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1. Introduction. Perturbation theory has long been a very useful tool in
the hands of both the analyst and the physicist. A considerable amount of
research has been done on the perturbation of self-adjoint linear operators on
a Hubert space, principally by F. Rellich [4](1). J. D. Newburgh [3] and
F. Wolf [7] have investigated a perturbation theory for general closed linear
operators on a Banach space to itself and it appears that much of the self-
adjoint theory does not carry over to the general situation. In this paper we
are concerned with a different aspect of perturbation theory, namely, the
effect on a semi-group of linear bounded operators (see Hille [2]) of adding a
bounded linear operator to the infinitesimal generator of the semi-group. The
insistence that the perturbing operator be bounded is an unpleasant restric-
tion. However, the simplicity and wealth of detail of the results for the linear
bounded perturbation to some extent atone for this lack of generality; and
since the methods do not seem to be adequate for a more general type of
perturbation, we feel justified in limiting this paper to the bounded case.

Those properties of a semi-group which persist under a linear bounded
perturbation of the infinitesimal generator we shall call stable properties. In
practical applications one would expect that the infinitesimal generator it-
self is known only to within certain limits of error and hence that a physical
significance could be attached only to the stable properties of the associ-
ated semi-group of transformations. Mathematically one would expect that the
stable properties of a semi-group are more basic than the others and that the
significant theorems in the subject should evolve about these properties. In
this paper we have made a start at cataloguing the stable and unstable
semi-group properties.

We first obtain a necessary and sufficient condition that a closed linear
operator on a Banach space ï to itself generate a semi-group (or group) of
bounded linear transformations strongly convergent to the identity at the
origin. By means of this result we are able to show in section three that if A
generates a semi-group (or group) of this type, then so does A-\-B where B
is any bounded linear transformation on H to itself. Thus the property of
being a semi-group or group of transformations is itself stable. If A generates
T{s) and A-\-B generates S(s), then the latter semi-group can be represented
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by an absolutely and uniformly (in every finite interval) convergent series
S(s) =¿£.0 5„(s) where SB(s) = T(s) and Sn(s)=f0sT(s-<r)BSr.-1(<r)d<T. If

T(s)\\ satisfies an inequality of the type ||7\.s)|| ijexp (cos), then so does
5(s)||. Moreover if T(s) is uniformly continuous for s>0, then so is S(s).

However the property of being eventually uniformly continuous is not stable
(see §5). If T(z) is holomorphic in a sector <&i<<t><$2 (— 7r/2 g <ï>i < 0 < <ï>2
^tt/2) and bounded near the origin in every subsector $1-|-€<^><i,2 —«
(e>0), then the same is true of S(z). In §4 we consider the resolvent of A
to be either completely continuous or weakly completely continuous. These
are likewise stable semi-group properties. Further if A is any closed linear
operator with completely continuous resolvent, then A has a pure point
spectrum consisting only of isolated points and it is possible to develop a
simple "finite" elementary divisor theory for A.

§5 is devoted to showing that certain semi-group properties are not
stable. The property that the elements of the semi-group are generalized
nilpotent is not stable nor is the property that the eigen-spaces(2) span the
space.

The semi-group of operators T(s) (sG[0, «>)) is a strongly continuous
one-parameter family of bounded linear operators on ï to itself which solves
the differential equation dT(s)x/ds=AT(s)x for x in the domain T)(A) of A
with the initial condition 7/(0) = /. In §6 we consider a natural generalization
of this, namely, the case where A varies with 5. We have supposed that A (s)
= A +B(s) where A is the infinitesimal generator of a semi-group of operators
and B(s) is a strongly continuously differentiable one-parameter family of
bounded linear operators. In this case there exists a unique strongly con-
tinuous one-parameter family of bounded linear operators U(s) such that
dU(s)x/ds=A(s)U(s)x for all xGS(i) and such that U(0)=I. We also
treat the nonhomogeneous differential equation.

2. On the generation of groups and semi-groups of operators. Let ï
be a complex Banach space and let S(ï) be the Banach algebra of all bounded
linear transformations on ï to itself. We shall be concerned with a semi-group
of operators (see [2]) on a semi-module © to Gï(ï) satisfying the following
hypothesis.

Hypothesis H.

T(Sl + 52)   =   nSi)T(Si), 51, 52 G ©,
(l) r(0) = /.

(ii)  T(s) is strongly continuous on ©.
At various times © will be the half-line [0, » ) ; or the whole line ( — », °° ) ;
or a sector in the complex plane <ï>i<arg s<$>2, — ir/2 á $i < 0 < $>2 = t/2 ; or

(2) The eigenspace associated with X0 is the set of all vectors x such that (X0/—A)kx = 0 for
some k.
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the whole complex plane. For the present we suppose .S to be [0, oo). Then
it is readily seen that co(s) =log || T(s)\\ is a lower semi-continuous subadditive
function and hence that

(1) o)0= inf w(s)/s = lim co(s)/í.
»>o s->»

Further given e>0, there exists an Mc>0 such that

(2) ||r(S)|| = Jf.exp [(«o +Oil-
Let A be the infinitesimal generator of the semi-group T(s). Then A will

be a closed linear operator, in general unbounded, with domain ^(A) dense
in 36. The resolvent P(X; A) of A belongs to (2(36) and is defined and holo-
morphic on the resolvent set for A, namely p(^4). For X and f in this set, the
resolvent satisfies the first resolvent equation

(3) R{\; A) - *(r; A) - (f ~ X)Ä(X; ¿)Ä(f; A)
as well as the defining relations

(U-A)i(X;i)-/,
R(\;A)(\I - A)x = x for x G £)(/!).

For Re (X) >w0, we have

exp (-\j)r(í)xdí.
0

The spectrum of A, denoted by 2(^4), is by definition the complementary set
to p(A).

Our first theorem is a generalization of a result due to both E. Hille [2,
Theorem 12.2.1] and to K. Yosida [8] on the generation of semi-groups.

Theorem 2.1. A necessary and sufficient condition that a closed linear oper-
ator A with dense domain generate a semi-group satisfying hypothesis (H) on
[0, oo) is that there exist real numbers M>0 and w such that

(6) \\R(\; A)n\\ =: M(\ - u)~n for X > u.

The necessity readily follows from the relations (2) and (5). In fact, mak-
ing use of the operational calculus [2, p. 304], we see that for X>w>wo we
have

(%  oo

R(\;A)nx= [(« - I)!]"1 I    exp (-Xs)s"-ir(j)xáí
J o

and hence that

/I  00

exp (-Xj)i"-1||r(s)||<ís á M(\ - w)-».
0
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Both the method of Hille [2] and that of Yosida [8] will yield the sufficiency
argument. For the sake of completeness we include a proof modelled after
the Yosida proof. Let Bx= -X[/-Xi?(X; A)]. Then

00

exp (îJSx) = exp (-Xj)£ (X2s)"R(\; A)n/nl
n=0

so that

(7)
|exp (sBx)\\ ^ exp (-Xs) £ (X2i)"[Af(X - «)-»]/w!

n=0

^ M exp [swX(X — co)-1] ^ M exp (ico')

for X sufficiently large (depending on our choice of a/>coo). We show next
that limx^ B^x = Ax for *G3)C4). By (4),

||XjR(X;,4)x - x|| = ||i?(X;vl)ylx|| ^ M||/1x|[(X - co)"1-»^ as X-> °o.

