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ABSTRACT

We compare the nonlinear matter power spectrum in real space calculated analytically from third-order
perturbation theory with N-body simulations at 1 < z < 6. We find that the perturbation theory prediction agrees
with the simulations to better than 1% accuracy in the weakly nonlinear regime in which the dimensionless power
spectrum, �2(k) ¼ k 3P(k)/2�2, which approximately gives the variance of the matter density field at a given k,
is less than 0.4. While the baryonic acoustic oscillation features are preserved in the weakly nonlinear regime
at z > 1, the shape of oscillations is distorted from the linear theory prediction. Nevertheless, our results sug-
gest that one can correct the distortion caused by nonlinearity almost exactly. We also find that perturbation
theory, which does not contain any free parameters, provides a significantly better fit to the simulations than the
conventional approaches based on empirical fitting functions to simulations. Future work should include per-
turbation theory calculations of nonlinearity in redshift-space distortion and halo biasing in the weakly nonlinear
regime.

Subject headinggs: cosmology: theory — large-scale structure of universe

Online material: color figures

1. INTRODUCTION

Cosmological linear perturbation theory (PT) has been re-
markably successful in explaining the precision measurements
of temperature and polarization anisotropies of the cosmic mi-
crowave background (CMB), most notably from the Wilkinson
Microwave Anisotropy Probe (Bennett et al. 2003). The CMB
data, combined with linear theory, have enabled us to determine
many of the cosmological parameters to better than 10% accuracy
(Spergel et al. 2006). As the CMB data improve, however, it has
become increasingly clear that one has to combine the CMB data
with the other probes to break degeneracies between the param-
eters that cannot be constrained very well by the CMB data alone.
For example, the CMB alone cannot break degeneracy between
the equation of state of dark energy, w, and the matter density,
�m (Spergel et al. 2006).

The large-scale structure (LSS) of the universe has also been
known as an excellent probe of cosmological fluctuations as
well as cosmological parameters, as proven successfully by the
Two Degree Field Galaxy Redshift Survey (Cole et al. 2005)
and the Sloan Digital Sky Survey (Tegmark et al. 2004; Seljak
et al. 2005). A joint analysis of the future CMB and LSS data is
extremely powerful in constraining most of the cosmological
parameters to better than a few percent accuracy (e.g., Takada
et al. 2006). In particular, the LSS data would allow us to con-
strain ‘‘additional’’ parameters such as the mass of neutrinos
and the shape of the primordial power spectrum, which would
remain relatively poorly constrained by the CMB data alone.

The success of this approach depends on our ability to predict
the power spectrum of the CMB and LSS from theory. Linear
theory provides adequate precision for the CMB, as the am-
plitude of CMB anisotropy is only 10�5; however, the theory of
LSS has not yet reached the point at which one can use LSS for
precision cosmology at a level similar to the CMB. There is a
larger degree of nonlinearity in LSS. In order for the LSS data to
be as powerful as the CMB data, it is crucial that we can predict

the LSS power spectrum to 1% accuracy, which is nearly 1 order
of magnitude better than the current precision.

In principle, the theory of LSSmay be developed usingN-body
simulations. This approach has been widely used in the literature.
One method builds on the so-called HKLM formalism (Hamilton
et al. 1991), which interpolates between the linear regime on large
scales and the stable clustering regime on small scales using a
fitting function to N-body simulations. The HKLMmethod was
further elaborated by Peacock&Dodds (1996). The other method
builds on the so-called halo model (Scherrer & Bertschinger
1991), which was further elaborated by, e.g., Seljak (2000) and
Smith et al. (2003). Both approaches are based on empirical
methods, fitting to N-body simulations mainly at z � 0. While
these predictions may be good to within 10%, one should not
expect 1% accuracy from these. In addition, these methods, in
their current form, do not allow for nonlinearity in redshift-space
distortion in the weakly nonlinear regime, which limits their
practical use for the actual data analysis.

We use an alternative approach based on cosmological PT.
One can calculate the next-to-leading order correction to the
linear power spectrum by using third-order PT (Vishniac 1983;
Suto & Sasaki 1991; Makino et al. 1992; Jain & Bertschinger
1994; Scoccimarro & Frieman 1996). The advantage of PT is that
it provides an exact solution for the nonlinear matter power spec-
trum as long as one applies it to the region in k-space where per-
turbative expansion is valid. (We call this region in k-space the
‘‘weakly nonlinear regime.’’) One still needs to use simulations to
find the maximum k below which perturbation expansion is
valid, which is one of the goals of this paper.

