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PERTURBATION TECHNIQUES IN
IRREGULAR SPLINE-TYPE SPACES

HANS G. FEICHTINGER, URSULA MOLTER, AND JOSÉ LUIS ROMERO

Abstract. In this article we study various perturbation techniques in the con-

text of irregular spline-type spaces. We first present the sampling problem in

this general setting and prove a general result on the possibility of perturbing
sampling sets. This result can be regarded as an spline-type space analogue in

the spirit of Kadec’s Theorem for bandlimited functions (see [14] and [15]). We

further derive some quantitative estimates on the amount by which a sampling
set can be perturbed, and finally prove a result on the existence of optimal per-

turbations (with the stability of reconstruction being the optimality criterion).

Finally, the techniques developed in the earlier parts of the article are used
to study the problem of disturbing a basis for a spline-type space, in order to

derive a sufficient criterion for a space generated by irregular translations to

be a spline-type space.

1. Preliminaries and notation

1.1. Notation. We will work with functions on Rd, and denote the Euclidean norm
of x ∈ Rd by |x|2, and maximum norm by |x|∞ = max 1≤k≤d |xk|.
Definition 1.1. For a complex valued function f : Rd → C and M ⊆ Rd, we
denote by supM |f | the supremum of the absolute values of f on M , i.e.

sup
M
|f | := sup {|f(x)| : x ∈M} .

For δ > 0 and x ∈ Rd, we define the δ-oscillation of f at x by

oscδ(f)(x) := sup {|f(x)− f(y)| : |y − x|2 ≤ δ} .
1.2. p-Riesz bases.

Definition 1.2. Let 1 ≤ p < ∞, B a Banach space and Λ a countable index set.
We say that a family {fk}k∈Λ in B is a p-Riesz basis for B if the map

`p(Λ) −→ B(1)

(ck)k 7→
∑
k∈Λ

ckfk,

is well defined and continuously invertible. 1

Since B is a Banach space, it suffices that the map is a continuous linear isomor-
phism because Banach’s theorem implies continuity of the inverse mapping.

We will call the family {fk}k∈Λ a p-Riesz sequence if it is a p-Riesz basis of its
closed linear span. That is, if the operator in (1) is both bounded above and below.

Date: April 6, 2008.
1Under this assumption the series converges unconditionally in B, because the “finite” se-

quences are dense in B.
1
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1.3. Separation of point sets.

Definition 1.3. Let X ≡ {xk}k∈Λ in Rd be an indexed family of points, where the
indexing set Λ is countable. The separation of X is defined by

sep (X) := inf
k 6=j
|xk − xj |∞ ,

and we say that X is uniformly separated if sep (X) > 0.
For each α > 0, we define the relative separation of order α of X by

relα (X) := sup
b∈Rd

#
{
k ∈ Λ : xk ∈ [−α, α)d + b

}
,

and say that X is relatively separated if relα (X) <∞, for same value of α > 0.
For technical reasons we will use occasionally the following variant. Let us define

the strong relative separation of order α of X by

relα (X) := sup
b∈Rd

#
{
k ∈ Λ : xk ∈ [−α, α]d + b

}
,

The following observation will be frequently used in the next sections.2

Observation 1.1.
(i) If α < β, then

relα (X) ≤ relα (X) ≤ relβ (X) ≤ dβ
α
ed · relα (X) .

Hence if X is relatively separated, given α > 0 the amount of elements of
X in any cube of side 2α is bounded by a constant that depends only on α.

(ii) If X is uniformly separated, then it is relatively separated and

relα (X) ≤ d 2α
sep (X)

ed.

(iii) If X = {xk}k∈Λ is relatively separated and Y = {yk}k∈Λ is uniformly close
to X (i.e. δ := supk∈Λ |xk − yk|2 <∞), then Y is also relatively separated
and

relα (Y ) ≤ relα+δ (X) , relα (Y ) ≤ relα+δ (X) .

(iv) Uniform and relative separation are translation invariant concepts; that is,
for every set of points X and z ∈ Rd,

sep (X) = sep (X + z) and relα (X) = relα (X + z) .

(v) X is relatively separated if and only if it is a finite union of uniformly
separated sets. More precisely, X ≡ {xk}k∈Λ is relatively separated if and
only if there exists Λ1, . . . ,Λn such that Λ =

⋃n
j=1 Λj and for each 1 ≤ j ≤

n, Xj := {xk}k∈Λj
is uniformly separated.

2For t ∈ R we denote by dte (btc) the smallest (largest) integer that is bigger (smaller) than t.
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1.4. Amalgam spaces. In this section we introduce a family of function spaces
that will be called amalgam spaces. This name is normally given to a much broader
class of spaces of which the one we define is a particular example. We refer the
reader to [9] for a thorough introduction to amalgam spaces in full generality and
to [13] for an self-contained introduction to the spaces defined below.

Definition 1.4. For 1 ≤ p, q ≤ ∞ and measurable f : Rd → C let us define,

‖f‖W (Lp,Lq) :=

∫
Rd

(∫
[0,1]d

|f(x+ y)|p dx

)q/p
dy

1/q

,

with the usual adjustments when p or q is ∞. Let us call amalgam space of param-
eters p and q the class of functions with finite W (Lp, Lq) norm, identifying those
functions that differ only in a set of measure zero.

W (Lp, Lq) :=
{
f : Rd → C measurable : ‖f‖W (Lp,Lq) <∞

}
.

Observe that ‖f‖W (Lp,Lq) :=
∥∥∥‖f‖Lp([0,1]d+x)

∥∥∥
Lq(dx)

. We say that Lp is the local

component of W (Lp, Lq) while Lq is its global component.
Endowed with the corresponding norms, each of these spaces is an isometrically

translation invariant Banach space and we have the following inclusions:

If 1 ≤ p1 ≤ p0 ≤ ∞ and 1 ≤ q0 ≤ q1 ≤ ∞, then W (Lp0 , Lq0) ⊆W (Lp1 , Lq1).

In W (Lp, Lq) there is an equivalent discrete norm (see [9]),

‖f‖W (Lp,`q) :=

∑
k∈Zd

∣∣∣∣∣
∫

[0,1]d
|f(x+ k)|p dx

∣∣∣∣∣
q
p

 1
q

,

with the usual adjustments when p or q is∞. Note that ‖f‖W (Lp,`q) is the `q norm

of the sequence
(
‖f‖Lp([0,1]d+j)

)
j∈Zd

. This norm has some technical advantages

over the continuous one, but with the drawback that translations are no longer
isometries with respect to this norm.

When considered with the discrete norms we will write W (Lp, `q) instead of
W (Lp, Lq).

For p < ∞, we distinguish in W (L∞, Lp) the (closed) subspace formed by all
the continuous functions,

W (C0, L
p) := {f ∈W (L∞, Lp) : f is continuous} ,

and the corresponding discrete norm ‖·‖W (C0,`p) is just the restriction of ‖·‖W (L∞,`p)

to W (C0, L
p).

Similar notions are used for vector-valued functions: for F : Rd → Cd, we write:

‖F‖W (Lp,Lq) = ‖|F (·)|2‖W (Lp,Lq)
, ‖F‖W (Lp,`q) = ‖|F (·)|2‖W (Lp,`q)

.

1.5. Irregular spline-type spaces. Given a function ϕ ∈W (C0, `
1), a relatively

separated subset of Rd, X ≡ {xk}k∈Λ and 1 ≤ p <∞, we consider the closed linear
space generated by the corresponding translates

Sp = Sp(ϕ,X) = span
(
{ϕ(· − xk)}k∈Λ

)
,

where the closure is taken in Lp norm.
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When the set of translates of ϕ, {ϕ(· − xk)}k∈Λ is a p-Riesz sequence, we call Sp
a principal spline-type space. One can also consider spline-type spaces generated
by various functions. For simplicity we restrict ourselves to the case of just one
generator. The results on this article can be easily generalized to finitely generated
spaces.

When the set of points is a lattice, the space Sp has the additional structure
of being invariant under a group of translations. If in addition p = 2, Sp can be
treated by fibration techniques (see [6], [7], [16].)

