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Abstract

The objective of the paper is to obtain results on the behavior of a specific plane discontinuous
dynamical system in the neighbourhood of the singular point. A new technique of investigation is
presented. Conditions for existence of the foci and centres are proposed. The focus-centre problem and
Hopf bifurcation are considered. Appropriate examples are given to ilustrate the bifurcation theorem.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction and Preliminaries

The theory of dynamics with discontinuous trajectories has been developed through ap-
plications[3,4,6,15,19,20,22,30,32,34,3&}d theoretical challenggt5,16,22,26,36—-38]
The present paper can be considered as an attempt to apply ideas of the perturbations
theory, which was founded by Poincaré and Lyapuj2&/33], and methods of the bifurca-
tion theory[4,8,15,18,21,29,30,33b the object which combines features of vector fields
and maps. In fact, we consider the problem for equations with variable time of impulses.
Effective methods of the investigation of systems with nonfixed moments of impulsive ac-
tion can be found if9,12,13,26,27,38]Theoretical problems of nonsmooth dynamics and
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discontinuous mapf$,10,11,14,23-254lso very close to the subject of our paper. In our
view there have been two principal obstacles to a thorough investigation of the subject.
While the absence of sufficiently general results on the smoothness of solutions has been
the first one, the problem of choice of a nonperturbed system convenient for study has
been the second. The present work utilizes extensively the differentiable and analytical de-
pendence discontinuous solutions on paramégie?s26,40] Moreover, the nonperturbed
equation is specifically defined. And, while all of its terms are linear, this equation is es-
sentially a nonlinear one. We should remark that in general the perturbed systems with
sets of discontinuities of linear nature have been considered previously. One example is
the clock mode[22,38]. But we investigate systems all of whose terms are nonlinear. This
necessitates the use of the standard linearization method and application of the concept of
B-equivalent discontinuous systems which has been develofgd3dhfor nonautonomous

case. The approach of the paper can be effectively employed for investigation of oscillations
in mechanics, electronics, biology and medidihd 5,30-32,34]

The paper is organized in the following manner. In Section 1, we give the description of
the systems under consideration and prove the theorem of existence of foci and centres of
the nonperturbed system. The main subject of Section 2 is foci of the perturbed equation.
The noncritical case is considered. In Section 3 the problem of distinguishing between the
centre and the focus is solved. Bifurcation of a periodic solution is investigated in Section
4. Section 5 consists of examples illustrating the bifurcation theorem.

1.1. The nonperturbed system

Let N, R be sets of all natural and real numbers, respectivefybe a real euclidean
1
space. Denote byx, y) the dot-product of vectors, y € R2. Let ||x|| = (x, x)Z be the
norm of a vector € R2, # be the set of all real-valued constank2 matrices/ € Z be
an identity matrix. We shall consider i®? the following dynamical system:

d
d—): =Ax, x¢l0,
Ax|xe1"g = Box, (1)

whereA, By € #, I'gis asubset okR? and will be described below. The phase point of (1)
moves between two consecutive intersections with thé'setlong one of the trajectories

of the systemx’ = Ax. When the solution meets the d&j at the moment, the pointx (¢)

has an jump\x|; := x(t+) — x (7). Thus we suppose that the solutions are left continuous
functions. The following assumptions will be needed throughout the paper:

(C1) I'o=U!_;si. p € N, wheres; are half-lines starting at the origin and defined by
equationga’, x) =0, i =1, p, wherea’ = (a}, ab) € R? are constant vectors;

(C2)
=5 )

wheref # 0;
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(C3) there exists a regular matriX € # and nonnegative real numbérand( such that

_ cog)) —sin(0) 1 (10
Bo=kQ <sin(0) cog0) > Q 0 1)
Also, for the sake of brevity, in what follows every angle for a point or a line is
considered with respect to the positive half-line of the first coordinate axis.

Denotes/ = (I + Bo)s;,i = 1, p. Lety; and(; be angles of; ands/,i =1, p,
respectively,

b1y b1z
Bo= ,
0 <b21 bzz)
(C4) O<yr<li<yp<- <y, <{,<2m and(br1+1) cosy;, +bizsiny, #0, i =
Lp.