Cosmological PT, including nonlinear corrections to the power
spectrum, was actively investigated in the 1990s (see Bernardeau
et al. 2002 for a review). In particular, much effort has been de-
voted to understanding the nonlinear power spectrum at z � 0.
It was shown that the perturbation approach would not provide
accurate descriptions of the power spectrum at z � 0 due to too
strong nonlinearity. Our results are consistent with the previous
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work; however, we focus on the power spectrum at z > 1, where
nonlinearity is still modest and thus PT should perform better.

Our work is motivated by recent proposals of high-z galaxy
survey projects such as the Cosmic Inflation Probe (Melnick
et al. 2005),1 Hobby-Eberly Dark Energy Experiment (Hill et al.
2004), and the Wide-field Fiber-fed Multi Object Spectrograph
survey (Glazebrook et al. 2005), to mention a few. The goal of
these missions is to measure the power spectrum of high-z gal-
axies to a few percent accuracy. These missions should be able
tomeasure the baryonic features in the power spectrumaccurately.
On the other hand, it has been pointed out that nonlinearity would
distort the baryonic features in a complex way so that it might be
challenging to extract the underlying baryonic features from the
observed galaxy power spectrum (Meiksin et al. 1999; Springel
et al. 2005; White 2005; Seo & Eisenstein 2005). We show that,
as far as nonlinearity in the matter power spectrum in real space
is concerned, we can correct it almost exactly.

This paper is organized as follows. We briefly review the third-
order PT in x 2 and describe our N-body numerical simulations in
x 3.We compare the analytical predictions with simulations in x 4.
We pay a particular attention to nonlinearity in the baryonic
acoustic oscillations.We give discussion and conclusions in x 5.
We test convergence of our results in the Appendix.

2. NONLINEAR MATTER POWER SPECTRUM:
THIRD-ORDER PERTURBATION THEORY

We review third-order PT calculations of the next-to-leading
order correction to the matter power spectrum, following the pio-
neeringwork in the literature (Vishniac 1983; Fry 1984;Goroff et al.
1986; Suto & Sasaki 1991;Makino et al. 1992; Jain & Bertschinger
1994; Scoccimarro & Frieman 1996). As the power spectrum,
P(k; �), is a quadratic quantity of the density field in Fourier space,
�̃k(�),

�̃k �ð Þ�̃�k 0 �ð Þ
� �

¼ 2�ð Þ3P k; �ð Þ�D k� k0ð Þ; ð1Þ

the third-order expansion in the density field is necessary for
obtaining the next-to-leading order correction to P(k; �). We
often use the ‘‘dimensionless power spectrum,’’ �2(k; �), which
represents the contribution to the variance of density field per
ln k,

�2 x; �ð Þ
� �

¼
Z

dk

k
�2 k; �ð Þ; ð2Þ

where �2(k; �) � k 3P(k; �)/(2�2).
We treat dark matter and baryons as pressureless dust particles,

aswe are interested in the scalesmuch larger than the Jeans length.
We also assume that the peculiar velocity is much smaller than
the speed of light, which is always an excellent approximation,
and that the fluctuations we are interested in are deep inside the
horizon; thus, we treat the system as Newtonian. The basic equa-
tions to solve are given by

�̇ þ: = 1þ �ð Þv½ � ¼ 0; ð3Þ

v̇þ v = :ð Þv ¼ � ȧ

a
v�:�; ð4Þ

:2� ¼ 4�Ga2�̄�; ð5Þ

where the dots denote @ /@� (� is the conformal time),: denotes
@ /@x (x is the comoving coordinate), v ¼ dx/d� is the peculiar
velocity field, and � is the peculiar gravitational potential field
from density fluctuations. We assume that v is curl free, which
motivates our using � � : = v, the velocity divergence field.
Using equation (5) and the Friedmann equation, we write the
continuity equation (eq. [3]) and the Euler equation (eq. [4]) in
Fourier space as