1.6. The sampling problem. We study the sampling problem in spline-type
spaces. As shown below, the assumption that the generator ϕ lies in W (C0, `

1)
guarantees that the functions in Sp are continuous and therefore pointwise evalua-
tion makes sense. Although this is true under weaker hypothesis, the requirement
that the generator belongs to W (C0, `

1) has some important consequences such as
a general oversampling phenomenon and the existence of effective reconstruction
algorithms (see [2]). It is now a standard assumption in the literature.

Theorem 1.1. Let Sp be a spline-type space and 1 ≤ p <∞. Then, there exists a
constant C such that for every f ∈ Sp,

‖f‖Lp ≤ ‖f‖W (C0,`p) ≤ C ‖f‖Lp .

In particular, Sp ⊆W (C0, `
p), and therefore every f ∈ Sp is continuous.

Remark 1.1. This theorem is usually stated in the case where the translates are
regular (see for example [4]). Since we need this slightly more general version, we
provide a proof. We will see that the constant C > 0 depends only on ϕ and the
“regularity” of the set of nodes.

In order to prove the theorem, we will require the following lemma.

Lemma 1.2. If f ∈ W (C0, `
1) and Y ≡ {yk}k∈Λ is a relatively separated set of

points, then, using the symbol I := [0, 1]d one has:∑
k∈Λ

sup
I+yk

|f | ≤ 2d rel 1
2

(Y ) ‖f‖W (C0,`1) .

Proof.∑
k∈Λ

sup
I+yk

|f | ≤
∑
j∈Zd

∑
k: yk∈I+j

sup
I+yk

|f | ≤
∑
j∈Zd

rel 1
2

(Y ) sup
I+I+j

|f |

≤ rel 1
2

(Y )
∑
j∈Zd

∑
h∈{0,1}d

sup
I+h+j

|f |

≤ rel 1
2

(Y )
∑

h∈{0,1}d

∑
j∈Zd

sup
I+h+j

|f | = rel 1
2

(Y ) 2d ‖f‖W (C0,`1) .

�

Now we are ready to prove Theorem 1.1.

Proof. Given f ∈ S, since {ϕ(· − xk)}k is a p-Riesz basis of Sp, we write,

(2) f =
∑
k∈Λ

ckϕ(· − xk),

where c ≡ (ck)k∈Λ ∈ `p and the series (2) converges unconditionally in Lp.



PERTURBATION TECHNIQUES IN IRREGULAR SPLINE-TYPE SPACES 5

Given j ∈ Zd and x ∈ I + j, observe that for each finite subset Λ0 ⊆ Λ,∣∣∣∣∣∑
k∈Λ0

ckϕ(x− xk)

∣∣∣∣∣ ≤ ∑
k∈Λ0

|ck| sup
I+j−xk

|ϕ| ≤
∑
k∈Λ

|ck| sup
I+j−xk

|ϕ| .

Since the series (2) converges in Lp(I+j), it has a subsequence that converges almost
everywhere. Therefore for almost every x ∈ I+j we have that

∣∣∑
k∈Λ ckϕ(x− xk)

∣∣ ≤∑
k∈Λ |cj | supI+j−xk |ϕ| .
Using the previous lemma and writing Yj := {j − xk}k∈Λ for j ∈ Zd we obtain:∑

k∈Λ

sup
I+j−xk

|ϕ| ≤ 2d rel 1
2

(Yj) ‖ϕ‖W (C0,`1)

= 2d rel 1
2

(X) ‖ϕ‖W (C0,`1) .

and for each k ∈ Λ using the lemma with Y ′k := {j − xk}j∈Zd ,∑
j∈Zd

sup
I+j−xk

|ϕ| ≤ 2d rel 1
2

(Y ′k) ‖ϕ‖W (C0,`1)

= 2d rel 1
2

(
Zd
)
‖ϕ‖W (C0,`1) .

= 22d ‖ϕ‖W (C0,`1) .

Using this and Hölder’s inequality (distinguishing the case p = 1),

‖f‖pW (Lp,`∞) =
∑
j∈Zd

sup ess
I+j

|f |p

≤
∑
j∈Zd

(∑
k∈Λ

|ck| sup
I+j−xk

|ϕ|

)p

=
∑
j∈Zd

(∑
k∈Λ

|ck| sup
I+j−xk

|ϕ|
1
p sup
I+j−xk

|ϕ|
1
p′

)p

≤
∑
j∈Zd

(∑
k∈Λ

|ck|p sup
I+j−xk

|ϕ|

)(∑
k∈Λ

sup
I+j−xk

|ϕ|

) p
p′

≤
(

2d ‖ϕ‖W (C0,`1) rel 1
2

(X)
) p
p′
∑
j∈Zd

∑
k∈Λ

|ck|p sup
I+j−xk

|ϕ|

=
(

2d ‖ϕ‖W (C0,`1) rel 1
2

(X)
) p
p′
∑
k∈Λ

|ck|p
∑
j∈Zd

sup
I+j−xk

|ϕ|

≤
(

2d ‖ϕ‖W (C0,`1) rel 1
2

(X)
) p
p′ 22d ‖ϕ‖W (C0,`1) ‖c‖

p
p .

Therefore,

‖f‖Lp ≤ ‖f‖W (L∞,`p) ≤ 2
d
p+drel 1

2
(X)

1
p′ ‖ϕ‖W (C0,`1) ‖c‖p ≤ C ‖f‖Lp ,

where the last inequality follows from the equivalence between the Lp norm of a
function in Sp and its coefficients. Hence f ∈ W (L∞, `p) and the W (L∞, `p) and
Lp norms are equivalent on Sp. Since ϕ is continuous so are the final partial sums.
Since W (L∞, `p) implies uniform convergence it follows that f is continuous.

�
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Remark 1.2. Using the general theory developed in [9], Theorem 1.1 follows easily.
Since {xk}k∈Λ is relatively separated, if c ∈ `p, the measure

∑
k ckδxk belongs to

W (M, `p) (and conversely). Here M is the space of complex-valued bounded mea-
sures under the variation norm. The theorem now follows from the convolution
relation (together with corresponding norm estimates):

W (M,Lp) ∗W (C0, L
1) ⊆W (C0, L

p).

We have just shown that in a spline-type space functions can be evaluated.
The next lemma shows that evaluation on a relatively separated set of points is
continuous.

Lemma 1.3. Let Sp be a spline-type space and 1 ≤ p <∞. Let Y ≡ {yk}k∈Λ ⊆ Rd
be a relatively separated set of points. Then, the sampling operator

Sp → `p(Λ)

f 7→ (f(yk))k∈Λ

is well-defined and bounded, with a bound that does not depend on p.

Proof. Let I := [0, 1]d.

‖(f(yk)k∈Λ‖pp =
∑
k∈Λ

|f(yk)|p ≤
∑
j∈Zd

∑
yk∈I+j

|f(yk)|p

≤
∑
j∈Zd

rel 1
2

(Y )
(
sup
I+j
|f |
)p

= rel 1
2

(Y ) ‖f‖pW (C0,`p) .

Then, by Theorem 1.1 we have,

‖(f(yk)k∈Λ‖p ≤ rel 1
2

(Y )
1
p ‖f‖W (C0,`p) ≤ C ‖f‖Lp .

�

Definition 1.5. A set Y ≡ {yk}k∈Λ in Rd is called a sampling set for Sp if there
exists A,B > 0 such that for every f ∈ Sp,

(3) A ‖f‖Lp ≤ ‖(f(yk))k∈Λ‖`p ≤ B ‖f‖Lp .

If Y is relatively separated, we define its sampling operator ΥY : `p(Λ)→ `p(Λ) by

(4) ΥY (c) = (zj)j∈Λ, zj :=
∑
k∈Λ

ckϕ(yj − xk).

Observation 1.2. According to the definition, Y is a sampling set if and only if
its sampling operator, ΥY is bounded below.

In addition, if p = 2, since each evaluation map f 7→ f(x) is a continuous linear
functional on Sp, by Riesz’s Theorem it is represented by its reproducing kernel
Kx ∈ Sp, called the reproducing kernel in x. Therefore, by equation (3) we observe
that Y ≡ {yk}k∈Λ is a sampling set if and only if the family of reproducing kernels
{Kyk}k∈Λ is a frame of Sp.
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2. Perturbation of sampling sets

In this section we will work in a spline-type space Sp, so we will make the
following assumption.

