 , r〉 such that, for all T ∈ ,
PT is continuous and, if x is not a solution of T, then rT (PTx)) < rT (x).

iii. ϕ : ℝJ → ℝ is an everywhere real-valued convex function, defined on the whole space.

Under these assumptions, we now describe the algorithm to produce the sequence
 and present and prove Theorem 3 below.

The algorithm assumes that we have available a summable sequence  of positive real
numbers. It is easy to generate such sequences; e.g., we can use γℓ = aℓ, where 0 < a < 1. The
algorithm generates, simultaneously with the sequence .
The latter will be generated as a subsequence of . Clearly, the resulting sequence

 of positive real numbers will be summable. We first specify the algorithm and then
discuss it. The algorithm depends on the specified x̄, ϕ, , rT and PT. It makes use of a
logical variable called continue and also of the concept of a subgradient of the convex function
ϕ. ‖·‖ is the Euclidean norm.

Superiorized Version of Algorithm P

(i) set k = 0

(ii) set xk = x̄

(iii) set ℓ = 0
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(iv) repeat

(v)  set g to a subgradient of ϕ at xk

(vi)  if ‖g‖ > 0

(vii)   then set υk = −g/ ‖g‖

(viii)   else set υk = g

(ix)  set continue = true

(x)  while continue

(xi)   set βk = γℓ

(xii)   set y = xk + βkυk

(xiii)   if ϕ (y) ≤ ϕ (xk) and rT (PTy) < rT (xk) then

(xiv)    set xk+1 = PTy

(xv)    set continue = false

(xvi)   set ℓ = ℓ + 1

(xvii)  set k = k + 1

Sometimes it is useful to emphasize the function ϕ for which we are superiorizing, in which
case we refer to the algorithm above as the ϕ-superiorized version of algorithm P. It is important
to bear in mind that the sequence S produced by the algorithm depends also on the initial point
x̄, the selection of the subgradient in Line (v) of the algorithm, the summable sequence

, and the problem T. In addition, the output O (T, ε, S) of the algorithm depends on the
stopping criterion ε.

Theorem 3. Under the Assumptions listed above, the Superiorized Version of Algorithm P will
produce a sequence S (T, x̄, ϕ) of points in ℝJ that either contains a solution of T or is infinite.

In the latter case, if the sequence  converges to a solution of T for all x ∈ ℝJ, then,
for any ε ∈ ℝ++, O (T, ε, S (T, x̄, ϕ)) is defined and rT (O (T, ε, S (T, x̄, ϕ))) ≤ ε.

Proof. Assume that the sequence S (T, x̄, ϕ) produced by the Superiorized Version of Algorithm
P dos not contain a solution of T. We first show that in this case the algorithm generates an
infinite sequence . This is equivalent to saying that, for any xk that has been generated
already, the condition in Line (xiii) of the algorithm will be satisfied sooner or later (and hence
xk+1 will be generated). This needs to happen, because as long as the condition is not satisfied
we keep resetting (in Line (xi)) the value of βk to γℓ, with ever increasing values of ℓ. However,

 is a summable sequence of positive real numbers, and so γℓ is guaranteed to be arbitrarily
small if ℓ is sufficiently large. Since υk is either a unit vector in the direction of the negative
subgradient of the convex function ϕ at xk or is the zero vector (see Lines (v)–(viii)), ϕ (xk +
βkυk) ≤ ϕ (xk) must be satisfied if the positive number βk is small enough. Also, since rT
(PTxk) < rT (xk) and PT and rT are continuous (Assumptions (ii) and (i), respectively), we
also have that rT (PT (xk + βkυk)) < rT (xk) if βk is small enough. This completes the proof
that the condition in Line (xiii) of the algorithm will be satisfied and so the algorithm will
generate an infinite sequence S (T, x̄, ϕ). Observing that we have already demonstrated that the
βkυk are bounded perturbations, and comparing (4) with Lines (xii) and (xiv), we see that (by

the bounded perturbation resilience of P) the assumption that the sequence 
converges to a solution of T for all x ∈ ℝJ implies that S (T, x̄, ϕ)) also converges to a solution
of T. Thus, applying Lemma 1 we obtain the final claim of the theorem.