˙̃
�k �ð Þ þ �̃k �ð Þ

¼ �
Z

d 3k1

2�ð Þ3
Z

d 3k2 �D k1 þ k2 � kð Þ k = k1
k 2
1

�̃k2 �ð Þ�̃k1 �ð Þ;

ð6Þ
˙̃
�k �ð Þ þ ȧ

a
�̃k �ð Þ þ 3ȧ2

2a2
�m �ð Þ�̃k �ð Þ

¼ �
Z

d 3k1

2�ð Þ3

;

Z
d 3k2 �D k1 þ k2 � kð Þ k

2 k1 = k2ð Þ
2k 2

1 k
2
2

�̃k1 �ð Þ�̃k2 �ð Þ; ð7Þ

respectively.
To proceed further, we assume that the universe is matter

dominated, �m(�) ¼ 1 and a(�) / �2. Of course, this assump-
tion cannot be fully justified, as dark energy dominates the
universe at low z. Nevertheless, it has been shown that the next-
to-leading order correction to P(k) is extremely insensitive to
the underlying cosmology, if one uses the correct growth factor
for �̃k(�) (Bernardeau et al. 2002). Moreover, as we are pri-
marily interested in z � 1, where the universe is still matter
dominated, the accuracy of our approximation is even better.
(We quantify the error due to this approximation below.) To
solve these coupled equations, we expand �̃k(�) and �̃k(�) per-
turbatively using the nth power of the linear solution, �1(k), as a
basis:

�̃ k; �ð Þ ¼
X1
n¼1

an �ð Þ
Z

d 3q1

2�ð Þ3
: : :

d 3qn�1

2�ð Þ3

;

Z
d 3qn �D

Xn
i¼1

qi � k

 !

; Fn q1; q2; : : : ; qnð Þ�1 q1ð Þ : : : �1 qnð Þ; ð8Þ

�̃ k; �ð Þ ¼ �
X1
n¼1

ȧ �ð Þan�1 �ð Þ
Z

d 3q1

2�ð Þ3
: : :

d 3qn�1

2�ð Þ3

;

Z
d 3qn �D

Xn
i¼1

qi � k

 !

; Gn q1; q2; : : : ; qnð Þ�1 q1ð Þ : : : �1 qnð Þ: ð9Þ

Here, the functions F andG, as well as their recursion relations,
are given in Jain & Bertschinger (1994). As the linear density
field, �1, is a Gaussian random field, the ensemble average of
odd powers of �1 vanishes. Therefore, the next-to-leading order
correction to P(k) is

P k; �ð Þ ¼ a2 �ð ÞP11 kð Þ þ a4 �ð Þ 2P13 kð Þ þ P22 kð Þ½ �; ð10Þ1 See also http://cfa-www.harvard.edu /cip.
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where

P22 kð Þ ¼ 2

Z
d 3q

2�ð Þ3
P11 qð ÞP11 jk� qjð Þ F

sð Þ
2 q; k� qð Þ

h i2
;

ð11Þ

F
sð Þ
2 k1; k2ð Þ ¼ 5

7
þ 2

7

k1 = k2ð Þ2

k 2
1 k

2
2

þ k1 = k2
2

1

k 2
1

þ 1

k 2
2

� �
; ð12Þ

2P13(k)¼
2�k 2

252
P11(k)

Z 1

0

dq

(2�)3
P11(q)

;

"
100

q2

k 2
� 158þ 12

k 2

q2
� 42

q4

k 4

þ 3

k5q3
(q2 � k 2)3(2k 2 þ 7q2) ln

k þ q

jk � qj

� �#
: ð13Þ

While F
(s)
2 (k1; k2) should be modified for different cosmological

models, the difference vanishes when k1 k k2. The biggest cor-
rection comes from the configurations with k1 ? k2, for which
½F (s)

2 (�CDM)/F
(s)
2 (EdS)�2 ’ 1:006 and P1.001 at z ¼ 0 and�1,

respectively, where EdS stands for EinsteinYde Sitter. Here,
F (s)
2
(EdS) is given by equation (12), whileF (s)

2
(�CDM) contains

corrections due to �m 6¼1 and �� 6¼ 0 (Matsubara 1995;
Scoccimarro et al. 1998), and we used �m ¼ 0:27 and �� ¼
0:73 at the present. The information about different background
cosmology is thus almost entirely encoded in the linear growth
factor. We extend the results obtained above to arbitrary cosmol-
ogical models by simply replacing a(�) in equation (10) with an
appropriate linear growth factor, D(z),

P(k; z) ¼ D2(z)P11(k)þ D4(z)½2P13(k)þ P22(k)�: ð14Þ

We use equations (11)Y(14) to compute P(k; z).