General assumption for section 2

• ϕ ∈W (L1, C0)
• 1 ≤ p < ∞ and X ≡ {xk}k∈Λ ⊆ Rd is a relatively separated set of points,

where the set of indexes Λ is countable
• The set {ϕ(· − xk)}k∈Λ is a p-Riesz basis of its closed linear span, Sp.

When the set of points X is a lattice, this last hypothesis is known to be equiv-
alent to a certain condition on the periodization of ϕ̂ (see [4]).

We will consider sampling sets Y ≡ {yk}k∈Λ ⊆ Rd and study the possibility of
slightly disturbing them while still retaining its sampling-set properties.

Definition 2.1. Let Y = {yk}k∈Λ be a relatively separated sampling set for Sp.
We define its perturbation radius ρ(Y ) as the supremum of all L ≥ 0 such that
every set {zk}k∈Λ such that supk∈Λ |zk − yk|2 ≤ L, is a sampling set for Sp.

Note that the supremum is taken over an interval that contains 0 (it may be just
{0}). Clearly, if Z ≡ {zk}k∈Λ verifies supk∈Λ |zk − yk|2 < ρ(Y ), then Z is also a
sampling set for Sp.

2.1. General results. In this section we show that the perturbation radius of a
sampling set is always positive under the only hypothesis of continuity and decay
of the generator. The central technique will be to imitate Young’s convolution
inequality, replacing every equality that depends on the group structure of the set
of points by an estimation based on the decay of the generator. In order to do this,
we will show that the generator has a certain uniform continuity property that will
allow us to estimate its variation in terms of the separation and distance between
the sets of points. The importance of these estimations is that they are invariant
under arbitrary translations.

Theorem 2.1. Suppose that Y ≡ {yk}k∈Λ ⊆ Rd is a relatively separated sampling
set for Sp. Then Y has strictly positive perturbation radius ρ(Y ) > 0. Hence, if
Z ≡ {zk}k∈Λ is such that supk∈Λ |zk − yk|2 < ρ(Y ), then Z is also a sampling set
for Sp.

To prove this, we will study the map that sends a (relatively separated) set of
points to its sampling operator.

Definition 2.2. Let ∆ be the set of all Λ-indexed sets of Rd that are relatively
separated.

∆ :=
{
Z ≡ (zk)k∈Λ : {zk}k∈Λ ⊆ Rd is a relatively separated set

}
.

For M > 0, let us define

∆M :=
{
Z ∈ ∆ : rel 1

2
(Z) ≤M

}
That is, ∆M is the set of those Z ∈ ∆ such that every cube of measure 1 contains
at most M elements of Z (to be more precise, for every cube of measure 1, there are
at most M indexes such that the corresponding elements of Z belong to the cube.)
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For technical reasons we will also define,

∆M :=
{
Z ∈ ∆ : rel 1

2
(Z) ≤M

}
.

Observe that ∆ =
⋃
M>0 ∆M and that ∆M ⊆ ∆M ⊆ ∆

2−dM
.

Let us consider the uniform distance on ∆,

d∞(Z,Z ′) := sup
k∈Λ
|zk − z′k|2 , where Z,Z ′ ∈ ∆.

To be rigorous, d∞ is not a distance on ∆ since it can take the value ∞. To
overcome this problem we will consider

d∗∞(Z,Z ′) := sup
k∈Λ

min {|zk − z′k|2 , 1} , where Z,Z ′ ∈ ∆.

This is a distance on ∆ and for δ < 1, d∞(Z,Z ′) ≤ δ if and only if d∗∞(Z,Z ′) ≤ δ.
Hence, for local considerations we can use d∞.

Each Z ∈ ∆ is a relatively separated set, so its sampling operator ΥZ is well
defined and bounded. We can therefore consider the map

Υ : ∆→ B(`p(Λ)),

that sends a (Λ-indexed, relatively separated) set of points to its sampling operator,
defined in (4). Here, B(`p(Λ)) denotes the set of bounded operators on `p(Λ).
Although it is not emphasized in the notation, the map Υ depends on X and ϕ.
Theorem 2.1 will follow easily once we have proved that the map Υ is continuous.

Let us note that an arbitrary complex-valued function f : Rd → C induces
pointwise a function on ∆ that we will also denote f . That is,

f : ∆→ CΛ, f(Z) := (f(zk))k∈Λ.

For each Z ∈ ∆, its sampling operator ΥZ depends on the values that the generator
ϕ takes on the translations of Z, {Z + xk}k∈Λ. In order to study the behavior of
Υ near Z we must consider every translation (in X) of the sets of points that are
uniformly close to Z. These sets share a similar relative separation and so do their
arbitrary translations.

The importance of the amalgam space W (C0, `
1) in this study of perturbability

is that its induced functions on ∆ have an uniform modulus of continuity over
families of sets with a bounded relative separation. See [12] for related results an
a discussion of amalgam spaces as a tool for analyzing robustness in spline-type
spaces.

Definition 2.3. Given f ∈ W (C0, `
1), δ,M > 0 we define the δ,M -discrete oscil-

lation of f by

Oδ,M (f) := sup {‖f(Y )− f(Z)‖1 : Y ∈ ∆M , d∞(Y,Z) ≤ δ} ,

and its strong version:

Oδ,M (f) := sup {‖f(Y )− f(Z)‖1 : Y ∈ ∆M , d∞(Y,Z) ≤ δ} .

Lemma 2.2. Let f ∈W (C0, `
1), the following statements hold:

(a) For each δ,M > 0 : 0 ≤ Oδ,M (f) ≤ Oδ,M (f) ≤ O
δ,2−dM

(f) <∞.

(b) For each M > 0, Oδ,M (f) −→ 0, as δ → 0.
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(c) The induced application

f : ∆→ l1(Λ), f(Y ) := (f(yk))k∈Λ

is well-defined and continuous. Moreover, for every M > 0, f is uniformly
continuous on ∆M .

Proof. Let I := [0, 1]d be the unitary cube and also set I ′ := I + [−1, 1]d = [−1, 2]d

and I ′′ := I ′ + [−1, 1]d = [−2, 3]d.
We first observe that the induced function f takes values in l1(Λ). If Z ∈ ∆,

‖f(Y )‖1 =
∑
k∈Λ

|f(yk)| ≤
∑
j∈Zd

∑
yk∈I+j

|f(yk)|

≤
∑
j∈Zd

sup
I+j
|f |# {k ∈ Λ : yk ∈ I + j}

≤ rel 1
2

(Y ) ‖f‖W (C0,`1) <∞.

So, f(Z) ∈ l1(Λ).
Now we apply this last estimate to establish (a). For Y ∈ ∆M and d∞(Y, Z) ≤ δ,

‖f(Y )− f(Z)‖1 ≤ ‖f(Y )‖1 + ‖f(Z)‖1 ≤
(

rel 1
2

(Y ) + rel 1
2

(Z)
)
‖f‖W (C0,`1) .

According to Observation 1.1,

rel 1
2

(Z) ≤ rel 1
2 +δ (Y ) ≤ d1 + 2δedrel 1

2
(Y ) .

So,
‖f(Y )− f(Z)‖1 ≤

(
d1 + 2δed + 1

)
rel 1

2
(Y ) ‖f‖W (C0,`1) .

Hence, Oδ,M (f) ≤
(
d1 + 2δed + 1

)
M ‖f‖W (C0,`1) <∞.

Let us now prove (b). Let M > 0 and ε > 0 be given, we look for δ0 > 0 such
that: ‖f(Z)− f(Z ′)‖1 ≤ ε, whenever Z ∈ ∆M and d∞(Z,Z ′) ≤ δ0. This will show
that Oδ,M (f) ≤ ε if 0 < δ ≤ δ0.

Since f ∈W (C0, `
1), there exists a cube Q ⊆ Rd of side 2l, l > 0 such that:∑

k∈Zd\Q

sup
I+k
|f | < ε

2(3d + 1)M
.

Since f is continuous and Q+ I ′′ is compact, there exists δ0, 0 < δ0 < 1, such that

if x, y ∈ Q+ I ′′and |x− y| ≤ δ0, then |f(x)− f(y)| < ε

2 (d2l + 3e)dM
.