Since ||Xi?(X; ^4)|| ^K for X>2w and since S)(j4) is dense in ï, it follows by
the Banach-Steinhaus theorem [l, p. 79] that lim\^M Xi?(X; A)x = x for all
xGÏ. Thus in particular for ïGS(i), 7J\x = Xi?(X; .4)./lx—*4x as X—»<». We
next set Sx(s) =exp (s^x). Then for xG3)(-4) we have

5x(i)x - S„(S)X =    f    — fo(i -  cr)5x(cr)x]dcr
J o  da

S„(s - <t)Sx(<t)(Bxx - B„x)dc.
»/ 0

Making use of (7) we obtain

||Sx(s)* - SM(s)x\\ á M2s exp (sw')\\Bxx - Bßx\\.

Thus 5'x(s)x converges uniformly in every finite interval to a limit which we
designate by T(s)x. Since T)(A) is dense in H, it follows again by the Banach-
Steinhaus theorem (and by (7)) that S\(s)x converges uniformly in every
finite interval to a limit for all xGï- Further since S\(s) is a semi-group of
bounded operators strongly continuous on [O, oo), the same is true of T(s).
Finally, taking the limit on both sides of S\(s)x — x=f0sS\(o-)B>ixd(r, we see
that for x G 25 (A)

(8) T(s)x- x =  I    T{p)Axdo.
Jo

Thus if B is the infinitesimal generator of T(s), the differentiating of (8) gives
usBx = Axon 25(^4) C25(.B). Now forX>co, R(X; B) is an inverse and R(X; A)
is a right inverse for ÇXI-B). Hence RÇX; B) = i?(X; A) and A =B.
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Corollary 2.2. A necessary and sufficient condition that a closed linear
operator A with dense domain generate a semi-group T(s) satisfying (H) on
[0, oo) and such that ||P(s)|| áexp (us) is that

(9) \\R(\; A)\\ = (X - co)-1 for X > co.

The necessity follows directly from (5). It is clear that (9) implies (6)
with M=\. Again since M=i in (7), the same proof as in Theorem 2.1
will yield T(s) with |[P(s)[| is exp (co's) for all «'>« and hence for co'=co.

Corollary 2.2 is a slightly sharpened statement of the Hille-Yosida theo-
rem. It is worth noting that the condition ||P(s)||^exp (us) is a stronger
condition than lim ||P(s)|| =1. For example if we define a(s) = (2s — s2)112 for
0 = 5 = 2 and equal to zero elsewhere, then it is easy to see that a(s) is sub-
additive and continuous on [0, oo). Hence by a theorem due to Hille [2,
Theorem 16.3.1] there exists a semi-group of transformations satisfying (H)
on [0, oo ) such that ||7Xs)|| =exp [a(s)]. It is clear in this case that ||ï*(s)||
is not dominated by exp (cos) for any w.

Theorem 2.3. A necessary and sufficient condition that a closed linear oper-
ator A with dense domain generate a group satisfying (H) on ( — oo, oo ) is that
there exist real numbers M>0 and co = 0 such that

(10) ||i?(X;^)"|| =: M(\ x| - co)-» for\> « and\ < - co.

The necessity follows as in the proof on Theorem 2.1. Further since
R(\; —A) = — R(— X; A), it follows from Theorem 2.1 that both A and —A
generate semi-groups, say T+(s) and r_(s) respectively. It is clear from the
proof that the approximating semi-groups commute and hence that T+(s)
and T^(s) likewise commute. Thus S(s) = T+(s)T-(s) is also a semi-group
satisfying (H) on [0, co). For x(E3)(.<4), it is easy to see that dS(s)x/ds = 0.
Thus 5(s)x = x for xÇz%)(A) and all s^O, and since 1)(A) is dense in 36 the
same is true for all x£36, that is, T-(s) = T+(s)_1. Therefore T(s) = T+(s)
for 5 = 0 and T-(s) for 5^0 defines a group of linear operators satisfying (H)
on (— oo, oo) with infinitesimal generator A.

3. Stable properties. We now make use of the foregoing results to develop
a perturbation theory for semi-groups of operators. We intend to perturb
the infinitesimal generator by adding to it a linear bounded operator. This
section will deal with those properties of a semi-group which persist under
such a perturbation.

Lemma 3.1. Let A be a closed linear operator on 36 ¿o 36 and suppose SG@(36)
is such that ||j32?(Xo; -<4)|| =7<1 for some \oElp(A). Then A-\-B is a closed
linear operator with domain S)(A) and R(\o\ A-\-B) exists and

OO

(11) R(\o;A + B) = J2RCKo;A)[BRCKo;A)]\
n=0
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Further ||i?(X0; A) -2?(X„; A +B)\\ g||j?(X0; -4)[|-y(l -y)~\

It is clear that A-\-B is a closed linear operator with domain 25(^4). We
note that

R^ ¿ R(\o; A)[BR(\o; A)]" = R(\o;A)[l - BR(\0; A)]~*
n-0

and hence that

[Xo/ - (.4 + B)]R = [I - 5i?(X0;^)][/ - £-R(X0; .4)]-1 = /.

Further the range of R is precisely 2)(yl) since the range of [/ — BR(\o; A) ]~l
is ï. Thus given xG2)(^4) there exists a y such that x = i?y. Therefore

R[\oI - (A + B)]x = R[\0I - (A + B)]Ry = Ry = x

so that R is both a left and a right inverse. The bound on ||i?(X0; A)
— R(ko; .<4+.B)|| comes directly from the expansion.

Theorem 3.2. If A is the infinitesimal generator of a semi-group of linear
operators satisfying (H) on [0, ») and if 5£Ê(ï), then A+B on 25(^4) is
likewise the infinitesimal generator of a semi-group of linear operators satisfying
(H) on [0, «,).

By Theorem 2.1, R(K; A) satisfies the inequalities (6). Hence for X>coi
= co + M\\B\\,\\BRÇK;A)\\^M\\B\\/(K-co)<i;andbyLemma3A,R(K;A+B)
exists and is equal to ^"_0 i?(X; A) [BR(K; A)]' which converges absolutely.
We now regroup the terms of [ X)"-o RÇX; A)[BR(K; A)]']n according to
powers of B. Any term containing k of the B's will possess n-\-k R(K; A)'s
since each B introduces another R(\; A). Further the i?(X; ^4)'s will be in
k-\-1 nonempty groups separated from each other by the k B's. In other words
it will be of the form

R(\; Ay*BR(\; A)nB ■ ■ ■ R(\; A)rkBR(\; A)rk+\

J^ÎÎi1 rt = n-\-k and ri>0. In norm this term will be less than or equal to

M(X - w)-"||5||Af(X - w)-r»||5|| • • • M(\ - w)-">\\b\\M(\ - «)-•*"
= üíí+1||.b||*(x- «)-<"+».