3. N-BODY SIMULATIONS AND ANALYSIS METHOD

We use the TVD (Ryu et al. 1993) code to simulate the evo-
lution of �(x; �). The TVD code uses the particle mesh scheme
for gravity, and the total variation diminishing (TVD) scheme
for hydrodynamics, although we do not use hydrodynamics in
our calculations. To increase the dynamic range of the derived
power spectrum and check for convergence of the results, we
use four box sizes, Lbox ¼ 512, 256, 128, and 64 h�1 Mpc, with
the same number of particles, N ¼ 2563. (We use 5123 meshes
for doing the fast Fourier transform.) We use the following
cosmological parameters: �m ¼ 0:27, �b ¼ 0:043, �� ¼ 0:73,
h ¼ 0:7, �8 ¼ 0:8, and ns ¼ 1. We output the simulation data at
z ¼ 6, 5, 4, 3, 2, and 1 for 512, 256, and 128 h�1 Mpc, while
only at z ¼ 6, 5, 4, and 3 for 64 h�1 Mpc.

We suppress sampling variance of the estimated P(k; z) by
averagingP(k; z) from 60, 60, 20, and 15 independent realizations
of 512, 256, 128, and 64 h�1 Mpc simulations, respectively. We
calculate the density field on 5123 mesh points from the particle
distribution by the cloud-in-cell (CIC) mass distribution scheme.
We then Fourier transform the density field and average j�k(�)j2
within k ��k /2 � jkj < k þ�k /2 over the angle to estimate
P(k; z). Here, �k ¼ 2�/Lbox. Finally, we correct the estimated
P(k) for loss of power due to the CIC pixelization effect using

the window function calculated from 100 realizations of random
particle distributions.

We use the COSMICS package (Bertschinger 1995) to cal-
culate the linear transfer function (with linger) and generate
the input linear matter power spectrum and initial conditions
(with grafic).We have increased the number of sampling points
for the transfer function in k-space from the default value of
COSMICS, as the default sampling rate is too low to sample the
baryonic acoustic oscillations accurately. (The default rate re-
sulted in an artificial numerical smoothing of the oscillations.)
We locate initial particles on the regular grid (i.e., we do not
randomize the initial particle distribution) and give each parti-
cle the initial velocity field using the Zel’dovich approximation.
This procedure suppresses shot noise in the derived power
spectrum, which arises from randomness of particle distribu-
tion. We have checked this by comparing P(k; z) from the initial
condition to the input linear spectrum. However, some shot
noise would arise as density fluctuations grow over time. While
it is difficult to calculate the magnitude of shot noise from the
structure formation, we estimate it by comparing P(k; z) from
large-box simulations with that from small-box simulations.We
do not find any evidence for shot noise at z � 1; thus, we do not
subtract shot noise from the estimated P(k; z). To be conservative,
we use 512, 256, 128, and 64 h�1 Mpc simulations to obtain
P(k; z) at k � 0:24hMpc�1, 0:24 h Mpc�1 < k � 0:5 hMpc�1,
0:5 h Mpc�1 < k � 1:4 hMpc�1, and 1:4 h Mpc�1 < k � 5 h
Mpc�1, respectively, to avoid the residual CIC pixelization effect
and potential contaminations from unaccounted shot-noise terms,
as well as artificial ‘‘transients’’ from initial conditions gener-
ated by the Zel’dovich approximation (Crocce et al. 2006). The
initial redshifts are zinitial ¼ 27, 34, 42, and 50 for 512, 256, 128,
and 64 h�1 Mpc simulations, respectively. In the Appendix we
show more on the convergence test (see Fig. 5).