To see that δ0 is adequate, let Z ∈ ∆M and Z ′ ∈ ∆ be such that d∞(Z,Z ′) ≤ δ0.
Let Λ0 := {k ∈ Λ : zk ∈ Q+ I ′}. Since the side of Q + I ′ measures 2l + 3,

according to Observation 1.1,

#Λ0 ≤ rell+ 3
2

(Z) ≤ (d2l + 3e)d rel 1
2

(Z) ≤ (d2l + 3e)dM.

Since d∞(Z,Z ′) ≤ δ0 < 1,

if k ∈ Λ0, zk, z
′
k ∈ Q+ I ′′,

if k 6∈ Λ0, zk, z
′
k 6∈ Q+ I.

It also follows by Observation 1.1 that

rel 1
2

(Z ′) ≤ rel3 (Z) ≤ 3dM.



10 H.G. FEICHTINGER, U. MOLTER, AND J.L. ROMERO

Now,

∑
k∈Λ

|f(zk)− f(z′k)| =
∑
k∈Λ0

|f(zk)− f(z′k)|+
∑

k∈Λ\Λ0

|f(zk)− f(z′k)|

≤ #Λ0 sup
x,y∈Q+I′′

|x−y|≤δ

|f(x)− f(y)|+
∑

zk 6∈Q+I

|f(zk)|+
∑

z′k 6∈Q+I

|f(z′k)|

≤ ε

2
+
∑
j∈Zd

∑
zk∈I+j\Q+I

|f(zk)|+
∑
j∈Zd

∑
z′k∈I+j\Q+I

|f(z′k)|

≤ ε

2
+

∑
j∈Zd\Q

∑
zk∈I+j

|f(zk)|+
∑

j∈Zd\Q

∑
z′k∈I+j

|f(z′k)|

≤ ε

2
+

∑
j∈Zd\Q

rel 1
2

(Z) sup
I+j
|f |+

∑
j∈Zd\Q

rel 1
2

(Z ′) sup
I+j
|f |

≤ ε

2
+ (3d + 1)M

∑
j∈Zd\Q

sup
I+j
|f |

<
ε

2
+
ε

2
= ε.

The fact that f is uniformly continuous on each ∆M follows immediately from
(b) so it only remains to show that f is continuous all over ∆. It suffices to show
that f is continuous on every ball B = B(Z, r) with Z ∈ ∆ and r > 0, but for each
Z ′ ∈ B, rel 1

2
(Z ′) ≤ rel 1

2 +r (Z) =: M , and so B ⊆ ∆M where we already know that
f is (uniformly) continuous. �

Now we can prove the main estimate of the section, that together with Lemma
2.2 will prove Theorem 2.1.

Theorem 2.3. Let δ > 0 and let Y ∈ ∆M and Z ∈ ∆ be such that d∞(Y,Z) ≤ δ.
Let ΥY ,ΥZ be their respective sampling operators. Let N := rel 1

2
(X). Then, the

following estimate holds:

‖ΥY −ΥZ‖p ≤ Oδ,M (ϕ)
1
pOδ,N (ϕ)

1
p′ .
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Proof. We consider first the case p > 1. For c ∈ `p(Λ),

‖(ΥY −ΥZ)(c)‖p =
∑
j∈Λ

∣∣∣∣∣∑
k∈Λ

ck [ϕ(yj − xk)− ϕ(zj − xk)]

∣∣∣∣∣
p

≤
∑
j∈Λ

(∑
k∈Λ

|ck| |ϕ(yj − xk)− ϕ(zj − xk)|1/p |ϕ(yj − xk)− ϕ(zj − xk)|1/p
′

)p
since 1

p
+ 1
p′ = 1

≤
∑
j∈Λ

(∑
k∈Λ

|ck|p |ϕ(yj − xk)− ϕ(zj − xk)|

)(∑
k∈Λ

|ϕ(yj − xk)− ϕ(zj − xk)|

)p/p′
by Hölder

≤
∑
j∈Λ

(∑
k∈Λ

|ck|p |ϕ(yj − xk)− ϕ(zj − xk)|

)
Oδ,N (ϕ)p/p

′

for each j, rel 1
2

((yj − xk)k) = rel 1
2

(X) = N and d∞((yj − xk)k, (zj − xk)k) = |yj − zj | ≤ δ

≤ Oδ,N (ϕ)p/p
′∑
k∈Λ

|ck|p
∑
j∈Λ

|ϕ(yj − xk)− ϕ(zj − xk)|

≤ Oδ,N (ϕ)p/p
′
Oδ,M (ϕ)

∑
k∈Λ

|ck|p

for each k, rel 1
2

`
(yj − xk)j

´
= rel 1

2
(Y ) ≤ M and d∞((yj − xk)j , (zj − xk)j) = d∞(Y, Z) ≤ δ

= Oδ,N (ϕ)p/p
′
Oδ,M (ϕ) ‖c‖pp .

Hence, ‖ΥY −ΥZ‖ ≤ Oδ,N (ϕ)
1
p′Oδ,M (ϕ)

1
p .

A similar calculation proves that the same estimate holds in the case p = 1
(interpreting p/p′ = 0 as usual in this case). �

We have one of the main results of this section.

Theorem 2.4. The map

Υ : (∆, d∗∞)→ (B(`p(Λ)), ‖·‖),
is continuous. Here the norm in B(`p(Λ) is the operator norm.

Proof. Given Y ∈ ∆ let us see that Υ is continuous in Y . Let M := rel 1
2

(Y ) and
N := rel 1

2
(X). For Z ∈ ∆, set δ := d∞(Y, Z) and observe that d∗∞(Y,Z) → 0 if

and only if δ → 0. Combining Lemma 2.2 with Theorem 2.3 we have that,

‖ΥY −ΥZ‖ ≤ Oδ,N (ϕ)
1
p′Oδ,M (ϕ)

1
p −→ 0, as d∗∞(Y, Z)→ 0.

�

Now Theorem 2.1 follows easily. We restate it here for convenience of the reader.

Theorem (2.1). Suppose that Y ≡ {yk}k∈Λ ⊆ Rd is a relatively separated sampling
set for Sp. Then, ρ(Y ) > 0. Hence, if Z ≡ {zk}k∈Λ is such that supk∈Λ |zk − yk|2 <
ρ(Y ), then Z is also a sampling set for Sp.
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Proof. Let us first observe that Theorem 2.1 simply states that the subset of (∆, d∞)
formed by the sampling sets is open. Indeed, ρ is the radius of a ball centered at Y
that contains only sampling sets. (Remember that, according to Observation 1.1,
every set at a finite d∞ distance of Y will necessarily be relatively separated.)

Consider BB, the subset of B(`p) formed by the operators that are bounded-
below. BB is an open subset of B(`p) since, if T is a bounded-below operator with
lower bound A > 0, every operator U such that ‖T − U‖ < A is also bounded
below.

Finally note that the set of all sampling sets is exactly the inverse image of BB
through Υ, and so it is an open set. �

2.2. Some estimates. The result in the previous subsection shows that a sampling
set can be disturbed by a small amount ρ without losing its sampling properties.
We now study, adding some hypothesis on the generator function, the behavior
of ρ when the parameters of the problem vary. Similar estimates for bandlimited
functions have been derived in [10] (see also [11]).

We will be able to estimate the modulus of uniform continuity in the sense of
Lemma 2.2 of the generator and quantize the dependence of ρ on the lower bound
of the sampling operator and the separation of the sets of points involved.

Although the results yield good estimates in some examples, they tend to be
less accurate with smoother generator functions. It remains to extend the results
in this section to allow for better estimates in the case of smooth generators.

We would like to point out that the estimates in this sections unfortunately do
not account for the fact that adding a point to a sampling set increases (or at least
does not decrease) its perturbation radius.

Theorem 2.5. Suppose that ϕ has a weak derivative, such that |∇(ϕ)|2 ∈W (L∞, `1).
Let Y ∈ ∆M be a sampling set. Set

A := inf
‖c‖=1

‖ΥY (c)‖ , N := rel 1
2

(X) .

and
L := sup

{
δ > 0 : δd1 + 2δedN1/p′M1/p ‖∇(ϕ)‖W (L∞,`1) ≤ A

}
.

Then ρ(Y ) ≥ L, (where 1
p′ = 0 if p = 1).

In particular, for a uniformly separated set Y , if we have upper bounds for sep (Y )
and ρ(Y ),

ρ(Y ) ≥ L ≈ Asep (Y )d/p.