The system (1) is said to bel)-systenif conditions (C1)—-(C4) hold. It is easy to see that
the origin is a unique singular point @fp-systenand (1) is not linear.

Let us subject (1) to the transformatien= r co¢), x2 = r sin(¢) and exclude time
variabler. Then solutiorv (¢, ro) which starts at the poin®©, rp), satisfies the following
system in polar coordinates:

3—; =/r, ¢ #y; (mod2n),
Arlg—y, (mod 20y = kir (2)

wherei = % the variablep is ranged over the time-scale

i=—o00

00 p—1
R¢ = R\ U |:U(27Ii +Cj,2ni +Vj+1] U (2mi -i-Cp,Zn(i +1 +“/1]j|

j=1
and
ki = [((b11+ 1) COSy;) + b1 Sin(y,))?
+ (b21 COSy) + (b2 + 1) sin(y )22 — 1.

Eq. (2) is Z-periodic, so we shall consider just the sectibre [0, 2] in what follows.
That is the system

dr
% =ir, ¢ #;,
Ar|¢:yi = k,-r, (3)

is provided for discussion, whewg € [0, 2n]4 = [0, 2n]\(J!_;(7;. {;]. System (3) is a
sample of time-scale differential equatipr]. We show that one can reduce (3) to an
impulsive differential equation for the investigation’s needs. Indeed, let us introduce a new
variabley = ¢ — 20<y,<¢> 0j,0;=_;—y;, withthe rangd0, 2r — >F_, 0;1.We shall call
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this new variable)-substitution It is easy to check that upap-substitutionthe solution
r(¢, ro) satisfies the following impulsive equation:

dr
w =Ar, Y #9j,

Arll/,:(;j =kjr, (4)

whered; =y, — ZO<W<7]_ 0;. Solving (4) as an impulsive systej£6,38] and usingy-
substitutionone can obtain that the solutieiip, ro) of (2) has the form

V(d),"o):exF)(/1 ((l')— Z 0[)) l_[ L+ ki)ro )

O0<y;<¢ O<y;<¢

if (,‘b € [O, 27T]¢.
Denote

p p
q=exp()t (2n—z 9,-))]‘[(1+k,-). (6)
i=1 i=1

Construct the Poincaré return maf2rn, rg) on positive half-axis oD x1 and compare (5)
with (6). Then the following theorem follows:

Theorem 1.1. If

(1) ¢ =1, then the origin is a centre and all solutions are periodic with perfoe: (27 —
le:z Qi)ﬁ_li

(2) g <1, then the origin is a stable focus

(3) ¢ > 1, then the origin is an unstable focus Bf-system

Remark 1.1. Conditions (C1)—(C4) and Theorem 1.1 imply that a trajectory of (1) either
spirals to the origin when time increases (decreases) or is a discontinuous cycle. Moreover,
if the solution spirals to the origin as time decreases (increases) then it spirals to infinity
as time increases (decreases). Thus, the behavior of the trajectory is very similar to the
behavior of trajectories of the planar linear system of ordinary differential equations with
constant coefficientgl7,39] In what follows, we will consider how a perturbation may
change the phase portrait of the system.

1.2. The perturbed system

Consider the following system in the neighbourh@ad

dx_

0 =Ax+ f(x), x¢r,
Ax|cer = B(x)x. (7)
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Our basic assumptions for system (7) are the following:

(C5 I = Uf’:ll,- is a set of curves starting at the origin and which are defined by the
equationga’, x) + 1;(x) =0, i =1, p;
(C6)

_ cog0 + v(x)) —sin(0 + v(x)) 1 10
B(x) = (k +x(x)Q (sin(@ Fux)  cogl+u(x)) > . (o 1> ’

(I + B(x))x € Gforall x € G;

(C7) {f. k. v} € CDG) {ni, i =1, p} € CP(G);

(C8) f(x)=o(llxI]), rx(x)=o(lx]]), v(x)=o0(|x]]), ri(x).=0(llx_|I2), i=1, p; More-
over, it is supposed that the matricksQ, the vectors:’, i =1, p, constants, 0 are
the same as for (1), i.e.