4. RESULTS

Figure 1 compares P(k; z) at z ¼ 1, 2, 3, 4, 5, and 6 ( from top
to bottom) from simulations (dashed lines), PT (solid lines), and
linear theory (dot-dashed lines). The PT predictions agree with
simulations so well that it is actually difficult to see the difference

Fig. 1.—Power spectrum at z ¼ 1, 2, 3, 4, 5, and 6 ( from top to bottom),
derived from N-body simulations (dashed lines), PT (solid lines), and linear
theory (dot-dashed lines). We plot the simulation data from 512, 256, 128, and
64 h�1 Mpc simulations at k � 0:24 hMpc�1, 0:24 h Mpc�1 < k � 0:5 hMpc�1,
0:5 h Mpc�1 < k � 1:4 h Mpc�1, and 1:4 h Mpc�1 < k � 5 h Mpc�1, respec-
tively. Note that we did not run 64 h�1 Mpc simulations at z ¼ 1 or 2. [See the
electronic edition of the Journal for a color version of this figure.]
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Fig. 2.—Top: Dimensionless power spectrum,�2(k). The solid and dashed lines show PT calculations and N-body simulations, respectively. The dotted lines show
the predictions from halo approach (Smith et al. 2003). The dot-dashed lines show the linear power spectrum. Bottom: Residuals. The error bars show the N-body data
divided by the PT predictions minus 1, while the solid curves show the halo model calculations given in Smith et al. (2003) divided by the PT predictions minus 1. The
PT predictions agree with simulations to better than 1% accuracy for �2(k) P 0:4. [See the electronic edition of the Journal for a color version of this figure.]
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Fig. 3.—Nonlinearity in baryonic acoustic oscillations. All of the power spectra have been divided by a smooth power spectrum without baryonic oscillations from
eq. (29) of Eisenstein & Hu (1998). The error bars show N-body simulations, while the solid lines show PT calculations. The dot-dashed lines show the linear theory
predictions. PT describes nonlinear distortion on baryonic oscillations very accurately at z > 1. Note that different redshift bins are not independent, as they have grown
from the same initial conditions. The N-body data at k < 0:24 and >0.24 h Mpc�1 are from 512 and 256 h�1 Mpc box simulations, respectively. [See the electronic
edition of the Journal for a color version of this figure.]

Fig. 4.—Nonlinearity and the amplitude of matter fluctuations, �8. In each panel the lines show the linear spectrum and nonlinear spectrum with �8 ¼ 0:7, 0.8, 0.9,
and 1.0 from bottom to top. [See the electronic edition of the Journal for a color version of this figure.]
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between PT and simulations in Figure 1. The simulations are sig-
nificantly above the linear theory predictions at high k.

To facilitate the comparison better, we show�2(k; z) (eq. [2])
in Figure 2. We find that the PT predictions (thin solid lines)
agree with simulations (thick solid lines) to better than 1% ac-
curacy for �2(k; z) P 0:4. On the other hand, the latest predic-
tions from the halo approach (Smith et al. 2003) (dotted lines)
perform significantly worse than PT. This result suggests that
one must use PT to model nonlinearity in the weakly nonlinear
regime.

The baryonic features in the matter power spectrum provide a
powerful tool for constraining the equation of state of dark energy.
This method uses the fact that the CMB angular power spectrum
sets the physical acoustic scale, and thus, the features in the matter
power spectrum seen on the sky and in redshift space may be used
as the standard ruler, giving us the angular diameter distance out
to the galaxy distribution at a given survey redshift, as well as
H(z) (Matsubara & Szalay 2003; Hu & Haiman 2003; Seo &
Eisenstein 2003; Blake & Glazebrook 2003). In order for this
method to be viable, however, it is crucial to understand distortion
on the baryonic acoustic oscillations caused by nonlinearity. This
has been investigated so far mostly using direct numerical simu-
lations (Meiksin et al. 1999; Springel et al. 2005;White 2005; Seo
& Eisenstein 2005). Meiksin et al. (1999) also compared the PT
prediction with their N-body simulations at z ¼ 0 and found that
PT was a poor fit. This is because nonlinearity at z ¼ 0 is too
strong to model by PT. Figure 3 shows that PT provides an ac-
curate analytical account of nonlinear distortion at z > 1; even
at z ¼ 1, the third peak at k ’ 0:18 hMpc�1 is modeled to a few
percent level. At z > 2, all the oscillatory features are modeled
to better than 1% accuracy. A slight deficit in power fromN-body
simulations at k � 0:2 h Mpc�1 relative to the PT predictions at
z ¼ 2may be due to artificial transient modes from the Zel’dovich
approximation used to generate initial conditions. One may elimi-
nate such an effect by either using a smaller box size or a better
initial condition from the second-order Lagrangian PT (Crocce
et al. 2006). As the power spectrum at k > 0:24 h Mpc�1 from
256 h�1 Mpc simulations at z ¼ 2 agrees with the PT predic-
tions very well, we conclude that this small deficit in power at
k � 0:2 hMpc�1 is a numerical effect, most likely the transients
in low-resolution simulations.

