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Abstract An incompressible flow in a porous channel with expanding or contacting
walls in the presence of a transverse magnetic field is considered. Using similarity trans-
formations, the governing equations are reduced to the nonlinear ordinary differential
equations. The exact similar solutions for the different cases of the expansion ratio and
the Hartmann number are obtained with a singular perturbation method, and the asso-
ciated behavior is discussed in detail.
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1 Introduction

The flow through channels and tubes with porous walls is of great importance in both tech-
nological and biophysical flows such as soil mechanics, transpiration cooling, food preservation,
cosmetic industry, blood flow, and artificial dialysis. A large number of theoretical investiga-
tions dealing with a steady incompressible laminar flow with either injection or suction at the
boundary layer have been performed during the last few decades. Especially, Suryaprakashrao,
Terrill, and Shresthal'*#l investigated the problems of the steady laminar flow of electrically
conducting viscous fluid through porous walls of a channel with an applied transverse magnetic
field. They got the valid solutions for the different cases of the Hartmann number Ha and the
Reynolds number Re.

However, the above models of channel flows do not take account of wall motion. Because of
the applications in the modeling of pulsating diaphragms, sweat cooling or heating, filtration,
and grain regression during the solid-propellant combustion, the flows in a porous channel with
deformable walls also gained much attention. Uchida and Aokil® first examined the viscous
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flow inside an impermeable tube with a contracting cross-section. Ohkil% investigated an un-
steady flow in a semi-infinite tube with a porous and elastic wall whose length varies with time
but the cross-section does not vary. To simulate the laminar flow field in the cylindrical solid
rocket motors, Goto and Uchidal” analyzed the laminar incompressible flow in a semi-infinite
porous pipe whose radius varies with time. Bujurke et al.®! obtained a series solution for an
unsteady flow in a contracting and expanding pipe. Majdalani et al.l® obtained an exact similar
solution for the viscous flow with slowly contracting or expanding walls and weak permeability.
Dauenhauer and Majdalani'® obtained numerical solutions and Majdalani and Zhou'! got
numerical and asymptotical solutions for moderate-to-large Reynolds numbers.

In this paper, the solution for the large injection Reynolds number Re and arbitrary Hart-
mann number Ha in a porous channel with expanding or contracting walls is presented. In
order to reduce the Navier-Stokes equations, we use the similarity transformation in the space
and time that Uchida and Aokil® ever used to reduce the Navier-Stokes equations into a single
nonlinear equation. By making the walls motionless, our solutions embrace the previous for-
mulations shown in [4]. The effects of the expansion ratio o and the Hartmann number Ha on
the skin friction are studied and shown graphically.

2 The model of the problem

In our study, we consider a channel with a rectangular cross-section. The distance 2b(t)
between the porous walls is much smaller than the lengths of the other two sides. This enables us
to treat the problem as a two-dimensional flow case. Both the walls have the same permeability
vy and expand or contract uniformly at a same time-dependent rate b(t) Because the body
length L is unrestricted, the channel is assumed to be of semi-infinite length. One end is closed
by a compliant membrane.

We adopt a constant magnetic field of the strength Hy, which is perpendicular to the walls
and fixed relative to them. The following assumptions are made in this analysis:

(a) The induced magnetic and electric fields produced by the motion of the electrically
conducting fluid are negligible.

(b) No external electric field is applied.

As shown in Fig. 1, a coordinate system may be chosen with the origin at the center of the
channel. The axial and normal velocity components are defined as @ and o, which are parallel
to the Z- and gy-axes, respectively.

Under these assumptions, the continuity and momentum equations are
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where p, v, and p are the dimensional density, the kinematic viscosity, and the pressure.
The boundary conditions are

ﬂ(i’a b) = 07 ’D(b) = —Uw = _Abv (4)
ou , _ o
a_g(xv 0) = Oa U(O) = 07 U(Oa y) = Oa (5)

Vw . o . . . . e
where A = 5 is the injection coefficient, which is the measure of the wall permeability.
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Fig. 1 The two-dimensional channel with expanding or contracting porous walls

3 Reduction of the flow equation
We introduce the Stokes stream function

d_) = Ubilfp(yv t)a (6)