(C9) the associated with (7) system (1)dg-system

The system (7) is said to belasystenif the conditions (C1)—(C8) hold.

Remark 1.2. Conditions (C5) and (C8) imply that curvésdo not intersect each other in
G, except at the origin, and neither of them has self intersect poi@sfil® is sufficiently
small. The origin is a unique singular point of thesystem.

In what follows we assume without loss of generality that 7 j, j =1,2,3. Then
one can transform the equation in (C5) to the polar coordinates s thal%r coq¢) +
a?r sin(¢) + t;(r cos¢), r sin(¢)) = 0 and, hence,

.
—tan!(tany. - ——— ).
¢ < i aizr cos(¢>))

Using Taylor expansion gives, the previous equation can be expressed as follouss: if
sufficiently small

ll(i):yl_'_rlpl(r’d))a ZZH’ (8)

where functiong); are Zt-periodic in¢, continuously differentiable anfl, = O (r).

If the phase poink (z) meets the discontinuity ling at the angle) then after the jump
the pointx(04) will belong to the linel! = {z R%|z=(I + B(x))x,x € I;}. For the
remaining part of the paper the following assertion is very important.

Lemma 1.1. If the conditiong(C7) and (C8) are valid then the lin€; is placed between
linesl; andl;; 1 for every i if G is sufficiently small

Proof. Suppose that lines, s;11, ;, li+1 are transformed by the map= Q~1x into

liness/, s/’ 4. 1", 1!, respectively. LeL; ={z € R?|z=Q (I + B(Qy)) Q. y €I/},

& =071+ Bo)Qs] andy!, 7., ,. {; betheangles ofstraightlings s/ ;. &.Without

loss of generality we may assume thiat {; < 7;,1- Now, to prove the lemma, itis sufficient
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to check whethel; lies between lineg’, [ ;. We assume that @y}, < (; <7}, <3,

otherwise one can use a linear transformation which will not change the position of the lines
with respect to each other. Lety; + c2y2 + I*(y1, y2) = 0 be the equation of the ling.
Introducing the polar coordinates=p cog¢), y2=p sin(¢) one can write this equation

as¢ =y. + py*(p, ¢), wherey*(p, ¢) = O(p) andy/* is a 2r-periodic in¢ function. If

y = (y1, y2) € l/then the poiny ™ = (y{", y3), where

yF=07'BY) + D0y, ©)
belongs toL;. Assume without loss of generality thyf # 0. Otherwise, we shall use
the conditiony; # 0. If we denotep = (y2 + y%)%, ¢ =tani(2), pt = ()% +

y1
.
(y;)z)%, Pt = tan—l(z—i) then (9) implies that
1

pT =kip+ pB*(p. §). (10)
Pt =+ 0+7%(p, ¢, (11)

wheref* andy* are 2r-periodic ing andf* = 0(p), 7* = O (p). Denotes(y1, y2) =c1y1+
c2y2 +1*(y1, y2). Then

oy, y3) = pT(c1 cogp™) + cz sin(gh)) + I*(pT cogp™), pT sin(ph))

=pty/c2+ 2 sin0 + v(p, d) — p¥*(p, )
+ I*(pT cosp™), pTsin(gp™)),

wheren(p, ¢) = v(Qy). It is readily seen that the sign efp*, ¢™) is the same as that
of sin(0) for sufficiently smallp. Consequentlyg(p*, ¢1) > 0. Thus the lineL; is placed
above the ling in the first-quarter of the plan@x1x,. Similarly, one can show that it is
placed below; ;. The lemma is proved. [J

Remark 1.3. Notice that Lemma 1.1 guarantees that every nontrivial trajectory meets pre-
cisely once each ofthelingsi=1, p, within any time interval of lengtf if Gis sufficiently
small.