Unfortunately, this theorem does not go far enough. To demonstrate that a methodology leads
to superiorization we should be proving (under some assumptions) a result like ϕ (O (T, ε, S
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(T, x̄, ϕ))) < ϕ (O (T, ε, R (T, x̄))) in place of the weaker result at the end of the statement of
the theorem. Currently we do not have any such proofs and so we are restricted to providing
practical demonstrations that our methodology leads to superiorization in the desired sense. In
the next section we provide such demonstrations for the Superiorized Version of Algorithm
P, for two different Ps.

3. Illustrations of the superiorization methodology
We illustrate the superiorization methodology on a problem of reconstructing a head cross-
section (based on Figure 4.6(a) of [27]) from its projections using both an SAP and a BIP
algorithm. (All the computational work reported in this section was done using SNARK09
[24]; the phantom, the data, the reconstructions and displays were all generated within this
same framework.) Figure 1(a) shows a 243 × 243 digitization of the head phantom with J =
59,049 pixels. An x ∈ ℝJ is interpreted as a vector of pixel values, whose components represent
the average X-ray linear attenuation coefficients (measured per centimeter) within the 59,049
pixels. Each pixel is of size 0.0752 × 0.0752 (measured in centimeters). The pixel values range
from 0 to 0.5639. For display purposes, any value below 0.204 is shown as black (gray value
0) and any value above 0.21675 is shown as white (gray value 255), with a linear mapping of
the pixel values into gray values in between (the same convention is used in displaying
reconstructed images in Figures 1(b)–(e)).

Data were collected by calculating line integrals across the digitized image for 82 sets of equally
spaced parallel lines, with I = 25,452 lines in total. Each data item determines a hyperplane in
ℝJ. Since the digitized phantom lies in the intersection of all the hyperplanes, we have here an
instance of the convex feasibility problem with a nonempty C, satisfying the first condition of
the statements of Theorems 1 and 2.

For our illustration, we chose the SAP algorithm P{C1,…,CI} as determined by (5)–(6) with Ω
= {(1,…,I)} and ω(1,…,I) = 1. This is a classical method that in tomography would be
considered a variant of the algebraic reconstruction techniques (ART) [27, Chapter 11]. For
the BIP algorithm we chose Q{C1,…,CI} as determined by (8)–(10) with U = 82 and each block
corresponding to one of the 82 sets of parallel lines along which the data are collected.

The function ϕ for which we superiorized is defined so that, for any x ∈ ℝJ, ϕ (x) is the total
variation (TV) of the corresponding 243 × 243 image. If the pixel values of this image are
qg,h, then the value of the TV is defined to be

(12)

For the TV-superiorized versions of the algorithms P{C1,…,CI} and Q{C1,…,CI} of the previous
paragraph we selected x̄ to be the origin (the vector of all zeros) and γℓ = 0.999ℓ. Also, we set
ε = 0.01 for the stopping criterion, which is small compared to the rT of the initial point (
rT (x̄) = 330.208).

For each of the four algorithms (P{C1,…, CI}, Q{C1, …,CI} and their TV-superiorized versions),
the sequence S that is produced by it is such that the output O (T, ε, S) is defined; see Figures
1(b)–(e) for the images that correspond to these outputs. Clearly, the superiorized
reconstructions in Figures 1(c) and 1(e) are visually superior to their not superiorized versions
in Figures 1(b) and 1(d), respectively. More importantly from the point of view of our theory,
consider Table 1. As stated in the last paragraph of the previous section, we would like to have
that ϕ (O (T, ε, S (T, x̄, ϕ))) < ϕ (O (T, ε, R (T, x̄))). While we are not able to prove that this is
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the case in general, Table 1 clearly shows it to be the case for the two algorithms discussed in
this section.

A final important point that is illustrated by the experiments in this section is that, from the
practical point of view, TV-superiorization is as useful as TV-optimization. This is because a
realistic phantom, such as the one in Figure 1(a), is unlikely to be TV-minimizing subject to
the constraints provided by the measurements. In fact, the TV value of our phantom is 450.53,
which is larger than that for either of the TV-superiorized reconstructions in the second column
of Table 1. While an optimization method should be able to find an image with a lower TV
value, there is no practical point for doing that. Since the underlying aim of what we are doing
is to estimate the phantom from the data, producing an image whose TV value is further from
the TV value of the phantom than that of our superiorized reconstructions is unlikely to be
helpful towards achieving this aim.