The number of terms containing k of the B's is precisely the coefficient of x*
in (1-x)—= XXo C?x*. Hence

\\R(KA + B)n\\ g ±ClMk+1\\B\\\x - mf**«
k=o

= M(\ - w)-"[l - M\\B\\(\ - co)"1]-1 ^ M(\ - coO""

for X>wi. The result now follows from Theorem 2.1.
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Theorem 3.3. Let A be the infinitesimal generator of a semi-group of linear
operators T(s) satisfying (H) on [0, oo) and such that ||r(s)|| ^exp (us). If
-B£®(36), then A+B on T)(A) is likewise the infinitesimal generator of a semi-
group of linear operators S(s) satisfying (H) on [0, oo) and such that \\S(s)\\
gexp (uis) where coi=co + ||-B||.

In the proof of Theorem 3.2 we have merely to replace if by 1 to obtain
the inequality ||2?(X, ^4+5)|| g(X—coi)-1 for X>coi. The result now follows
from Corollary 2.2.

Theorem 3.4. If A is the infinitesimal generator of a group of linear
operators satisfying (H) on (— oo, oo) and if 5GS(36), then A+B on ^)(A)
is likewise the infinitesimal generator of a group of linear operators satisfying
(H) on ( — oo,   oo).

The proof follows the same argument as that of Theorem 3.2, depending
now on Theorem 2.3.

Theorem 3.5. If A is the infinitesimal generator of a semi-group of linear
operators T(s) satisfying (H) on [0, oo) and t/5G®(36), then the semi-group of
linear operators S(s) generated by A+B (defined on %)(A)) can be represented
by the series expansion

(12) S(í) = ¿S,(í)
n=0

where So(s) = T(s) and Sn(s)x=foT(s — <r)BSn-.i(o-)xd(r.

It is clear that S0(s) is strongly continuous on [0, oo) and that ||S0(s)||
iS M exp (cos) by (2). Suppose Sn(s) is likewise strongly continuous on [0, oo)
and that

(13) \\Sn(s)\\ =- M(M\\B\\)»s" exp (cos)/»!.

Then T(s — a)BSn(a) will be strongly continuous on [0, s] so that the integral
defining Sn+i(s) exists in the strong topology. Further

||5,+i(í)|| = M\\B\\  ("exp [co(s - cr)]||sn(<r)||á<7
J o

=■ M(M\\B\\y+1sn+1 exp («*)/(» + 1)!.

Finally for Si<s2

(14)
/• «i

|| [T(s2 - <r) - T(Sl - cr)]S5n(o-)x||ácr
o

+ fS2\\T(Si- o-)\\\\B\\\\Sn(o-)x\\dcr.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



206 R. S. PHILLIPS [March

As Si, s2—»So, the integrand in the first term on the right converges to zero
boundedly and the integrand of the second term is bounded. It follows that
5„+i(s) is strongly continuous on [0, oo). By induction, Sn(s) is well defined,
strongly continuous, and satisfies (13) for all integers n. Thus the series (12)
is majorized by the series expansion of M exp (cots) where coi=co + Af||5||.
For X>coi, we can therefore write

/» oo r-     00 ~1 00 *% 00exp ( —Xs)     22 Sn(s)x \ds = 22 j    exp ( — \s)S„(s)xds.
0 L ni=0 J n=0 J 0

Now if x* (E.X* it is a consequence of the strong convergence of the integral and
of the Fubini theorem that

x*     I    exp ( — Xs)Sn(s)x¿s

n oo

=   I    exp ( — Xs)x*[S„(s)x]ds
J 0

=    f    exp (-Xs)    |       X*[T(S -  cr)55n_i(cr)x]cicrcfs
«/ 0 J 0

/► 00 y»  00

exp ( — Xcr)  I    exp [ — X(s — <r)]x*[r(s — o-)BS„-i(<r)x]dsdo-
o J <r

/I 00

exp (-\<r)x*[R(\; A)BSn-1(o-)x]do-
o

= x*Tä(X;^)b| (*   exp (-X<r)5„_i((7)xcfo-i    .

Hence by induction

exp (-Xs)5„(s)xds = R(\; A)[BR(\; A)]nx.
o

From the proof of Theorem 3.2 it is known that
y» 00 00

R(\;A+B)x=  j    exp (-\s)S(s)xds = Y, R(\; A)\BR(\; A)]nx.
J 0 K=0

Thus for X>coi, the Laplace transforms of both S(s) and 2Z"_0 Sn(s) are
equal and hence by the uniqueness theorem [2, Theorem 10.2.3] these two
functions are equal.

The formal expansion (12) is familiar to the physicist for groups of uni-
tary operators on a Hubert space. By means of the inequalities (13) we are
also able to estimate the remainder term if we use only a finite number of
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terms in the expansion (12).

Corollary 3.6. Under the hypothesis of the preceding theorem

S(s) - ¿ Sh(s) g M'(Af||5||)«+15"+1 exp (w,s)/(m + 1)!

where M depends on the choice of co>w0 and û>i = co + AT||/i||. In particular
\\Sis)-T(s)\\ZM2\\B\\s exp (œ, s).

Corollary 3.7. If A is the infinitesimal generator of a semi-group of linear
operators 7\s) satisfying (H) on [0, w) and ¿f 2?(z)G@(30 is holomorphic in
some domain @ of the complex plane, then the semi-group of linear operators
S(z, s) generated by A+Biz) is likewise holomorphic in © for each s^O.

It follows from (13) that the expansion XXo Sn(z, s) converges uniformly
in every closed bounded subdomain of @. It is therefore sufficient to show
that each S„(z, s) is holomorphic in ®. This is clearly true of 5o(z, s) = Tis).
Suppose it is likewise true for 5n(z, s). Then for Zi, Z2G®,

Sn+liZ2, s) - S„+i(zi, s) C " B(z2) — B(Zl)r•J 0
T(s — a) -Sniz2, a)da

Zi — Z\ Jo Zi — Z\

+   1     T(s - o)B(zi) -da.
J 0 Z2 — Zi

This converges to a limit in the uniform topology as Z\—»z2 since this is true of
the incremental ratios on the right and since [S„(z2, s)—Sn(z\, s)]/(zî — zx)
converges uniformly in 5G [0, L] to its limit (because of the fact that S„iz, s)
with sG[0, L] is uniformly bounded in every closed bounded subdomain of
©).

Theorem 3.8. Let A be the infinitesimal generator of a semi-group of linear
transformations T(s) satisfying (H) on [O, w ) and uniformly continuous for
s>0. Then for B£Ë(Ï), the semi-group of linear operators Sis) generated by
A-\-B on 25(^4) is likewise uniformly continuous for s>0.

Here again we make use of the series representation (12) for S(s). Because
of (13) the expansion converges in the uniform operator topology uniformly
in every finite interval. Thus it is sufficient to show that Snis) is uniformly
continuous for s>0. This is true by hypothesis for n = 0. Again using an
inductive argument we assume it to be true for 5„(s). Then for 5i ̂ so ^2

||Sn+l(Si)  - 5„+i(5i)||

^ (Mll^H)"*1^!)"1 f    ||/(s2 - a) - T(ßt - a)\ I a" exp (o,a)da
Jo

+ I ii - ii I MiM\\B\\)n+1sl exp (wii)/n!.
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Finally since 11 7"(s2 — <r) — T(si — <r) 11 ̂ 2 M exp (us2), the integrand on the right
converges boundedly to zero for all cr^si. Hence ||Sn+i(s2) — 5n+i(si)||—>0 as
si, s2—«o for all s0 = 0.