2. Foci of D-systems

Using the polar coordinatag=r cog¢), x2=r sin(¢) one can find that the differential
part of (7) has the following form:

d

# =Jr + P(r, ¢),
where, as is knowrf39], the function P(r, ¢) is 2rn-periodic, continuously differen-
tiable andP = o(r). Denotex™ = (x], xJ) = (I + B(x))x, x* =rt(cos¢™, sin ¢™),
it =&, ¥ = U + B0)x, wherex = (x1,x2) € I;, i =1, p. The inequality
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[lxt =371 ||B(x) - B(0)||||x|| implies that-* =k;r + w(r, ¢). Moreover, using the re-
lation between— andz% B and condition (C5) one can conclude thdt= ¢ + 0; +(r, ¢).

Functionsw, y z;re - per|0d|c ing andw = o(r), y(r, ¢) = o(r). Finally, transformed
system (7) is of the following form:

dr

%—lr—i—P(rd)) (p,p) ¢TI,

Ar| (. dyel; = kit + o(r, §),

APl . pyer, = 0i +7(r, §). (12)

Let us introduce the following system besides the system (12):

dp
d¢—ip+P(p ¢ b F s

Ap|¢:7l_ =kip+wi(p),
Ad)ld):yi = 91‘, (13)

where all elements, except, i =1, p, are the same as in (12) and the domain of (13) is
[0, 2n] 4. We shall define functions; below.

Letr(¢, ro) be a solution of (12) angh; be the angle where the phase point interskcts
Denote alsg; = ¢; + 0; + y(r(¢;, ro), ¢;) the angle, where(¢, o) has to be after the
jump.

Further(a:ﬂ], {o, B} C R denotes the oriented interval, that is

(afﬁ]z{(“’ﬁ] if %<,

(B, o] otherwise

Definition 2.1. We shall say that systems (12) and (13) Arequivalent inG if for every
solutionr (¢, ro) of (12) whose trajectory is i@ for all ¢ € [0, 2], there exists a solution
p(¢, ro) of (13) which satisfies the relation

p
r(@.r0) = p(¢. r0). ¢ € [0, 21\ |l 7. 1U 1L 7,00, (14)

i=1
And, conversely, for every solution(¢, ro) of (13) whose trajectory is i there exists a
solutionr (¢, ro) of (12) which satisfies (14).
Fixi =1, p. Letri(¢, y;, p), r1(y;, 7;, p) = p, be a solution of the equation
3—; =Jr+ P(r, ¢) (15)

and¢ =, be the meeting angle of(¢, y;, p) with the line/;. Then

n;
ri(m;, v, p) = explA(n; — y)p + / exp(A(n; — ) P(ri(s, 7, p), s) ds.

V.
i
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Let nOan‘l:ni +0+y(r1(n;, 7;. ), M) andp1=(1+k,-)r1(;7i, Yis P)FO@ My, Vis )5 H)-
Letra(¢. nt, p1) be a solution of system (15),

G
ra. i ) = eXpUG = m)pt + [ | P — ) P(rals. i ph). s) ds.
i

We define that

wi(p) = r2iu it pH) — A+ ki) p = exp(A(C; — b)) [(1 + k) (exp(ﬂ»(ni — )P

n;
+/ exp(A(n; — ) P(ri(s, ;s p), s)ds) + o(r1(;, ;5 P, m)}
Vi

Si
+ / XL = $))P(ra(s. a7 ph). 5) ds = (L+K)p
n;

or, if simplified,
w;(p) = (L + k)[exp(—=Ay(ra(n;, 7;, p), n;)) — Lp

n;
+ Atk / XPUL — 0 — 5 — py(riis 70, ). 1))
Vi

¢
X PUaGs. ) )G+ [ e — )Pzt b5 ds

i
+ eXpAG — m)o(ri( v p) ). (16)
Differentiating (8) and (16) one can find that
Or op;

oy gUhind G _dn (), o), 0
Y oa-Gn+P+nP-ngy W AN 0p) A dp
dw; A 0y dr1 | Oy dn-)
—=A+k =) =1 — AA+k; -l = —=+=-—

d (1 + kplexp(—4y) — 1] — A1+ ki) exp( V)(ar ap+a¢ dp

dn.
+ (L4 k) eXp( — 0 —n; — )P %

N O " .
+ (1+k,~)/ exp(A((; —G—s—y)){—i (2%+ @ %}P

or 0p  0¢ dp
0P dry 0P dni} q

or 0p d¢ dp
C OP(ra(s, nt, pY), s) orp

6i
+/n,-1 exp(A({; — $)) 3 PP

1 1.1 a”/il
— expiA; —m))P(p~, my) P
ot G0 o dody
op or op 0¢ dp |’

ds

+ exp(AG — b)) [— 17)
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Analysis of (16) and (17) implies that the following two lemmas are valid.
Lemma 2.1. The systemgl2) and(13) are B-equivalent if G is sufficiently small