Note that by Proposition 1.2, A 6= 0.
In specific examples, there are (good) upper bounds for the separation of sam-

pling sets. For example, if the generator has compact support, the maximum gap
between points of any sampling set can be easily estimated in terms of the sup-
port of the generator (see for example, [3]). This also sets an upper bound on the
perturbation radius, since a big perturbation radius would imply the existence of
sampling sets with a big maximum gap.

Under weaker conditions we get a similar estimation.

Theorem 2.6. Suppose that ϕ has a weak derivative, such that |∇(ϕ)|2 ∈W (Lq, `1),
d < q < ∞. Then, there exists a constant C that depends only on d and q such
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that, for every relatively separated sampling set Y ≡ {yk}k∈Λ ⊆ Rd we have

ρ(Y ) ≥ L,

where
A := inf

‖c‖=1

‖ΥY (c)‖ , N := rel 1
2

(X) ,

and

L := sup
{
δ > 0 : Cδ1− dq (1 + 2dδ/2e)2d

M
1
pN

1
p′ ‖∇(f)‖W (Lq,`1) ≤ A

}
.

In particular, for a uniformly separated set Y , if we have upper bounds for sep (Y )
and ρ(Y ),

ρ(Y ) ≥ L ≈
(
Asep (Y )d/p

)1+ d
q−d

.

Remark 2.1. The constant C can be explicitly found.

Both theorems will follow once we have estimated the discrete oscillation of the
generator function. We do so in the following lemmas.

We will consider the Sobolev space W p
1 (Rd) of all functions in Lp with a weak

derivative in Lp. As shown by the proof of the following lemma, a function f with
a bounded weak derivative can be changed in a null-measure set so that it becomes
continuous. The continuity hypothesis in the next lemma just asserts that we have
chosen that continuous representative.

Lemma 2.7. Let f ∈W p
1 (Rd) be continuous and such that |∇(f)|2 ∈ L∞(Rd). Let

x, y ∈ Rd and let B be the ball of diameter |x− y|2 centered in the middle point
between x and y. Then,

|f(x)− f(y)| ≤ sup ess
B

‖∇(f)‖2 |x− y|2 .

Proof. Let η be a smooth, positive kernel, that is supported in B1(0) and has
integral 1. Let ηε = 1

εd
η( ·ε ) and fε = f ∗ ηε.

Let x′, y′ ∈ B◦ be arbitrary points. Let B′ ⊂ B◦ be a closed ball that contains
x′ and y′. By the mean value theorem, there exists c ∈ B′ such that,

|fε(x′)− fε(y′)| ≤ |∇(fε)(c)|2 |x
′ − y′|2 .

If 0 < ε < d(B′, B), then Bε(c) ⊆ B and we can estimate,

|∇(fε)(c)|2 = |∇(f) ∗ ηε(c)|2 ≤ (|∇(f)|2 ∗ ηε) (c)
≤ sup ess

Bε(c)

|∇(f)|2 ‖ηε‖1 ≤ sup ess
B

|∇(f)|2 .

So,
|fε(x′)− fε(y′)| ≤ sup ess

B
|∇(f)|2 |x

′ − y′|2 .

Since f is continuous, x′ and y′ are Lebesgue points of f . Letting ε → 0+ we
obtain that

|f(x′)− f(y′)| ≤ sup ess
B

|∇(f)|2 |x
′ − y′|2 .

The lemma follows by letting x′ → x and y′ → y. �
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Lemma 2.8. Let f ∈ W (C0, `
1) have a weak derivative such that |∇(f)|2 ∈

W (L∞, `1). Let δ,M > 0. Then,

Oδ,M (f) ≤ δd1 + 2δedM ‖∇(f)‖W (L∞,`1) .

Proof. Let Z ∈ ∆M and Z ′ ∈ ∆ such that d∞(Z,Z ′) ≤ δ. For each k ∈ Λ let us call
Bk the ball of diameter δ centered in the middle point between zk and z′k. Then
by the lemma,

|f(zk)− f(z′k)| ≤ sup ess
Bk

‖∇(f)‖2 |zk − z
′
k|2 .

Let σ : Λ→ N be a bijection. Given ε > 0, there exists ck ∈ Bk such that

sup ess
Bk

‖∇(f)‖2 ≤ ‖∇(f)(ck)‖2 +
ε

2σ(k)
.

Since |zk − z′k|2 ≤ δ,

|f(zk)− f(z′k)| ≤
(
‖∇(f)(ck)‖2 +

ε

2σ(k)

)
δ,

|zk − ck|2 ≤ δ.

Let us observe that, ∑
k∈Λ

1
2σ(k)

=
∑
k∈N

1
2k

= 1.

Moreover, by Observation 1.1,

rel 1
2

((ck)k∈Λ) ≤ rel 1
2 +δ (Z) ≤ d1 + 2δedM.

Now we simply estimate,∑
k∈Λ

|f(zk)− f(z′k)| ≤
∑
k∈Λ

(
‖∇(f)(ck)‖2 +

ε

2σ(k)

)
δ

≤ δ

(∑
k∈Λ

‖∇(f)(ck)‖2 + ε

)

≤ δ

∑
j∈Zd

∑
ck∈[0,1)d+j

‖∇(f)(ck)‖2 + ε


≤ δ

∑
j∈Zd

sup
[0,1]d+j

‖∇(f)‖2 rel 1
2

((ck)k∈Λ) + ε


≤ δd1 + 2δedM ‖∇(f)‖W (L∞,`1) + δε.

The lemma follows by first letting ε→ 0+ and then taking supremum over all sets
Z and Z ′. �

Lemma 2.9. Let f ∈ W (C0, `
1) have a weak derivative such that |∇(f)|2 ∈

W (Lq, `1) and d < q <∞. Let δ,M > 0. Then,

Oδ,M (f) ≤ Cδ1− dq (1 + 2dδ/2e)2d
M ‖∇(f)‖W (Lq,`1) .

where the constant C depends only on q and d.
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Proof. Let Z ∈ ∆M and Z ′ ∈ ∆ such that d∞(Z,Z ′) ≤ δ. For each k ∈ Λ let ck
be the middle point between zk and z′k and let Bk be the closed ball centered in ck
with diameter δ. Let us call n := dδ/2e, Q := [0, 1)d and Q′ := Q+ [− δ2 ,

δ
2 ]d.

Morrey’s inequality [8, pg. 143] guarantees the existence of a constant C that
depends only on q and d such that

|f(zk)− f(z′k)| ≤ Cδ1− dq ‖∇(f)‖Lq(Bk) .

Note that d∞((ck)k, Z) ≤ δ
2 and therefore, according to observation 1.1,

rel 1
2

((ck)k) ≤ rel 1
2 + δ

2
(Z) ≤ (1 + 2n)dM.

Now let us estimate,∑
k∈Λ

|f(zk)− f(z′k)| ≤ Cδ1− dq
∑
k∈Λ

‖∇(f)‖Lq(Bk)

≤ Cδ1− dq
∑
j∈Zd

∑
ck∈Q+j

‖∇(f)‖Lq(Bk)

≤ Cδ1− dq
∑
j∈Zd

rel 1
2

((ck)k) ‖∇(f)‖Lq(Q′+j)

since |ck − zk|2 <
δ
2 , Bk ⊆ Q′ + j.

≤ Cδ1− dq (1 + 2n)dM
∑
j∈Zd
‖∇(f)‖Lq(Q′+j) .

Since Q′ ⊂
⋃

l∈([−n,n]
T

Z)d

Q+ l, Minkowski’s inequality implies that

‖∇(f)‖Lq(Q′+j) ≤
∑

l∈([−n,n]
T

Z)d

‖∇(f)‖Lq(Q+j+l) .

Hence,∑
k∈Λ

|f(zk)− f(z′k)| ≤ Cδ1− dq (1 + 2n)dM
∑
j∈Zd

∑
l∈([−n,n]

T
Z)d

‖∇(f)‖Lq(Q+j+l)

= Cδ1− dq (1 + 2n)dM
∑

l∈([−n,n]
T

Z)d

∑
j∈Zd
‖∇(f)‖Lq(Q+j+l)

= Cδ1− dq (1 + 2n)2dM ‖∇f‖W (Lq,`1) .

as desired. �

Let us now prove Theorems 2.5 and 2.6.