. Hence,

S

where y =

ﬂ:%Fy(yvt)a U= -
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b

Eliminating the pressure terms in Egs. (2) and (3), we can obtain the vorticity transport
equation

o0& _OE B 0% 0% oB2 0u
8t+uaz+vay_v(8f2+8y2)+ p Oy’ ®)
where
- 0v  Ou
= o (9

Substituting Egs. (7) and (9) into Eq. (8), we obtain a differential equation for F,
Fyyyy + ayEyyy + 3Fyy) + FEyyy — FyFyy — b*0™ Fyyy — HaFyy =0, (10)

where « is the wall expansion ratio defined by

bb
= — 11
o=, ()
and Ha is the Hartmann number defined by Bob( i)%. Note that the expansion ratio will be
pv

positive for expansion and negative for contraction. An integration of Eq. (10) produces
Fyyy + a(yFyy + 2F,) + FF,, — F; = b®>v"'Fyy — Ha’F, = ko, (12)

where kg is a space-invariant parameter. The boundary conditions given by Egs. (4) and (5)
can be translated into

F,,(0)=0, F(0)=0, F,(1)=0, F(1)=Re, (13)
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by . . o
where Re is the Reynolds number defined by Re =2 Note that Re is positive for injection

v
and negative for suction. Equations (12) and (13) can be normalized via

F
) F= ﬂa (14)

) =

SRS

U v
u=—, v=—
Vw Vw
where F' is the characteristic mean flow function. Then, the normalized equations become
Fyyy + o(yFyy + 2F,) + Re(FF,, — F.) — b>v"'Fy; — Ha’F, = k, (15)
F,y(0)=0, F(@0)=0, F,(1)=0, F(1)=1, (16)
k
where k = —.

e

A similar solution with respect to space and time can be developed by the transformation
that Uchida and Aokil®! ever described: « is constant and F' = F(y). It leads to Fys = 0. Under
these assumptions, Eq. (15) becomes

F" + a(yF" + 2F") + Re(FF" — F'*) — Hi®F' =k, (17)
F'(0)=0, F0)=0, F(1)=0, F(1)=1. (18)
Here, when o = 0, it is the case that [4] has obtained.
4 Solution for large injection Reynolds number Re and arbitrary Ha

To obtain the outer and inner expansions of Eq. (17) subject to the conditions (18), for the

case of large HRLf (Ha>>>1) corresponding to the large injection at the walls, (17) may be written
as

— eF" —ea(yF" +2F") + F* — FF" + e 3yF' = 2 4 Bye "% — 200, (19)
where
1
€= Te’ v = Hcﬂs%7 —ek=(%+ ﬂ’ys*% — 2ae. (20)
e

In Eq. (19), the parameter 'ye_% > 1. Hence, the terms containing a multiple of 75_% will not
disappear in the limiting case of ¢ — 0.
4.1 The outer solution

The outer solution satisfying the boundary conditions

F()=0, F"(0)=0 (21)
is suggested to be
F =y, (22)
where
ﬂ=ﬂ0+ﬂ1€%+ﬂ28+"'=z&€%- (23)
i=0

This is the outer solution that is valid in the region between the edge of the boundary layer
and the center of the channel. In this solution, 5; (1 = 0,1,2,---) can be determined by the
obtained inner solution.
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4.2 The inner solution
Subject to F'(1) = 1, an inner solution is sought and has the form

F=1+e%wte), (24)
where t = e~ 2(1 — y) is a stretching variable. Substituting (24) into (19) yields

"

—yw +e2(w” +w’ —ww”) —w'(1+ca) + 202w + tw'") = fZe* + By — 2a8e3.  (25)

From (18), the boundary conditions to be satisfied by w(t, ) are

w(0) =0, w'(0)=0 (26)
A further substitution of
w = Z wy(n)e® (27)
n=0

into (25) gives rise to the general term

/ " ﬁn "

N 26,
Wy, +w;, = yw, g — o Xna 5(2“’%73 + wy_gn + s

)
r4+s=n—1

’ot "
+ E (wrws - WrWg —

r=s=0

ﬂrﬂs
72

); (28)

where the prime (') denotes the differentiation with respect to the variable

n=nt=rye"3(1-y). (29)

The boundary conditions (26) become

wn(0) =0, w,(0)=0 (30)
The equation for wq is
wg+wg:—%. (31)

Subject to the boundary conditions (30), the solution of (31) is

The equation for w; is

Biy—n B8y B
wl +wy =By — —5)e T — —=ne T — —. 33
1 1 (0 72) 72 v ( )

The solution for wy satisfying the boundary conditions (30) is

2 2
:%(Ln)w@—%H—%—ﬂo(unwﬁ(nﬁﬂe"- (34)

w1 272
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The function wso satisfies the equation