Thus we see that being uniformly continuous for s>0 is a stable property
for a semi-group. However, as we shall show by Example 5.2, being ulti-
mately uniformly continuous is not a stable semi-group property.

Theorem 3.9. Let @ be the open section 3>i < arg z < <î>2 where — w/2 =^ i»i < 0
<i>2^7r/2. Let T(z) be a semi-group of linear operators holomorphic in @ and
such that

(15) ||r[rexp(i*)]|| = K(4>), 0 < r = 1,

where K(<p) is bounded in every interval <Ï'i + é<</><<Ï,2 — « (e>0). Further sup-
pose that T[r exp (up)] converges strongly to I as r—>0 for each (/>G($i, $2).
Finally let A be the infinitesimal generator of T(z) and let 5£@(36). Then the
semi-group of linear operators S(z) generated by A +J5 on %)(A) is likewise holo-
morphic in @, satisfies an inequality of the type (15), and S[r exp (i<j>)] con-
verges strongly to I as r—>0 for each 0£(3>i, <t>2).

Let @ be the closed convex extension of 2 (A), the spectrum of A, and let
a(<p) be its function of support. Then <r(<p)-\-8 for 4>i + e<c/><<I,2 — e is the
function of support for the closed convex set 3)(5, e). Under the hypothesis
of our theorem Hille [2, Theorem 13.5.2] has shown that for each positive S
and e there exists an M(8, e) such that ||i?(X; .4)|| ^M(8, t)/d(X) for each X
exterior to S)(5, e) where ¿(X) is the distance from X to S). Thus for ||-ß|| M(ô, e)
<d(X) it follows from Lemma 3.1 that i?(X, A-\-B) exists and satisfies the
inequality

\\R(\;A + B\\ = M(o, e)[d(X) - ||^||M(S, e)]~l.

If we now adjoin to 3)(0, e) all points a distance less than or equal
to ||2ï||M(5, e) from S)(0, e), the result is again a convex body S)t' contained
in S)(||5||lf(ô, e), e). Further set d'(\) equal to the distance from X to S)/.
Then d'(\)^d(\)-\\B\\M(8, e). Hence \\R(\; A+B)\\^M(8, e)/d'(\) for all
points exterior to S)e'. Here we suppose 8 < M(8, «)||.B||. If we now employ an
argument used by Hille [2, Theorem 13.5.3] we find that S(z) is a semi-group
of operators holomorphic in the sector €>i+e<c/><4>2 — e and satisfying an in-
equality of the type (15). Since e > 0 is arbitrary, it follows that S(z) is actually
a holomorphic semi-group in all of ©. As Hille shows, S(s) converges strongly
to I as s—»0. From this it follows that for xGS)(^4)

S(z)x= x+  f   S(Ç)(A + B)xdÇ
J 0

and hence that S[r exp (ùp) ]x—»x for each #£($i, <i>2). Since S(z) also satisfies
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an inequality of the type (15), this remains true for all xGX-
We remark that if T(z) is holomorphic in the entire plane, this is equiva-

lent to Tiz) having a bounded linear infinitesimal generator A. Hence if
23GS(3E), then ^4+.BG<5(£) and therefore Siz) is also holomorphic in the
entire plane. Thus being holomorphic in the entire plane is again a stable
semi-group property.

4. Completely continuous and weakly completely continuous resolvents.
In the semi-groups which occur in the nonsingular problems of mathematical
physics, the resolvent of the infinitesimal generator turns out to be com-
pletely continuous. It is therefore of interest to study closed linear operators
with either completely continuous (c.c.) or weakly completely continuous
(w.c.c.) resolvents. We show first of all that both of these are stable properties
for the infinitesimal generators of semi-groups of linear bounded operators.
In case the resolvent of a closed linear operator is completely continuous,
the operator has a pure point spectrum and the eigen-spaces are finite-dimen-
sional. This fact permits us to obtain a simple elementary divisor theory for
such operators.

Theorem 4.1. If A is a closed linear operator on % to itself and if for some
XoGp(-4), -R(X0; .4.) is c.c. (or w.c.c), then i?(X; A) is c.c. (or w.c.c.) for all
\GpiA).

This is an immediate consequence of the first resolvent equation (3)
since the product of a bounded linear operator and c.c. (or w.c.c.) operator
is c.c. (or w.c.c.) and since the sum of two c.c. (or w.c.c.) operators is again
c.c. (or w.c.c).

Lemma 4.2. // A and B are closed linear operators on H to itself with non-
vacuous resolvent sets, if 25(^4)D2)(.B), and if R(K; A) is c.c. ior w.c.c), then
Rip; B) is also c.c. (or w.c.c).

Let XGp04) and ¿uGpCB) be fixed. Then (XI — A) is a closed linear
operator on 25(^4) and hence W=ÇKI—A)Rip; B) is closed and linear on ï.
By the closed graph theorem due to Banach [l, p. 41], W is bounded.
Finally Rip; B) =R(\; A)W is c.c. (or w.c.c.) since it is the product of two
linear bounded transformations, one of which is c.c. (or w.c.c).

Theorem 4.3. If A is the infinitesimal generator of a semi-group of operators
satisfying (H) on [O, «>) and if R(\; A) is c.c. ior w.c.c), then A+B on 2)(.4)
where 5G@(3E) also has a c.c ior w.c.c.) resolvent.

This is an immediate consequence of the above lemma since both A and
A +B are closed linear operators on 25(^4) with nonempty resolvent sets (see
Lemma 3.1). The result also follows directly from the representation of
R(K; A+B) given in Lemma 3.1.

Another result similar in character to Lemma 4.2 is given in the following
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theorem which was suggested by a result due to F. Rellich on self-adjoint
operators [4, vol. 118].

Theorem 4.4. // U and V are linear bounded transformations on H to §),
if the range of Ucontains that of V, and if Uis c.c. ior w.c.c), then Vis likewise
c.c. ior w.c.c).

Let 2)? = [x | Ux = 0 ]. Then ÜD? is a closed linear subspace of ï and defines the
quotient space 3E/93Î of cosets x. If we define a norm ||x|| =inf [||x|||xGx],
then 3Ê/9K is again a Banach space. We define Üx=Ux for xGx. Then Ü
is well defined and linear and possesses an algebraic inverse. Further

|| ¿711 = sup [||£7x|| |||x|| < 1] = sup [||Z7x|| |[|x|| < 1] = \\U\\,

so that 0 is bounded and hence Ü~l is closed. Finally Ü is c.c. (or w.c.c).
For if ||xit|| gl, then there exist xk£.xk such that ||x*|| ^2 and hence a subse-
quence of Üxk= Uxk converges (or converges weakly) in §). Now W= Ü~lV
is closed and linear on X to 3Ê/5DÎ and hence by the closed graph theorem
[l, p. 41 ] W is bounded. Finally V= OW is c.c. (or w.c.c.) since it is the
product of two bounded linear operators one of which is c.c. (or w.c.c).

We remark that Lemma 4.2 is an immediate consequence of Theorem 4.4
if we set U = R(K; A) and V=Rip; B).