Lemma 2.2. If conditions(C1)—(C5)are valid thenw;, i = 1, p, are continuously differ-
entiable functions and; (p) = o(p), i =1, p.

Theorem 2.1. Assume that condition€1)—(C6)hold andg < 1 (1 < ¢g). Then the origin
is a stable(unstablg focus of Eq(7).

Proof. Letr(¢, ro) be a solution of (12) such that0, ro) = ro andp(¢, ro), p(0, ro) =ro
be the solution of (13). Using-substitutionone can obtain that

p(¢. ro) = exp(A¢g) []_[(1 + ki) exp (—i > 65> ro

i=1 s=1

m Y1
+ l_[(1+ki) exp(—) GS)/ exp(—Au) P du
0

i=1

m y
+ l_[(1+k,-)exp( ) Z es)ﬁ exp(—Au) P du

i=2

¢ m
+ - / exp(—Au) P du + 1—[(1+ ki) exp(—/l Z 9‘Y> w1

{m i=2 s=2

Ms

N

SII
N

i=3

+[[a+k) exp(—i > 05> wa. ..+ exp(—iCm)wm} , (18)
s=3

where¢ € [0, 2n]y, P = P(p(p, o), ¢), wi = w;(p(y;, 7o), ;). In [1] the differentiable
dependence on parameters for solutions of impulsive systems was considered. Using the
theorem of the paper, conditions (C4), (C5) and Lemma 2.2 one can find that solution

p(Y, ro) is differentiable ing and its derlvatlveﬁ"(d’—’0 at the pointp = 2r, ro=0is equal
tog. Since (12) and (13) arB-equivalent it follows that:
or(2m,0)
oro

and the proof is complete.[]

3. The problem of distinguishing between the center and the focus

Consider the critical casg = 1. Throughout this section we assume that functions
f. g, 1, i=1, p, are analytic irG. The condition (C8) implies that the Taylor expansions of
f andg start with members of order not less than 2, and the expansiansicf 1, p, start
with members of order not less tharFarst we investigate the problem for (13) all of whose
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elements are analytic jf is sufficiently small. Theorems frof@] imply thatw;, i =1, p,
are analytic inp and the solutiow (¢, ro) of Eq. (13) has the following expansion:
o
p(¢.ro) = pi(P)r, (19)
i=0

whereg ¢ (v;, {;1,i =1, p, po(¢p) =0, ¢ = p1(¢) = 1. One can define a Poincaré return
map

o0
p2n,ro) =) airp, (20)
i=1

wherea; = p;(2n),i =0, 1,..., a1 =g = 1. We consider behavior of coefficients of (19)
and define what type of a singular point the origin is. The expansions[2kistich that

P(p,p) =) Pi(d)p',

i=2

o0
wi(d) =) wii()p', (21)
j=2
where P; (), w;; (¢), j =2,3,..., are Z-periodic functions which can be defined by
using elements of (12). The coefficiepts(¢), j=2,3, ..., are solutions of the following
systems:
dp
— R , i
AP|¢7&~/,. = Wjis
Al sy = 0; (22)
with initial valuesp ;(0) =0, j = 2,3,... . Hence, coefficients in (20) are equal to

T P
Pi(@)dd+> wji.  (23)
P i=1

71 p-1 Vi1 2
aj:/o Pj(¢)d¢+Z/C Pj(qs)d¢+/C
i=1"v>5i

From (20) and (23) it follows that the following lemma is true.

Lemma 3.1. Letg = 1 and the first nonzero element of the sequencej =2,3, ... be
negative(positivg. Then the origin is a stabl@nstablg focus of(13).1fall a; =0, j =
2,3, ...then the origin is the centre ¢13).