Proof. Let us first prove Theorem 2.5. Suppose that δ := d∞(Y,Z) < L. We will
show that Z is a sampling set. This will prove that ρ(Y ) ≥ L.

Using Theorem 2.3 and Lemma 2.8 (and ignoring the trivial case ϕ ≡ 0),

‖ΥY −ΥZ‖p ≤ Oδ,M (ϕ)
1
pOδ,N (ϕ)

1
p′

≤ δd1 + 2δedM
1
pN

1
p′ ‖∇ϕ‖W (L∞,`1)

< Ld1 + 2LedM
1
pN

1
p′ ‖∇ϕ‖W (L∞,`1) ≤ A.

Hence, if A′ := A− ‖ΥY −ΥZ‖ > 0, for c ∈ l2(Λ),

‖ΥZ(c)‖ ≥ ‖ΥY (c)‖ − ‖(ΥY −ΥZ)(c)‖ ≥ A ‖c‖ − ‖ΥY −ΥZ‖ ‖c‖ = A′ ‖c‖ .
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Hence, according to proposition 1.2, Z is a set of sampling.
Theorem 2.6, follows by the same argument but applying Lemma 2.9 (instead of

Lemma 2.8).
To end this subsection, we show that our estimates are somehow biased by the

arbitrary windowing of functions. In a very simple example we show how the
estimates on ρ can be improved by taking into account the support of ϕ.

Example 2.1. Let ϕ : R→ R be defined by ϕ(x) := (1− |x|)χ[−1,1](x) and Λ = Z.
Then Sp is the space of continuous linear splines with integer nodes that belong to
Lp. It is easily seen that the general assumptions of this section are satisfied.

Let Y := Z. Then Y is a sampling set for Sp - in fact, it is an interpolation
set. With the notation of Theorem 2.5, ΥY = Id, A = 1, N = M = 1 and
‖ϕ′‖W (L∞,`1) = 2; so the estimate given by Theorem 2.5 is ρ(Y ) ≥ 1/4.

However, if in the proof of Theorem 2.5, we take into account the fact that
whenever d∞({zk}k , Y ) < 1/2, for each k ∈ Z, the generator function ϕ vanishes
in one of the points zk − (k − 1) or zk − (k + 1), we obtain the sharper estimate
ρ(Y ) ≥ 1/3.

�

2.3. Optimal perturbations. In this section we prove that, given a sampling set
Y there exist optimal local perturbations. More precisely, given δ, there is a way of
moving each point of Y in less than δ so that the lower bound of the corresponding
sampling operator attains its maximum among all such perturbations.

Theorem 2.10. Let Y ≡ {yk}k∈Λ be a (relatively separated) sampling set for Sp

and δ > 0. Then, there exists a set of points Ỹ ≡ {ỹk}k∈Λ with supk∈Λ |yk − ỹk|2 ≤
δ such that

ζ(Ỹ ) = sup

{
ζ(Z) : Z ≡ {zk}k∈Λ , sup

k∈Λ
|yk − zk|2 ≤ δ

}
,

where ζ(Z) denotes the lower bound of the corresponding sampling operator ΥZ .

The main tool to establish Theorem 2.10 will be the map Υ from the previous
subsections, but this time considered with coarser topologies in both the domain
and codomain.

For B(`p(Λ)) we consider the strong operator topology (SOT), which is the initial
topology induced by the evaluations, that is, the topology of pointwise convergence
(in norm p).

We will define in ∆ a weak topology that will allow us to prove Theorem 2.10 by
continuity and compactness arguments.

Definition 2.4. Given Y ∈ ∆ and r > 0, we define E(Y, r) as the ball of center Y
and radius δ,

E(Y, r) := Bδ(Y ) = {Z ∈ ∆ : d∞(Z, Y ) ≤ δ} ,
considered as a subspace of

∏
k∈ΛB(yk, δ), this latter space having the product topol-

ogy. Here B(yk, δ) ⊆ Rd is the closed ball of center yk and radius δ in norm 2.
Consequently, E(Y, r) has the pointwise convergence topology.

Observation 2.1. According to Observation 1.1, E(Y, r) is the set of all Λ-indexed
sets that are at a uniform distance smaller than δ to Y (because these are necessarily
relatively separated.) Hence, E(Y, r) =

∏
k∈ΛB(yk, δ).



PERTURBATION TECHNIQUES IN IRREGULAR SPLINE-TYPE SPACES 17

Since the product is countable, E(Y, r) is metrizable (although, of course, d∞
is not a metric for this topology.) Moreover, by Tychonoff’s Theorem, E(Y, r) is
compact.

Definition 2.5. We define the weak topology in ∆ as the final topology of the
family of inclusion maps {ιY,r : E(Y, r) ↪→ ∆ : Y ∈ ∆, r > 0}. That is, the finest
topology that makes each of these inclusions continuous. Hereafter, (∆, w) will
denote the set ∆ considered with its weak topology.

The weak topology in ∆ is characterized by the following universal property: a
function f : (∆, w)→ V , from ∆ to a topological space V , is continuous if and only
if, for every Y ∈ ∆ and r > 0, the function fY,r := f ◦ ιY,r is continuous.

Note that the weak topology is finer than the product topology on ∆, which is the
pointwise convergence topology. The above defined weak topology can be regarded
as a ‘dominated convergence’ topology since convergence in the basic neighborhoods
E(Y, r) means pointwise convergence plus the existence of some sort of uniform
dominant set Y , although we do not impose a summability condition on it.

We first study the weak continuity of the functions induced by the amalgam
W (C0, `

1).

Lemma 2.11. Let f ∈W (C0, `
1). Then, the induced function

f : (∆, w)→ l1(Λ), f(Z) = (f(zk))k∈Λ

is continuous.

The fact that this function is well-defined was observed in the lemmas before
Theorem 2.2.

Proof. According to the universal property it suffices to check that, given Y ∈ ∆
and r > 0 the function fY,r := f ◦ ιY,r : E(Y, r)→ l1(Λ) is continuous.

Since E(Y, r) is metrizable, it will suffice to check that if {Zn}n∈N ⊆ E(Y, r) and

Z ∈ E(Y, r) are such that Zn −→n Z then, fY,r(Zn) = f(Zn) l1−→n f(Z) = fY,r(Z).
Say, Z ≡ {zk}k∈Λ, Y ≡ {yk}k∈Λ and Zn ≡ {znk }k∈Λ.
Let us call I := [0, 1]d, I ′ := I + [−r, r]d and N := dre. Observe that

I ′ ⊆ I + [−N,N ]d ⊆
⋃

k∈([−N,N ]
T

Z)d

I + k.

Let us estimate, ∑
j∈Zd

sup
I′+j
|f | ≤

∑
j∈Zd

sup
I+j+[−N,N ]d

|f |

≤
∑
j∈Zd

∑
k∈([−N,N ]

T
Z)d

sup
I+j+k

|f |

≤
∑

k∈([−N,N ]
T

Z)d

∑
j∈Zd

sup
I+j+k

|f |

= (2N + 1)d ‖f‖W (C0,`1) <∞.

So, given ε > 0 there exists a cube Q such that∑
k∈Zd\Q

sup
I′+k
|f | < ε

4rel 1
2

(Y )
.



18 H.G. FEICHTINGER, U. MOLTER, AND J.L. ROMERO

Since Y is relatively separated, only a finite number of its elements lie in Q + I.
Since znk →n zk for each k, there exists n0 ∈ N such that for n ≥ n0,∑

k: yk∈Q+I

|f(znk )− f(zk)| < ε

2
.

If n ≥ n0,∑
k∈Λ

|f(znk )− f(zk)| =
∑

k: yk∈Q+I

|f(znk )− f(zk)|+
∑

k: yk 6∈Q+I

|f(znk )− f(zk)|

≤ ε

2
+

∑
k: yk 6∈Q+I

|f(znk )− f(zk)|

≤ ε

2
+
∑
j∈Zd

∑
yk∈(I+j)\Q+I

|f(znk )− f(zk)|

=
ε

2
+

∑
j∈Zd\Q

∑
yk∈(I+j)\Q+I

|f(znk )− f(zk)|

≤ ε

2
+

∑
j∈Zd\Q

rel 1
2

(Y ) 2 sup
I′+j
|f |

since Z,Zn ∈ E(Y, r), if yk ∈ I + j, then zk, z
n
k ∈ I

′ + j

≤ ε

2
+
ε

2
= ε.