Theorem 4.5. If A is a closed linear operator on ï to itself possessing a
completely continuous resolvent, then A has a pure point spectrum consisting
of isolated points.

By the F. Riesz theory for completely continuous operators (see [l,
chap. 10]), it is known that [/+(X—X0)i?(X0; -4)]-1 exists and belongs to
@(36) for all but an at most denumerable set of isolated points {X„}. Cor-
responding to each X„ there is one or more nonzero vectors xn such that
(X„—X0)i?(X0; ̂ 4)xn=—x„. Thus x„G2)(^4) and x„ = (X0/—^4)i?(X0; ̂ 4)x„
= (X0J — yl)x„/(X0— X„). In other words, Axn=\nx„ so that XnG-P —2(^4). On
the other hand if XG{XB}, then [/+(X-X0)i?(X0; ^4)]_1 exists. i?(X)
= R(Ko; A) [7+(X—X0)i?(X0; 4)]-1 clearly has 2)(^4) for its range and is the
right inverse of (KI-A) = (X-X0)/+(X0/-^). Hence RÇK; A)=R(K) for
XG{Xn}.ThusS(^) = {X„}.

We next obtain an elementary divisor theory for A, again supposing
i?(X; A) to be completely continuous. Let C0 be a circle about the point X0
G2(^4) containing no other point of the spectrum. Then

(16) Eo= (2«)-1 f   R(K;A)d\
J c„

defines a projection operator (see Hille [2, Theorem 5.14.2]). We shall define
the range ST/io of £o to be the eigen-space associated with Xo.
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Theorem 4.6. Let A be a closed linear operator on 36 to itself with a com-
pletely continuous resolvent. For X0£2(j4) let Wk be the null space of the operator
(koI—A)k. Then for k>0, Wk is always of positive finite dimension and there
exists an n>0 such that Wk = Wn for k^n whereas Wk~i is a proper subset of
Wkfork^n.

Since i?(X; A) is holomorphic for XGp(-<4), the integral in (16) will be the
limit in the uniform operator topology of the approximating sums. By hy-
pothesis i?(X; A) is completely continuous and therefore the same is true of
the approximating sums. Therefore Eo is the uniform limit of completely
continuous operators and is itself completely continuous (see Banach [l, p.
96]). Thus any bounded subset of the range space Wo must be compact and
hence Wo is finite-dimensional (see Banach [1, p. 84]). It is easy to show
that AE0x exists for all x and that^4£0 = -Eo^ onS)(^4) (see Hille [2, p. 111]).
Thus £)(A)DW0. We now set A0=AE0 and 2?0(X) = EBR(\; A) =R(\; A)E0.
Then (X£0-^o)i?o(X) = R0(\)(\Eo-A0) =E0. Thus relative to Mo, -Ro(X) is
the resolvent of A 0. Further it can be shown that Xo is the only nonremovable
singularity of i?o(X) (see Hille [2, Theorem 5.14.2]). Since Wo is finite-dimen-
sional we have merely to appeal to the algebraic case to see that the theorem
is valid for Aa on W.o. Suppose for some x0ES)(^4) that (X0/—A)x0 = yoE.Wo.
Then i?(X; A)y0 = R(\; A)E0yo = EoR(X; A)y0 belongs to Wo- Further since
x0 = R(\; A)(\I—A)x0 = (\—Xo)i?(X; A)x0+R(\; A)y0, we have

xo = (2«-*)-1 I    (X - Xo)-xcfX = .EoXo + (2«)-1 f   (X - Xo)-1^(X; A)y0d\.

The integral on the right lies in Wo since this is true of the integrand. Hence
xo can be represented as the sum of two elements in UTJÎo and is itself in SOîo.
Consequently if (X0I — A)kx0 = 0 GSOîo, then (X0J—Ay^XoE.Wo and by induc-
tion XoEüDío. Hence all of the spaces Wk (for k>0) are contained in Wo.
Since the theorem was valid for subspaces of Wo, this concludes the proof of
the theorem.

Theorem 4.6 is analogous to the results of F. Riesz [5, p. 79] for completely
continuous operators A. It is also closely connected with the work of A. E.
Taylor [6, p. 660] on poles of i?(X; A).

5. Unstable properties. In this section we show by means of examples
that the following semi-group properties are not stable under a linear bounded
perturbation of the infinitesimal generator: (1) that the semi-group operators
(s>0) be generalized nilpotent; (2) that for s sufficiently large the semi-group
of operators be uniformly continuous; and (3) that for completely continuous
resolvent, the eigen-spaces span X.

5.1. If T(s) is a semi-group of linear operators satisfying (H) on [0, oo)
and such that T(s) is generalized nilpotent for s>0, then co0= —0° and
RÇK; A) is an entire function. If x0£S)(yl), then it is clear that there exist
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linear bounded transformations B such that 2Jxo=XoX0 — Ax0. For such a B,
04+.B)xo=XoXo so that Xo belongs to the point spectrum of A-\-B. Thus
RÇK; A +2?) has a singularity at Xo and elements of the semi-group generated
by A+B are no longer generalized nilpotent for s>0.

Theorem 5.2. The property that a semi-group of linear bounded operators
satisfying (H) on [0, «>) be eventually continuous in the uniform topology is not
a stable property.

Suppose the contrary were true and that A is the infinitesimal generator
of a semi-group of linear bounded transformations 7\s) satisfying (H) on
[0, oo ) where Tis) is continuous in the uniform topology for 5 sufficiently
large. Let B be a bounded linear transformation. Then for each complex
number z the semi-group Siz, s) generated by A -\-zB is uniformly continuous
for s^Z(z). By the usual second category argument there exists a circle C
in the z-plane and an L0 such that Liz) ^L0 for a set of points 2) dense in C.
By Corollary 3.6, Siz, s) is bounded if the range of s and z is likewise bounded.
Further, by Corollary 3.7, Siz, s) is an entire function of z for each 5^0. Hence
by the theorem of Vitali as extended by Hille [2, Theorem 3.13.1] it follows
that Siz, s) is continuous in the uniform topology when s^L0 for each z in
the plane. In the present instance, the expansion (12) takes the form

00

Siz,  î)   =   Z ZnS*(s)
n=0

where as before Sois)=Tis) and 5'„(s) = J'¡T'(s — <r)BS'„-1(0")da. Thus 5„(s)
= (2ir¿)_1/r5(z, s)z~ín+1)dz where T is a circle about the origin. Finally since
\\Siz, 5+A)—5(z, s)|| converges to zero uniformly for zGI1 as A—>0 where
5>Z,o (by the Vitali theorem), it follows that 5„(s) is likewise continuous in
the uniform topology for s>L0. Therefore in order to prove the theorem it is
sufficient to exhibit a semi-group Tis) satisfying (H) on [O, 00 ) and eventually
uniformly continuous, along with a bounded linear transformation B such
that for any L0 there exists an Sn(s) which is not continuous in the uniform
topology for some s>L0.