B-equivalence of systems (12) and (13) implies immediately that the following theorem
is valid.

Theorem 3.1. Letg = 1 and the first nonzero element of the sequence;j = 2,3, ...
be negativepositivg. Then the origin is a stabléunstablg focus of the Eq(7). If all
aj =0, j=2,3,...thenthe origin is the centre ¢7).
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4. Bifurcation of periodic solutions

In this section we prove the bifurcation theorem of a periodic solution from an equilib-
rium for the discontinuous dynamical system. After the initial impetus of Poin&aj
Andronov[4] and Hopf[18] this method of research of periodic motions has been used very
successfully by many authors for various types of differentia[84®,15,17,21,29,3@nd
references cited there). Let us consider the system

d
d_f:Ax—l—f(x)-i-uF(x,u), x ¢ (w,

Ax|xer = B(x, px. (24)
Assume that the following conditions are satisfied:

(A1) the setl’(u) = U{’:ll,- (w) is a union of curves s which start at the origin and are
defined by thé; : (a’, x) + 7;(x) + uv(x, w) =0, i =1, p;

(A2) there exists a matriQ (1) € %, Q(0) = Q, analytic in(—pq, 1), and real numbers
¥, y such that

0 (WwB(x, WO

= (k+ uy + x(x)) (

(o 1)

(A3) associated with (24) systems

cos(0 + py +v(x)) —sin(0 + py + v(x))
sin(@ + uy 4+ v(x)) cog0 + uy + v(x))

d

d—); =Ax, x¢ly,

Ax|rerq = Box, (25)
and

d

d—f —Ax+ f(x), x¢T(0),

Ax|yer@ = B(x, 0)x, (26)

are Dp-systermand D-systemrespectively;
(A4) functionsk,v: G — R?andF,v: G x (—ug, tig) — R? are analytical ik andy;
(A5) F(0, ) =0, v(0, u) =0, uniformly for u € (—uq, to)-

We need also the following system:

dx

e A(Wx, x¢lo(w),

Ax|xefo(u) = B(0, wx, (27)



174 M.U. Akhmet / Nonlinear Analysis 60 (2005) 163—-178

whereA(u) = A + % andI'o(w) = J"_, m; where

N _
m; : (al—f—,u%,x):O, i=1p.
X

Using polar transformation one can write system (24) in the following form:

d
=+ PO, () T,

do
Arl . gyel; o = kir + o(r, ¢, ),
APl pyet; = 0i + 770 b, ). (28)

Let the system

d
ﬁ =lp+Pp. o, ), ¢ #7%(W,
Aplg—y.y = kip +wi(p, W),

A¢|¢=yi (w) = 91' (,l,t), (29)

wherey; (1), i =1, p, are angles ofi;, be B-equivalent to (28). The functions; (p, 1) can
be defined in the same manner as in (16). Similar to (6) one can define the function

14 1
q(p) = exp (i(u) (Zn = G =, (u)))) [ @+ (30)

j=1 j=p

for system (27). The theorem frof2] implies that the functiog (1) is analytic inpu.

Theorem 4.1. Assume thaj (0) =1, ¢’(0) # 0and the origin is a focus fq{26). Then for
sufficiently smalkg, there exists a function = §(rg) such that the solution(¢, ro, 4(ro))
of (28) is periodic with a periodl’ = (2n — }"F_; 01 + o(lul). Furthermore if the
origin is the stable focus @26) then the closed trajectory is the limit cycle

Proof. Let p(¢, ro, 1) be a solution of (29). By the theorem of analyticity of soluti¢2s
we have that

o0

p@m,ro, ) =) ai(wrg,
i=1

whereq; (1) = Z?C:o aiji', a10=q(0) = 1, a11 = q'(0) # 0. We define the displacement
function as follows:

v (ro, ) = p(2m, ro, 1) — ro

oo
=q' (O)uro+ Y aiorh+ rop’Gi(ro, ) + rouGa(ro, p),
i=2
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whereG1, G» are functions analytical ing, i in neighbourhood of th€0, 0). The bifur-
cation equation i (rg, 1) = 0. Cancelling byrg one can write the bifurcation equation
as