Hence, if n ≥ no, ‖f(Z)− f(Zn)‖1 ≤ ε. �

Now we can state the main result towards the proof of Theorem 2.10.

Theorem 2.12. The map

Υ : (∆, w)→ (B(`p(Λ)),SOT )

that maps a set Z to its corresponding sampling operator ΥZ is continuous.

Proof. It is enough to check that given Y ∈ ∆ and r > 0 the function fY,r :=
f ◦ ιY,r : E(Y, r)→ l1(Λ) is continuous.

Using Observation 1.1, for each Z ∈ E(Y, r),

rel 1
2

(Z) ≤ rel 1
2 +r (Y ) .

Since E(Y, r) is metrizable, let us show that if {Zn}n∈N ⊆ E(Y, r) and Z ∈
E(Y, r) are such that Zn −→n Z, then Υ(Zn) SOT−→n ΥZ .

Given c ≡ (ck)k∈Λ ∈ `p(Λ) we will show that Υ(Zn)(c) `p−→n ΥZ(c). Let ε > 0
be arbitrary.

For each W ∈ ∆, ∑
k∈Λ

|ϕ(wk)| =
∑
j∈Zd

∑
wk∈[0,1)d+j

|ϕ(wk)|

≤ rel 1
2

(W ) ‖ϕ‖W (C0,`1) .
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Then, for each W ∈ E(Y, r) and k ∈ Λ,∑
l∈Λ

|ϕ(wl − xk)| ≤ rel 1
2

(W − xk) ‖ϕ‖W (C0,`1)

= rel 1
2

(W ) ‖ϕ‖W (C0,`1)

≤ rel 1
2 +r (Y ) ‖ϕ‖W (C0,`1) .

Similarly, since X is relatively separated, for l ∈ Λ,∑
k∈Λ

|ϕ(wl − xk)| ≤ rel 1
2

(wl −X) ‖ϕ‖W (C0,`1)

≤ rel 1
2

(X) ‖ϕ‖W (C0,`1) .

Hence, if we set M := max
{

rel 1
2 +r (Y ) , rel 1

2
(X)

}
‖ϕ‖W (C0,`1) the following uni-

form bounds hold:∑
j∈Λ

∣∣ϕ(znj − xk)
∣∣ ,∑
j∈Λ

|ϕ(zj − xk)| ≤M , for every k ∈ Λ and n ∈ N,

∑
k∈Λ

∣∣ϕ(znj − xk)
∣∣ ,∑
k∈Λ

|ϕ(zj − xk)| ≤M , for every j ∈ Λ and n ∈ N.

Let us first assume that p > 1. Since c ∈ `p(Λ), there exists a finite set Λ0 ⊆ Λ
such that, ∑

k∈Λ\Λ0

|ck|p <
ε

2M
p
p′+1

.

Let us estimate the variation of the sampling operator like we did before,

‖Υ(Zn)(c)−ΥZ(c)‖pp =
X
j∈Λ

˛̨̨̨
˛X
k∈Λ

ck
`
ϕ(znj − xk)− ϕ(zj − xk)

´˛̨̨̨˛
p

≤
X
j∈Λ

 X
k∈Λ

|ck|
˛̨
ϕ(znj − xk)− ϕ(zj − xk)

˛̨ 1
p
˛̨
ϕ(znj − xk)− ϕ(zj − xk)

˛̨ 1
p′

!p

≤
X
j∈Λ

X
k∈Λ

|ck|p
˛̨
ϕ(znj − xk)− ϕ(zj − xk)

˛̨  X
k∈Λ

˛̨
ϕ(znj − xk)− ϕ(zj − xk)

˛̨! p
p′

≤M
p
p′
X
j∈Λ

X
k∈Λ

|ck|p
˛̨
ϕ(znj − xk)− ϕ(zj − xk)

˛̨
≤M

p
p′
X
k∈Λ

|ck|p
X
j∈Λ

˛̨
ϕ(znj − xk)− ϕ(zj − xk)

˛̨

≤M
p
p′

0@X
k∈Λ0

|ck|p
X
j∈Λ

˛̨
ϕ(znj − xk)− ϕ(zj − xk)

˛̨

+
X

k∈Λ\Λ0

|ck|p
X
j∈Λ

˛̨
ϕ(znj − xk)− ϕ(zj − xk)

˛̨1A
≤M

p
p′

0@X
k∈Λ0

|ck|p
X
j∈Λ

˛̨
ϕ(znj − xk)− ϕ(zj − xk)

˛̨
+ M

X
k∈Λ\Λ0

|ck|p
1A

≤M
p
p′
X
k∈Λ0

|ck|p
X
j∈Λ

˛̨
ϕ(znj − xk)− ϕ(zj − xk)

˛̨
+

ε

2
.
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When p = 1 a similar (simpler) calculation establishes the same inequality (in
this case p

p′ = 0.) We claim that for each k ∈ Λ, Zn − xk
w→n Z − xk. Since

Zn, Z ∈ E(Y, r), we also have that Zn − xk, Z − xk ∈ E(Y − xk, r). Since for each
j, znj →n zj , it turns out that znj − xk →n zj − xk. Then Zn − xk →n Z − xk in
E(Y − xk, r) (product topology). Since the inclusion map E(Y − xk, r) ↪→ (∆, w)
is continuous, Zn − xk →n Z − xk in (∆, w) and the claim follows.

According to Lemma 2.11, for each k ∈ Λ0,∑
j∈Λ

∣∣ϕ(znj − xk)− ϕ(zj − xk)
∣∣→
n

0.

Since Λ0 is finite, it follows that there exists n0 ∈ N such that if n ≥ n0

M
p
p′
∑
k∈Λ0

|ck|p
∑
j∈Λ

∣∣ϕ(znj − xk)− ϕ(zj − xk)
∣∣ < ε

2
.

Hence, for n ≥ n0, ‖Υ(Zn)(c)−ΥZ(c)‖pp < ε. �

Lemma 2.13. The map

ζ : (B(`p(Λ)),SOT )→ R, ζ(T ) = inf
‖c‖p=1

‖T (c)‖p .

is upper-semicontinuous. (i.e. ζ−1((−∞, α)) is open for each α ∈ R)

Proof. Given α ∈ R it suffices to show that the complement of ζ−1((−∞, α)) is
closed in the strong topology. For each c ∈ `p let us call evc the evaluation map in
c, i.e. evc(T ) = T (c).

The lower bound of an operator is greater than or equal to α if and only if it
maps each c ∈ `p of norm 1 out of the open ball of radius α. That is,

ζ−1([α,∞)) =
⋂
‖c‖p=1

ev−1
c (`p \B◦α(0)).

For each c ∈ `p of norm 1, since evc is continuous with the strong topology, and
`p \ B0

α(0) is closed in `p, it turns out that ev−1
c (`p \ B0

α(0)) is SOT-closed. The
arbitrary intersection of closed sets is closed. �

We can finally prove Theorem 2.10.

Theorem. Let Y ≡ {yk}k∈Λ be a (relatively separated) sampling set for Sp and
δ > 0. Then, there exists a set of points Ỹ ≡ {ỹk}k∈Λ with supk∈Λ |yk − ỹk|2 ≤ δ
such that

ζ(Ỹ ) = sup

{
ζ(Z) : Z ≡ {zk}k∈Λ , sup

k∈Λ
|yk − zk|2 ≤ δ

}
,

where ζ(Z) denotes the lower bound of the corresponding sampling operator ΥZ .

Proof. Composing the maps of both lemmas, we see that the map ζ : ∆ → R
that sends a set of points to the lower bound of its sampling operator is upper
semicontinuous. If we further compose this map with the inclusion ιY,δ : E(Y, δ) ↪→
∆ we have an upper-semicontinuous map E(Y, δ) → R with compact domain that
must therefore attain some maximum Ỹ . �
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Remark 2.2. The same argument shows that there exists a configuration of points
Z̃ optimizing the lower bound of the operator f 7→ (f(z̃k))k). Indeed, since the
Bessel map c 7→

∑
k ckϕ(· − k) is a norm-continuous isomorphism between `p and

Sp, it induces a SOT isomorphism between B(`p, `p) and B(Sp, `p). Composing the
map of the proof above with this isomorphism, it turns out that the map (∆, w) 3
Z 7→ (f 7→ (f(zk))k)) ∈ (B(Sp, `p), SOT ) is continuous.