4. Discussion and conclusions
Stability of algorithms under perturbations is generally studied in numerical analysis with the
aim of proving that an algorithm is stable so that it can “endure” all kinds of imperfections in
the data or in the computational performance. Here we have taken a proactive approach
designed to extract specific benefits from the kind of stability that we term perturbation
resilience. We have been able to do this in a context that includes, but is much more general
than, feasibility-optimization for intersections of convex sets.

Our premise has been that (1) there is available a bounded perturbations resilient iterative
algorithm that solves efficiently certain type of problems and (2) we desire to make use of
perturbations to find for these problems solutions that, according to some criterion, are superior
to the ones to which we would get without employing perturbations. To accomplish this one
must have a way of introducing perturbations that take into account the criterion according to
which we wish to “superiorize” the solutions of the problems.

We have set forth the fundamental principle, have given some mathematical formulations and
results, and have shown potential benefits (in the field of image reconstruction from
projections). However, the superiorization methodology needs to be studied further from the
mathematical, algorithmic and computational points of view in order to unveil its general
applicability to inverse problems. In particular, we need to investigate the computational
efficiency of the superiorized versions of algorithms compared to their original versions and,
more importantly, compared to actual optimization algorithms. Such results have been reported
for specific algorithms (e.g., Table I of [6] reports on a case in which a superiorized algorithm
is eight times faster than the original version and is four times faster than an optimization
algorithm proposed in [21]). However, further testing of the computational efficiency of the
algorithms produced by the new general approach will have to be carried out under a variety
of circumstances. As algorithms are developed and tested a dialog on algorithmic developments
must be accompanied by mathematical validation and applications to simulated and real data
from various relevant fields of applications.

Validating the concept means proving precise statements about the behavior of iterates
 generated by the superiorized versions of algorithms. Under what conditions do they

converge? Can their limit points be characterized? How would different choices of the
perturbation coefficients βk and the perturbation vectors υk affect the superiorization process?
Can different schemes for generating the βks be developed, implemented, investigated?
Enlarging the arsenal of bounded perturbations resilient algorithms means generalizing
existing proofs for such algorithms and developing new theories that will bring additional ones
into the family of bounded perturbations resilient algorithms. Further developments should
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include extension to the problem of finding a common fixed point of a family of operators (a
direct generalization of the convex feasibility problem, see, e.g., [29]), the possibility to
generalize the concept of superiorization so that it will be applicable to the split feasibility
problem, see [12,34,35], and studying the behavior of superiorization algorithms in inconsistent
situations when the underlying solution set is empty. Thus we view the material in this paper
as only an initial step in a promising new field of endeavor for solving inverse problems.

As a final comment we return to the issue raised at the beginning of Section 2 of generalizing
the approach to problems that are over a closed subset of ℝJ rather than the whole of ℝJ. This
would allow us, for example, to superiorize an entropy-based function ϕ that is defined only
over the positive orthant. It seems clear that this is doable, but a rigorous reformulation of all
that we said requires numerous changes. For example, in Theorems 1 and 2, we would have
to include additional condition(s) to ensure that (xk + βkυk) is in the domain of the algorithmic
operator and then we would have to prove the so-altered theorems. We felt that such extra
details would interfere with the clarity of presentation of the main contribution of the paper
and decided not to do it. Entropy-superiorizing perturbations for a specific algorithm were
investigated in [23] and the results reported in Figure 1 of that paper show it to produce a
reconstruction from projections that is inferior to the one produced by TV-superiorizing
perturbations.
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Figure 1.
A head phantom (a) and its reconstructions from underdetermined consistent data obtained for
82 views using: (b) a variant of ART, (c) TV-superiorized version of the same variant of ART,
(d) a block-iterative projection method, and (e) TV-superiorized version of the same block-
iterative projection method. The same initial point and stopping criterion were used in all cases;
see the text for details.
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Table 1

Values of TV for the outputs of the various algorithms. The second column is for the superiorized versions and
the third column is for the original versions.

Algorithm ϕ (O (T, ε, S (T, x̄, ϕ))) ϕ (O (T, ε, R (T, x̄))))

Variant of ART 441.50 1, 296.44

Variant of BIP 444.15 1, 286.44
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