To this end we set X = ?(0, 1) and define (T(s)f)(Ç)=f(Ç+s) for fál-í
and equal to zero otherwise. Then T(s) satisfies (H) on [O, 00). It is clear
that T(s)=0 for s^l so that Tis) is certainly continuous in the uniform
topology for sel. We set (5/) (£)=/(?-1/2) for if ̂ 1/2 and equal to zero
otherwise. It is now convenient to introduce the auxiliary function </>(£) de-
fined on (— 00, 00) to be zero if if<0 and if if>l and to be one for 0^£gl.
Then considering/(if) G 8(0, 1) to be extended to the entire line with/(if) =0
for £$[0, 1], we see that we may also write (r(s)/)(£) =/(£+s)<K£) and (5/)©
-/({-1/2)*«). Thus

Tis - a)BTia)f = /(£ + 5 - l/2)*({ + s-a- l/2)0({ + s - <r)0({)
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and hence

Si(s)f - /({ + s - 1/2)0«)  f *0tt + s - a - l/2)0(£ + s - <r)<fo.
J o

In general we have

(17) Sn(s)f - /(€ + s - n/2)Kn(t, s)

where

Knit, s) = 0(0  f   #„-l(£ + í - ff - 1/2, cr)0(£ + s - o-)d<i.
J o

It is clear from (17) that S„(s) =0 for sàs„ = l+w/2. We shall now show that
lim infj^,- ||S„(s)|| >0. In order to do this we estimate K„(%, s). In the first
place it is clear that Kn(£, s)^0. For l£s£3/2, 0=^1/2, and ¿+s-l ^a
á|+s-l/2 we see that O^tr^s and that 0(£+s-<r) = 1 = 0(£+s-<r-1/2).
Thus Ktâ, s)èl/2 for l^s^3/2 and 0=^^1/2. Suppose that £„_i($, s)
= 2-"("-«/2 for (»+l)/2-2-<»-1>ásá(»+l)/2 and 0á£g2-<»-». Then for
w/2 + l-2-"gsg«/2 + l, 0gÇg2-", and 0g|+s-c7-l/2g2-("-1) we see
that the interval (w + l)/2 — 2~'-n-1'> ¿a¿(n + í)/2 has an interval of length
at least 2~n in common with the above cr-interval. Further O^ij+s — cr_^l
and hence 0(i+s-tr)=l. Hence Kn(£, s) =■2-"2-"<"-1>/2 = 2-n<"+1>/2 for n/2
+l-2-*£s£n/2 + t and0g^g2-". Finally set /A(£) = 1 for l-A^Çal and
equal to zero elsewhere. Then we have by (17) that Sn(n/2 + l — A)/A
=/a(€+1-A)X»(S, »/2 + 1-A). For A^2~", ||Sn(n/2 + l-A)/4|| fc2-<»+»'s
||/A||. Hence ||5n(w/2 + l)-5n(«/2 + l-A)|| =2-"<»+1»2 for A^2~". Thus
Sn(s) is not uniformly continuous at s=«/2 + l. This concludes the proof of
Theorem 5.2.

The regular Sturm-Liouville problem involves a self-adjoint operator on a
Hubert space to itself with completely continuous resolvent. The eigen-
functions span the space and this fact leads to some very useful expansion
theorems. Much of the recent work in abstract analysis is an attempt to
generalize this familiar situation to the general closed linear transformation
on a Banach space to itself. Even if we restrict ourselves to closed linear
operators with completely continuous resolvents, the expansion problem need
not make sense. Such an operator may have no spectrum and hence no eigen-
spaces. There are of course many examples where the eigen-spaces do span
the space and one might at least hope that this condition has a degree of
stability. That this is not the case is illustrated by the example below.

Example 5.3. Let 36 = 8P(0, 1) where ¿>== 1. The semi-group of left transla-
tions (T(s)f)(%) =/(£+s) for £ál~-s and equal to zero elsewhere satisfies
(H) on [0, oo ). Since T(s) =0 for s ¡Hi, each of the operators T(s) for s>0 is
generalized nilpotent. The infinitesimal generator A is the derivative operator
acting on the domain T)(A) of all absolutely continuous functions on [0, l]
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with derivatives in 3Ê and which vanish at if = l. The resolvent R(K; A)f
=f\ exp [X(if—a)]fia)da is clearly completely continuous and entire in X.
Thus A has no eigen-spaces whatever. To the operator A we add the one-
dimensional linear bounded operator (.5/) (if) = 4/01/(<r)do\ The operator C = ^4
-\-B is closed and linear on 25(C) =25(^4) and generates a semi-group of linear
operators. The resolvent of C is of course still completely continuous;
however i?(X, C) has an infinite set of singular points. These are the solutions
of the indicial equation (X —2)2 = 4 exp(—X) of the differential-integral
equation Xy — y'— 4/¿y(o-)¿<r = 0 with boundary condition y(l)=0.

We shall now show that the eigen-spaces of C span 2Ê. Since 25 (C*) is
dense in H for each k>0 (see Hille [2, Theorem 11.5.1]) it will be sufficient
to show that any/G25(C) can be approximated by the elements of the eigen-
spaces. In particular it will be sufficient to show that for/G25(C4)

(18) Fnf = i2wi)-i f  RÇK; O/áX -»/

as n—» » for a set of expanding contours T„. Now by repeated application of
(4) we obtain for/G25(C4)

RÇK; C)f = /X-1 + C/X-2 + C2/X"3 + C3f\~^ + R(K; C)C4f\^.

Hence if T„ encircles the origin, we obtain

(27TJ)-1 j    Ri\;C)fd\ =/+ (2«)-1 f   RÇK; C)C4/X~4aX.

In order to establish (18) it is therefore sufficient to show that

(19) f  R(\; C)g\-*d\   ->0
II ̂ rn I

as n—>oo for each gGï-
A straightforward calculation yields

Pi\)Ri\;C)g = (X - 2)2 j   exp [-X(cr - «)]g(cr)d«r

+ 4{1 -exp [-X(l -Ö]} J"   gi')d*
(20) {

+ 4 exp (-X)  f   exp [X(| - a)]gia)da
J o

— 4 I     exp i — \a)gia)da
J o

where pÇK) = (X — 2)*—4 exp (—X). For T„ we shall choose circles of radius
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r„ about X = 2 with r„—>oo as n—>oo. We shall require an estimate of pÇK)
for X£r„. Since the absolute value of pÇK) remains unchanged if we substi-
tute X conjugate for X, we need only consider X in the upper half-plane. Let
X — 2 =r exp (id) =x+iy. Then the zeros of p(X) in the upper half plane occur
where (a) r2 = 4 exp ( — x — 2) and (b) 2d=—y-\-2nir for some positive or nega-
tive integer n. Consider first [x= — 2 — log (r2/4), y = (r2 — x2)1'2] which is
the solution of (a) as a function of r. As r increases, x decreases, y increases,
and 6 decreases toward 7r/2. Hence for large increasing r, 6 is practically sta-
tionary so that (b) will be satisfied by increasing values of y approximately 2tt
apart. We now choose for the rn's successive values of r for which y satisfies
y = — 26+7T (modulo 2tt) when x satisfies (a). We shall show for | X — 21 = r„ that

(21)   \p(\)\ = (l/4)[r2 + 4|exp(-X)|] = (1/4) [r2 + 4 exp (-x - 2)].