3. Perturbation of bases

General assumption for section 3.
Throughout this section let ϕ ∈W (C0, `

1) and 1 ≤ p <∞.

Given a relatively separated set of points X ≡ {xk}k∈Λ we want to construct a
spline-type space Sp. We start by defining it as Sp = Sp(ϕ,X) = span

(
{ϕ(· − xk)}k∈Λ

)
,

where the closure is taken in Lp norm. In order to have a spline-type space it
remains to check whether the set of translates {ϕ(· − xk)}k∈Λ forms a p-Riesz se-
quence.

Definition 3.1. Let X ≡ {xk}k∈Λ be a relatively separated set of points. If the set
of translates {ϕ(· − xk)}k∈Λ forms a p-Riesz sequence we call X a Riesz set (for
ϕ).

The bounds of the p-Riesz sequence {ϕ(· − xk)}k∈Λ will be called bounds of X.

When p = 2 and the set of points is a lattice the condition of being a Riesz set
is known to be equivalent to a certain condition on ϕ̂.

Theorem 3.1. [7], [4] If p = 2 and there exists constants A,B > 0 such that for
almost every x ∈ [0, 1]d

(5) A ≤
∑
k∈Zd

|ϕ̂(x+ j)|2 ≤ B,

then the set Zd is a Riesz set for ϕ with bounds A and B.

Clearly this results extends to general lattices other than Zd.

Remark 3.1. If ϕ ∈ W (C0, `
1), it can be shown by means of the Poisson sum-

mation formula that the periodization in (5) is a continuous function. Thus the
condition in (5) is equivalent to

∑
k∈Zd |ϕ̂(x+ j)|2 6= 0, for every x ∈ [0, 1]d.

In this section we parallel the techniques of the last section to study the possibil-
ity of disturbing Riesz sets. This, combined with Theorem 3.1 will yield a criterion
for a space generated by irregular translations to be a spline-type space.

Definition 3.2. Let X ≡ {xk}k∈Λ be a Riesz set. Let τ(X) be the supremum of
the set of δ ≥ 0 such that every set of points Y ≡ {yk}k∈Λ such that |xk − yk|2 ≤ δ,
is a Riesz set. We call τ(X) the Riesz-radius of X.

We will show that the Riesz radius of a Riesz set is always positive.
Let us introduce the following notation.

Definition 3.3. If X ≡ {xk}k∈Λ is a relatively separated set of points let us call
SX the Bessel map of {ϕ(· − xk)}k∈Λ. That is

SX : `p(Λ) −→ Lp(Rd), SX(c) =
∑
k∈Zd

ckϕ(· − xk).
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It is easily shown that SX is well defined and bounded for every relatively sep-
arated set X. Moreover X is a Riesz set if and only if SX is bounded below (cf.
subsection 1.2).

Lemma 3.2. Let M, δ > 0, X ∈ ∆M and Y ∈ ∆ such that d∞(X,Y ) ≤ δ. Then
‖SX − SY ‖ ≤ Oδ,M (ϕ)

1
p′Oδ,1(ϕ)

1
p .

Proof. For c ∈ `p(Λ) let us estimate,

‖SX − SY (c)‖pp =
∫

Rd

∣∣∣∣∣∑
k∈Λ

ck (ϕ(x− xk)− ϕ(x− yk))

∣∣∣∣∣
p

dx

≤
∫

Rd

(∑
k∈Λ

|ck| |ϕ(x− xk)− ϕ(x− yk)|
1
p |ϕ(x− xk)− ϕ(x− yk)|

1
p′

)p
dx

≤
∫

Rd

∑
k∈Λ

|ck|p |ϕ(x− xk)− ϕ(x− yk)|

(∑
k∈Λ

|ϕ(x− xk)− ϕ(x− yk)|

) p
p′

dx

where we used Hölder for the last inequality. Now, since rel 1
2

((x− xk)k) = rel 1
2

(X) ≤
M and d∞((x−xk)k), (x−yk)k) = d∞(X,Y ) ≤ δ and on the other hand rel 1

2
((x+ j − xk)j) =

rel 1
2

(
Zd
)

= 1 and d∞((x+ j − xk)j), (x+ j − yk)j) = |xk − yk| ≤ δ, we obtain:

‖SX − SY (c)‖pp

≤ Oδ,M (ϕ)
p
p′
∑
k∈Λ

|ck|p
∫

Rd
|ϕ(x− xk)− ϕ(x− yk)| dx

≤ Oδ,M (ϕ)
p
p′
∑
k∈Λ

|ck|p
∫

[0,1]d

∑
j∈Zd
|ϕ(x+ j − xk)− ϕ(x+ j − yk)| dx

≤ Oδ,M (ϕ)
p
p′
∑
k∈Λ

|ck|p
∫

[0,1]d
Oδ,1(ϕ)dx

= Oδ,M (ϕ)
p
p′Oδ,1(ϕ) ‖c‖pp .

Hence, ‖SX − SY ‖p ≤ Oδ,M (ϕ)
1
p′Oδ,1(ϕ)

1
p . �

Theorem 3.3. The map

S : (∆, d∗∞) −→ (B(`p(Λ), Lp(Rd)), ‖·‖)
X 7−→ SX

that maps a set of points to its Bessel operator is continuous.

Proof. For X,Y ∈ ∆, if δ := d∞(X,Y ) < 1, by Lemmas 3.2 and 2.2,

‖SX − SY ‖ ≤ Oδ,M (ϕ)
1
p′Oδ,1(ϕ)

1
p → 0, as d∗∞(X,Y )→ 0.

�

Now we can prove the main result of the section.

Theorem 3.4. Let X ≡ {xk}k∈Λ be a Riesz set. Then τ(X) > 0.
Hence if 0 ≤ δ < τ(X) and Y ≡ {yk}k∈Λ is a set of points such that |xk − yk|2 ≤

δ, then Y is a Riesz set.
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Proof. Since by Observation 1.1 every set that is uniformly close to X is relatively
separated it suffices to show that the subset R := {Z ∈ ∆ : Z is a Riesz set} is open
in (∆, d∗∞).

Let BB be the subset of B(`p(Λ), Lp(Rd)) formed by those operators that are
bounded below. As we observed before, BB is open in the norm topology. Now,
R is the inverse image of BB by the continuous application of Theorem 3.3. This
completes the proof. �

From this we derive the following criterion:

Theorem 3.5. Let p = 2 and ϕ have a weak derivative such that |∇(ϕ)|2 ∈
W (L∞, `1). Suppose that A,B, δ > 0 satisfy:

• A ≤
∑
k∈Zd |ϕ̂(x+ k)|2 ≤ B , for every x ∈ [0, 1]d,

• δd1 + 2δed ‖∇(ϕ)‖W (L∞,`1) <
√
A.

Then, every set X ≡ {xk}k∈Zd such that |xk − k|2 ≤ δ, is a Riesz set for ϕ.

Proof. By Theorem 3.1, Zd is a Riesz set with bounds A and B. Let X be a set
such that d∞(X,Zd) ≤ δ. Using Lemma 3.2 and Lemma 2.8 we have,∥∥SX − S(Zd)

∥∥ ≤ Oδ,1(ϕ) ≤ δd1 + 2δed ‖∇(ϕ)‖W (L∞,`1) <
√
A.

Since the operator S(Zd) has lower bound
√
A, it follows that SX is bounded below.

Hence, X is also a Riesz set. �

Remark 3.2. An analogous criterion for |∇(ϕ)|2 ∈ W (Lq, `1), and q > d can be
proved using Lemma 2.9. With the pertinent changes an arbitrary lattice can be
used instead of Zd.

4. Final remarks

Pointwise and convolution relations in amalgam spaces ([9]) imply that the Sam-
pling and Bessel maps depend continuously on the generator function ϕ in the
W (C0, `

1) norm. This observation, combined with the results in this article, imply
that both the sampling problem and the p-Riesz sequence of irregular translates
condition are stable under small perturbations of the underlying points and the
generator function (the former in d∞ metric and the latter in the W (C0, `

1) norm).
Stability results relying on amalgam space techniques have been used to strengthen

sampling theorems; see for example [5] [1].
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