ﬂ—g(—37]2 +2n+42) —
2y

(2n+2)

wy +wy = [+ Boy(n—2) + ﬁiﬁl

3 - ﬂo o2 B2 0450 _
+ +n°+2n—2)e "+ e M — =+ —e . 35
> S50’ + 17 + 20— 2)]e 3 > T (35)
Subject to the boundary conditions (30), the solution of (35) is
a
=20 - n)+—5—2+5l—ﬂo —@— 5Ofl+ﬂ
gl 2y ¥ gl
@ 1
- %67"(1 +n)— [% +6in+1)+ 5507(772 —2n-2)
go(n + 2 4 29+ 2) ﬂogi(n + 41+ 4)
1 Bo.s
+24( )3 (30" + 161 + 600 + 961 + 120)]e ™
1 ﬂO 3.,—2n
+5( 7) e . (36)

The constants (3, are determined by matching the outer solution and inner solutions, and
they are given by

1 1
5021, ﬂlz_a ﬂ2:]_——2, (37)
Y Y
Hence, the second-order inner solution satisfing the boundary conditions is
1
€2 1 2 1
Fn)=1+ —1-n—e"+e[51-n)+1-=]+e[—=
(1) 7( ) [72( ) 72] [ 2
1 91 _ a1
—(1+77)+2—72(77+2) Je ”+62[;(1 5)(1—=n)
1 a o« 3.1 1
+—=—7+————e"1+n)]—-c2[-(1- =
gt S = S ) -0 )

1 1 1
+ =+ 1)+ 570 -2 - 2) - 5(773 +20% + 2+ 2)]e

lw

1 1
—e [—$(772 +4n+4)+ g (3n" + 16 + 607>

961 + 120)]e " + 25—;3&2’7, (38)

and its derivatives are

)

F’(n)z—(—1+e_")—%+s[ 1+7 (n+3)+ (1+n)

-2

3 1 1 (6%
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+ 121" — 241+ 24)]e —se (39)
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1
F'"(n) = —ie*"+s[2 - i(277—|—4) —(14+n)+ (74 2)%e™"
gl 72 272
E%Oz 3. 1 3 2 1
+ e M1—mn)—e2[—(—n"+4n" +2n—-2) — —=
(1= ) — H 5 -
L 9 - 2¢2 2 I
+§7(77 —6n+4)e ’7+?e ’7+52[$(n —2)
1 _
31 (3n* — 8n® — 48n 4 48)]e ™", (40)
F'(y) =~ 'F"(n). (41)

In fact, the inner solution (38) is valid not only inside but also outside the boundary layer.
However, in the process of matching, the exponential terms are negligible. It is observed that

when o = 0, this is the second-order solution given by Shresthal*. The second derivative F" (y)
evaluated at y = 1 is

1
g2
F”(l):—5*%7—1—72—2+7(—274+72—1+72a). (42)

Figures 2 and 3 show the effects of the expansion ratio, the Hartmann number, and the
Reynolds number on the skin friction. It can be observed in Fig. 2 that whether the walls of
the channel are expanding or contracting or not, there is only a little difference of F”(1) as
%“5 is small. However, when % increases, the difference between them also increases. When
a < 0, —F"(1) is bigger than that when o = 0, and when « > 0, —F"(1) is smaller than that
when a = 0. That is to say, when the walls are expanding, —F"'(1) becomes bigger, and when
the walls are contracting, —F"' (1) becomes smaller. It is also observed that in Fig. 2, when Ha
increases, —F"'(1) also increases.

Figure 3 illustrates that when Re is large enough, the distances between different curves for
different o become small. In this problem, the sufficiently large Reynolds number can dominate
over wall expansion or contraction. When Re is small enough, the Hartmann number has much
more influence on the flow. —F"(1) also decreases as Re increases.

3001 __ _ 40 T T
L éO’R[:e: 5(5)0 . * ) *  a=-20, Ha=40
250F  —— a=0,Re= y 3500 ! + a=0,Ha=40
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Fig. 2 The skin friction for Re = 50 and Fig. 3 The skin friction for different Ha and

. 2 . ]
different « as % increases a as Re increases

5 Conclusions

In this paper, an exact similar solution for an unsteady flow in a semi-infinite channel with
porous, expanding or contracting walls in the presence of a transverse magnetic field is obtained.
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It is easily verified that the equation is the Berman problem with an applied magnetic field when
the channel is stationary. It can be observed that the expansion ratio has important influence
on the skin friction. The skin friction increases when the Reynolds number decreases or the
Hartmann number increases. However, when the Reynolds number is large enough, the effect
of the expansion ratio can be negligible.
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