H (ro, W) =0, (31)

where

e.¢]
H(ro. ) =q' O+ aiory™ + p?G1(ro. p) + rouGa(ro. ).
i=2

Since

#(0,0) =0, 6%@(0 O _ q'(0) #0
u

for sufficiently smallg there exists a function=0(ro) such that (¢, ro, d(ro)) is a periodic
solution. If we assume thatg=0,i =2,/ — 1 andg;g # 0, then one can obtain from (31)
that

3(ro) = ?(0) L +Zér0 (32)

Analysing the latter expression one can conclude that the bifurcation of periodic solutions
exists if a stable for =0 focus is unstable fqr £ 0 and conversely. Lgt(¢p) = p(¢, ro, ft)
be a periodic solution of (29). It is known that the trajectory is limit cycle if

07" (ro, )

0. 33
Oro = (33)

We have that

0" (ro, m_

Ge =4Ot Z iaiorg "+ [2G1(ro, 1) + 2ropGz(ro, ).

i=2

Assume thatyq is the first nonzero element amoag anda;o < 0. Then, using (32) one

can obtain
oY (ro, 1) g _
a—“‘ = (I — Dawiy ' + 0(Fo),
ro

whereQ starts with a member whose order is not less tha#ence, (33) is valid. From
B-equivalence of (28) and (29) one can conclude that the theorem is proved.

Remark 4.1. Notice that the result of the section can be obtained by applying the bifurca-
tion theorem for fixed points of a m4d@,21] and theorems of differentiability frofd]. We
follow the approach which focused on the expansions of solufibf/80].
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5. Examples

Example 1. Consider the following dynamical system:

Xy =2+ wx1 — x2 4 x3x2,
Xy=x1+ 2+ wxx+ 33, x¢l,

Axilxer = ((K ) COS(g) - 1) x1 — (k + ) sin (g) x2,
Axzlve = (k + pi?) sin (g) x1+ ((K + 12) COS(g) - l) X2, (34)

wherex=: (x1, x2), K = exp(—l%), the curvel is given by the equation; = xf, x1>0.

One can define, using (30), thatw) = (x + ©2) exp((2 + 1) 1), ¢ (0) = kexp(iF) =
14 0)=— l—é” # 0. Thus, by Theorem 4.1, system (34) has a periodic solution with period

~ 57 if |l is sufficiently small.

Example 2. Let the following system be given

xp=@—Dx1—x2, xo=x1+ (u—Dxz, x¢l,

T . T
e = (062313 00(3) 1) 1 - (6 - sin () 2
. T T

Axo|xer = (K — x% - x%) sin (Z> X1+ ((K — x% — x%) COS(Z) — )xg, (35)
wherel is a curve given by the equatiap=x1 + uxf, x1>0,k= exp(%”). Using (30) one
can find tha (1) =k exp((x— 1)), ¢(0) = exp(— ) =1, ¢'(0)= T # 0. Moreover,
one can see that for the associategystem

X]=—X1—X2, Xp=x1—X2, X¢&5s,
Ax1|res = ((K - xf — x%) COS(%) — 1) x1— (K — x% — x%) sin (%) X2,
Axo|res = (K — x% - x%) sin (%) X1+ ((K - x% - x%) COS(%) — 1) X2, (36)

wheres is given by the equation; = x1, x1 > 0, the origin is the stable focus. Indeed,
using polar coordinates, denote hiyp, ro) the solution of (36) starting at the angpe= 7.

We can define that(} + 27n, ro) = (x — r2(§ +2n(n — 1), rg)) exp(—%"). From the last
expressionitis easily seen that the sequepee (7 +2nn, ro) is monotonically decreasing

and there exists a limit of,. Assume that, — ¢ # 0. Then it implies that there exists a
periodic solution of (36) and = (k — ¢2) exp(—7—jf)a which is a contradiction. Thus=0.
Consequently, the origin is the stable focus of (36) and by Theorem 4.1 the system (35) has
the limit cycle with period~ 774” if > 0 is sufficiently small.
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