In general |^(X)| > |r2 — 4 exp ( — x — 2)\ and hence (21) is satisfied whenever
r2ïï8 exp ( —x —2) or whenever exp ( — x — 2)}±r2/2. Thus (21) is satisfied
for x outside the interval —2—log (r2/2) âjxa —2 —log (r2/8). The width of
this x-interval is just log 4 and it contains the value x=—2 —log (r2/4).
For fixed r, the corresponding change in y is roughly log (r2/4) log (4) r~x
which goes to zero as r—► oo. Likewise the corresponding change in 9 is less
than log 4/r which also goes to zero as r—»oo. Hence for r=r„ and large n,
the vectors (X —2)2 and 4 exp (—X) are roughly -k radians out of phase in
the doubtful interval. Thus for large n, the angle between these vectors will
certainly remain greater than 7r/2, so that even in this doubtful interval the
inequality (21) remains valid for n sufficiently large. It is now clear from
(20) and (21) that each term in R(\, C)g is in norm 0(r„) as rn—»=°. Hence
the integral of X_4i?(X; C)g about Tn goes to zero as ra—>oo. This concludes
the proof of the fact that the eigen-spaces of C span 36.

6. A differential equation. A semi-group of linear operators T(s), satisfying
(H) on [0, oo) and with infinitesimal generator A, solves the differential
equation dT(s)x/ds=AT(s)x for x£S)(.4) and with initial condition T(0) = 1.
An instance of this differential equation would be a linear partial differential
equation with s-invariant coefficients. The fact that the coefficients must be
s-invariant constitutes a serious limitation on the applicability of the theory
and it is clearly desirable that A be permitted to vary with s. We are there-
fore led to the following problem: Given a one-parameter family of closed
linear operators A (s) with domains dense in 36, to find a one-parameter family
of linear bounded operators U(s) strongly continuous for s^O such that
U(0)=I and dU(s)x/ds=A(s)U(s)x for all x in a given dense domain. In
this section we shall present a solution to a rather restricted instance of this
general problem.

Lemma 6.1. Let T(s) be a semi-group of linear operators satisfying (H) on
[0, oo). For f(s) strongly continuous on [0, oo) to 36, g(s)=foT(s—a)f(a)da
= foT(o-)f(s — o-)da exists and is itself strongly continuous on [0,  oo) to 36. //
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fis) is strongly continuously differentiable, then so is gis) and

dgis)/ds = T(s)f(0) +  f°T(s- a)f'(a)da
J o

(22)
= Sis) +A  f8T(s- a)S(a)da.

J o

Since || T(s)\\ g M exp (cos), it is clear that T(s — a) fia) is strongly continu-
ous in <rG[0, s] whenever the same is true of fia). In this case g(s)
= SoT(s — a)S(a)da will exist in the strong topology and be equal to
fsQT(a)S(s-<r)d<T. Further(3)

gis + A) - gis) =   f ' 2» [Sis + A- a)- Sis - a) ¡da
J o

-i s+A

■/.
+ 2»/(i + A - a)da.

The integrand in the first term converges pointwise to zero and remains
bounded in the norm as A—>0. The integrand in the second term also remains
bounded in norm as A—>0. Hence ||g(s+A) — g(s)||—»0 as A—>0. If we further
assume that/(s) is strongly differentiable with bounded derivative, then, di-
viding (23) termwise by A, we first note that || r(o-) [{/(s+A-cr) -Sis-a) JA"1
—f'is — <r)]\\ converges boundedly to zero for a<s, and second we note for
a<E[s, s+A] that ||r(<r)/(s+A-«r)-r(s)/(0)||-»0 as A->0. The first equality
in (22) now follows. We next write the incremental ratio as

[gis + A) - gis)]A~i m  [r(A) _ jJa.-!  f S T{s _ a)S(a)da
J o

-f-A-M Tis + A - a)S(a)da.

As above, A-1S!+AT(s+A—a)S(a)da^(s). Further we already know that
dg(s)/ds exists. Hence foT(s—a)S(a)da(E.'£)(A) so that the second equality of
(22) is likewise valid. The strong continuity of dg(s)/ds follows from the first
part of the theorem using the first representation of dg(s)/ds given by (22).

Theorem 6.2. Let A be the infinitesimal generator o/ a semi-group o/ linear
operators T(s) satisfying (H) on [0, <»). Let B(s) be a strongly continuously dif-
ferentiable function on [0,  oo) to @(ï). Then there is a unique one-parameter
family of bounded linear operators Uis) strongly continuous on [0, oo) such that
i/(0) = I and for xG2)(^4), Z7(s)x is strongly continuously differentiable and

(3) For convenience we can define f(s) =/(0) for i<0.  This makes (23) meaningful  for
A<0.
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(24) dU(s)x/ds = [A + B(s)]U(s)x.

This solution has the representation
OO

(25) U(s) = £ Sn(s)
n=0

where S0(s) = T(s) and Sn(s) = f¡T(s —a)B(o-)S„^i((r)d<r.

We employ the method of successive approximations, defining

(26) tVo(s) = T(s), Un(s)x = T(s)x +  f   T(s - a)B(o-)Un^(o-)xdcr,
Jo

and
Wo(s) = t70(s),

(27) r '
Wn(s)x = Un(s)x - i/n_!(s)x =|     T(s - a)B(rr)Wn^(<T)xda.

Jo

In the first place B(s)U0(s)x is clearly strongly continuous for all xG36.
Hence by Lemma 6.1, £/i(s)x is well defined and strongly continuous. By an
inductive argument we see that U„(s)x is likewise strongly continuous. Now
\\Wo(s)\\^M exp (us). Let -rT. = sup[||5(cr)||, ||B'(ff)|||«rG [0, s]]. Then it is
readily seen that

(28) ll^-Wll è Mn+1Kn,exp («i)//»t.
Hence Un(s) = 23?_0 Wk(s) converges uniformly in every finite interval (in
the uniform topology) to a strongly continuous function U(s) on [0, oo)
to @(36). Since t7„(0) =7, it follows that £7(0) =7. Finally taking the limit on
both sides of (26) we obtain

(29) t7(s)x = T(s)x +  f   T(s - o-)B(<r)U(o-)xdo-.
J 0

Up to this point we have used only the fact that B(s) is strongly continu-
ous. We show in Example 6.4 that this is not sufficient in order that c7(s) be a
solution for (24). On the other hand, if it were known for x£S)(yl) that U(s)x
is strongly continuously differentiable, then we would have

[B(s + A)t/(s + A)x - B(s)U(s)x]ùrl

= B(s + A){[U(s + A)x- C/(s)x]A-i}
+ [B(s + A) - 5(s)]A-1tV(s)x

-^B(s)U'(s)x + B'(s)U(s)x.

Hence  B(s)U(s)x  would  likewise  be strongly continuously  differentiable
(here we use the fact that B(s) is strongly continuously differentiable) and
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by Lemma 6.1 we could differentiate both sides of (29) to obtain

U'(s)x = AT(s)x + A   f   Tis- a)B(a)U(a)xda + B(s)U(s)x
Jo

= [A + B(s)]U(s)x.

It is clear from this that U(s) would then take 25(.4) into itself. Thus aside
from the uniqueness proof, it remains only to show that U(s)x is strongly
continuously differentiable for xG2)(^4).