How do the predicted nonlinear power spectra depend on the
amplitude of matter fluctuations? As the nonlinear contributions

to the power spectrum are given by the linear spectrum squared,
the nonlinear to linear ratio grows in proportion to �2

8 . In Figure 4
we show how the nonlinear contributions increase as one in-
creases �8 from 0.7 to 1.0. This figure may be useful when one
compares our results with the previous work that uses different
values of �8.

5. DISCUSSION AND CONCLUSIONS

The next-to-leading order correction to the matter power spec-
trum calculated analytically from third-order PT provides an
almost exact description of the matter power spectrum in real
space in the weakly nonlinear regime, in which �2(k) P 0:4
(Fig. 2). The most important implications of our results for the
planned high-z galaxy surveys are that we can use PT to calculate
(1) nonlinearity in the baryonic acoustic oscillations (Fig. 3),
which should reduce systematics in constraining dark energy
properties, and (2) the matter power spectrum up to much higher
k than that which was accessible before, which should vastly
increase our ability to measure the shape of the primordial power
spectrum as well as the mass of neutrinos (Takada et al. 2006).
Of course, these surveys measure the galaxy power spectrum in
redshift space; thus, future work should include PT calculations
of nonlinearity in (1) redshift-space distortion (Scoccimarro 2004)
and (2) halo biasing (Fry&Gaztañaga 1993;Heavens et al. 1998),
as well as an extensive comparison with numerical simulations.
PT also allows one to calculate the higher order statistics such
as the bispectrum, which has been shown to be a powerful tool
in checking for systematics in our understanding of nonlinear
galaxy bias (Matarrese et al. 1997; Verde et al. 1998). We should
therefore ‘‘reload’’ cosmological PT and make a serious as-
sessment of its validity in light of the planned high-z galaxy
surveys constraining properties of dark energy, inflation, and
neutrinos.

We would like to thank D. Ryu for letting us use his TVD
code and K. Gebhardt, Y. Suto, and M. Takada for comments.
D. J. would like to thank K. Ahn for his help on the TVD code.
E. K. acknowledges support from an Alfred P. Sloan Fellowship.
The simulationswere carried out at the TexasAdvancedComputing
Center (TACC).

APPENDIX

CONVERGENCE TEST

To test convergence of the power spectra derived from simulations and to determine the valid range in wavenumber from each
simulation box, we have run N-body simulations with four different box sizes, Lbox ¼ 512, 256, 128, and 64 h�1 Mpc, with the same
number of particles, N ¼ 2563. The initial redshifts are zinitial ¼ 27, 34, 42, and 50 for 512, 256, 128, and 64 h�1 Mpc simulations,
respectively.

Figure 5 shows that simulations with a larger box size lack power on larger scales due to the lack of resolution, as expected, while
they have better statistics on large scales than those with a smaller box size. This figure helps us to determine the valid range in wave-
number fromeach simulation box.Wefind that one can use 512, 256, 128, and 64 h�1 Mpc simulations to calculate reliable estimates of the
power spectrum in k � 0:24 hMpc�1, 0:24 h Mpc�1 < k � 0:5 hMpc�1, 0:5 h Mpc�1 < k � 1:4 hMpc�1, and1:4 h Mpc�1 < k �
5 h Mpc�1, respectively.
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Fig. 5.—Convergence test. Left: Fractional differences between the power spectra from N-body simulations in Lbox ¼ 512, 256, and 128 h�1 Mpc ( from bottom to
top lines) and the PT predictions in k < 1:5 hMpc�1. Right: Same as left, but for simulations in Lbox ¼ 512, 256, 128, and 64 h�1 Mpc ( from bottom to top lines) in the
expanded range in wavenumber, k < 5 h Mpc�1. [See the electronic edition of the Journal for a color version of this figure.]
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