It is clear that Wo(s)x is strongly continuously differentiable for xG25(^4).
Assuming that this is true of Wnis)x, then as in (30) it is easily shown to be
true of Bis)Wnis)x and hence by Lemma 6.1 it will be true of Wn+iis)x.
Again by Lemma 6.1 we have

Wnis)x = Tis)BiO)Wn-!ÍO)x + f   Tis- a)B'ia)Wn^ia)xda
Jo

+   f   Tis - a)Bia)W'n-iia)xda.
Jo

Thus

||WÍ(í)*|| è M exp ius)\\Ax\\,

and

||WÍ(í)*|I á MK, exp («j)||*||
+ M2K.s exp (wí)||x|| + M2Kts exp (íoí)||.4x||

g M2K, exp (ws)(l + s)C

where C = ||x||+||^4x||. Making use of (28) we obtain by induction that

\\wUs)x\\ g Mn+1K, exp (coi)[(in_l+ 0/(» - 1)!]C

Thus Xlr=o W„ is)x converges uniformly in every finite interval to a strongly
continuous function which, by the usual argument, is C(x).

In the uniqueness proof we shall need only the strong continuity of Bis).
Since 25(^4) is dense in 1, it will be sufficient to show that if for xG2)(.4),
t/(i)x solves the differential equation (24) with initial condition £7(0) =0,
then i/(s)x = 0 for all s ^ 0. In other words it is sufficient to consider a strongly
continuously differentiable function y(s) on [0, oo) to 25(4) such that y(0) =0
and dyis)/ds= [A+Bis)]yis). Operating on both sides of this equation by
Tis—a) and integrating gives

(31)       j    Tis - a)y'ia)da = T(j - a)Ayia)da +  j     Tis - a)Bia)yia)da.
Jo Jo Jo
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As in (30) it is easy to show for cr£ [0, s] that

[T(s - o-)y(a)]' = - T(s - <r)Ay(a) + T(s - o-)y'(o-).

We therefore obtain from (31)

(32) y(s) =   f   T(s- c)B(a)y(o-)dcr.
J o

Let 7w„=sup [||y(o')|||o'G [0, s]]. Then ms¿MKsmsfo exp (ua)do- and for s
such that MK,fo exp (cocr)¿cr<l it is clear that m, = 0. Since there is nothing
special about the origin in this argument, this clearly implies that y(s)=0
for alls^O.

It is worth noting that if a solution V(s) to (24) exists for B(s) merely
strongly continuous, then the method of successive approximations which
we employed will lead to this solution. For operating on both sides of (24)
by T(s — a) and integrating gives for x£S)(j4)

(33) V(s)x = T(s)x+  f   T(s - o-)B(c)V(c)xdo:
Jo

On the other hand the method of successive approximations yields U(s)
which satisfies (29). The difference y(s) = V(s)x— U(s)x satisfies (32) and
vanishes at s = 0. Thus the uniqueness argument shows that this difference
is identically zero.

Theorem 6.3. Let A be the infinitesimal generator of a semi-group of linear
operators T(s) satisfying (77) on [0, c°). Let B(s) and f(s) be strongly continu-
ously differentiable functions on [0, oo) to Ë(36) and 36 respectively. Then for
each x£SX^4) there exists a unique continuously differentiable function y(s) on
[0, oo ) to 36 such that

(34) y'(s)=\A + B(s)]y(s)+f(s)

and y(Q) =x. This solution has the form
00

(35) y(s) = U(s)x + £ wn(s)
n=0

where U(s) is given by (25), w0(s) =fdT(s — o-)f(a)do-, and

wn(s) =1     T(s — o-)B(a)wn-i(a)da.
Jo

It follows from Lemma 6.1 that w0(s) is strongly continuously dif-
ferentiable and hence by induction that w„(s) is likewise. In fact

w'o(s) = 7(s)/(0) +  C't(s- o-)f'(c)dc,
Jo
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Tis - a)B'ia)wn-iia)da +   j     Tis - <x).B(í7)í£¿_i(<7)d(r.
o J o

It is now easy to obtain the estimates

||w,(i)|| è Mn+1Kn,exp io,s)C.sn+l/in+ 1)!,

||«¿(í)|| á M^iCexp («*)£(/ + sn+1)/nl

where C, = sup [||/(<r)||, ||/'(ff)|||<rG [0, *]]. If we set wis) = £T-o w„is), then
as in the previous theorem wis) is strongly continuously differentiable and
w'is)= ^¡°_0 w„'(s). Further w(0)=0. From the definition of w„(s) and the
uniform convergence of the series 2iT-o v>„is) in every finite interval, it fol-
lows that

(37) wis) = Wois) +  f   Tis- a)Bia)wia)da.
Jo

Since wis) is strongly continuously differentiable we may, by Lemma 6.1,
differentiate (37) termwise. This shows immediately that wis) is a particular
solution of (34). Thus by Theorem 6.2, Uis)x+wis) is a solution for our
problem. The uniqueness follows precisely as in the uniqueness proof of
Theorem 6.2.

The particular solution wis) can also be put in a more suggestive form.
Let £/(s, t) be the solution of (24) for s^t with initial condition
£/(t, t)=I. Then by Theorem 6.2, Uis, r) = ^T-o S „is, r) where
Sois, t) = Tís-t) and S „is, r) =/Tsr(s-cr).B(o-)Sn-i(o-, r)da. On the other
hand Wo(s) =/050(s, T)/(r)dr. Further

fsnis,r)Sir)dr=   f   f ' Tis - <T)5(<r)5„_i(<r, r)Sir)dadr
J o J o   •» T

=   f'r(í-í)iW  f'Sn-iOr, r)S(r)drda.
Jo Jo

Hence by induction w„(s) =/Ô5„(s, r)S(r)dT. Finally because of the uniform
convergence (in the strong topology) of all series involved we have

(s)=   f U(s,r)S(r)dr.
J o

(38) w

Example 6.4. We now show by example that strong continuity of Bis)
in the hypothesis to Theorem 6.2 is not sufficient. Let £=8j,(0, 1) with p^l
and set (7\s)/)(if) =/((f+s) for £^1—s and equal to zero elsewhere. If O^s
^1/2, we set CB(»/) (£)=/(£) for 1/2— s^if^l and equal to zero elsewhere;
whereas if 5> 1/2, we set Bis) =1. It is clear that Bis) is strongly continuous
on [0, co). If (24) has a solution Uis), then as we noted at the end of the
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proof of Theorem 6.2, this solution will have the representation (25). Sup-
pose now that /GS)(^4); here S)(.4) consists of all absolutely continuous
functions which vanish at £ = 1 and whose derivatives again belong to 36.
Then it is easy to verify for 0 g> s g 1/2 and n > 0 that Sn(s)f= snf(£+s)/n ! for
1/2 —s =^ < 1 —s and vanishes elsewhere. Hence t/(s)/=/(£+s) for 0 =:£ < 1/2
-s; =exp(s) /(ê+s) for 1/2-s^^gl-s; and =0 for l-s<£=T. In gen-
eral for /ES)(yl), U(s)f will have a jump discontinuity at (1/2—s) and
hence will not itself belong to S)(.4). On the other hand (24) has no meaning
if Z7(s)/ does not belong to S)(^4).
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