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Abstract

The objective of the paper is to obtain results on the behavior of a specific plane discontinuous
dynamical system in the neighbourhood of the singular point. A new technique of investigation is
presented. Conditions for existence of the foci and centres are proposed.The focus-centre problemand
Hopf bifurcation are considered. Appropriate examples are given to ilustrate the bifurcation theorem.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction and Preliminaries

The theory of dynamics with discontinuous trajectories has been developed through ap-
plications[3,4,6,15,19,20,22,30,32,34,35]and theoretical challenges[15,16,22,26,36–38].
The present paper can be considered as an attempt to apply ideas of the perturbations
theory, which was founded by Poincaré and Lyapunov[28,33], and methods of the bifurca-
tion theory[4,8,15,18,21,29,30,33]to the object which combines features of vector fields
and maps. In fact, we consider the problem for equations with variable time of impulses.
Effective methods of the investigation of systems with nonfixed moments of impulsive ac-
tion can be found in[9,12,13,26,27,38]. Theoretical problems of nonsmooth dynamics and
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discontinuous maps[5,10,11,14,23–25]also very close to the subject of our paper. In our
view there have been two principal obstacles to a thorough investigation of the subject.
While the absence of sufficiently general results on the smoothness of solutions has been
the first one, the problem of choice of a nonperturbed system convenient for study has
been the second. The present work utilizes extensively the differentiable and analytical de-
pendence discontinuous solutions on parameters[1,2,26,40]. Moreover, the nonperturbed
equation is specifically defined. And, while all of its terms are linear, this equation is es-
sentially a nonlinear one. We should remark that in general the perturbed systems with
sets of discontinuities of linear nature have been considered previously. One example is
the clock model[22,38]. But we investigate systems all of whose terms are nonlinear. This
necessitates the use of the standard linearization method and application of the concept of
B-equivalent discontinuous systemswhich has been developed in[1–3] for nonautonomous
case. The approach of the paper can be effectively employed for investigation of oscillations
in mechanics, electronics, biology and medicine[4,15,30–32,34].
The paper is organized in the following manner. In Section 1, we give the description of

the systems under consideration and prove the theorem of existence of foci and centres of
the nonperturbed system. The main subject of Section 2 is foci of the perturbed equation.
The noncritical case is considered. In Section 3 the problem of distinguishing between the
centre and the focus is solved. Bifurcation of a periodic solution is investigated in Section
4. Section 5 consists of examples illustrating the bifurcation theorem.

1.1. The nonperturbed system

Let N,R be sets of all natural and real numbers, respectively,R2 be a real euclidean

space. Denote by〈x, y〉 the dot-product of vectorsx, y ∈ R2. Let ||x|| = 〈x, x〉 12 be the
norm of a vectorx ∈ R2,R be the set of all real-valued constant 2× 2 matrices,I ∈ R be
an identity matrix. We shall consider inR2 the following dynamical system:

dx

dt
= Ax, x /∈�0,

�x|x∈�0 = B0x, (1)

whereA,B0 ∈ R, �0 is a subset ofR2 and will be described below. The phase point of (1)
moves between two consecutive intersections with the set�0 along one of the trajectories
of the systemx′ = Ax.When the solution meets the set�0 at the moment�, the pointx(t)
has an jump�x|� := x(�+)− x(�). Thus we suppose that the solutions are left continuous
functions. The following assumptions will be needed throughout the paper:

(C1) �0 = ⋃p
i=1 si, p ∈ N, wheresi are half-lines starting at the origin and defined by

equations〈ai, x〉 = 0, i = 1, p, whereai = (ai1, a
i
2) ∈ R2 are constant vectors;

(C2)

A =
(

� −�
� �

)
,

where� �= 0;
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(C3) there exists a regular matrixQ ∈ R and nonnegative real numbersk and� such that

B0 = kQ

(
cos(�) − sin(�)
sin(�) cos(�)

)
Q−1 −

(
1 0
0 1

)
.

Also, for the sake of brevity, in what follows every angle for a point or a line is
considered with respect to the positive half-line of the first coordinate axis.
Denotes′

i = (I + B0)si, i = 1, p. Let �i and �i be angles ofsi and s′
i , i = 1, p,

respectively,

B0 =
(
b11 b12
b21 b22

)
,

(C4) 0< �1< �1< �2< · · ·< �p < �p <2�, and(b11 + 1) cos�i + b12 sin �i �= 0, i =
1, p.

The system (1) is said to be aD0-systemif conditions (C1)–(C4) hold. It is easy to see that
the origin is a unique singular point ofD0-systemand (1) is not linear.
Let us subject (1) to the transformationx1 = r cos(	), x2 = r sin(	) and exclude time

variablet. Then solutionr(	, r0) which starts at the point(0, r0), satisfies the following
system in polar coordinates:

dr

d	
= 
r, 	 �= �i (mod 2�),

�r|	=�i (mod 2�) = kir, (2)

where
 = �
� , the variable	 is ranged over the time-scale

R	 = R\
∞⋃

i=−∞


p−1⋃

j=1

(2�i + �j ,2�i + �j+1] ∪ (2�i + �p,2�(i + 1) + �1]



and

ki = [((b11+ 1) cos(�i ) + b12 sin(�i ))
2

+ (b21 cos(�i ) + (b22 + 1) sin(�i ))
2] 12 − 1.

Eq. (2) is 2�-periodic, so we shall consider just the section	 ∈ [0,2�] in what follows.
That is the system

dr

d	
= 
r, 	 �= �i ,

�r|	=�i = kir, (3)

is provided for discussion, where	 ∈ [0,2�]	 = [0,2�]\⋃p
i=1(�i , �i]. System (3) is a

sample of time-scale differential equation[7]. We show that one can reduce (3) to an
impulsive differential equation for the investigation’s needs. Indeed, let us introduce a new
variable�=	−∑0<�j<	 �j , �j =�j −�j ,with the range[0,2�−∑p

i=1 �i].We shall call
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this new variable�-substitution. It is easy to check that upon�-substitutionthe solution
r(	, r0) satisfies the following impulsive equation:

dr

d�
= 
r, � �= �j ,

�r|�=�j = kj r, (4)

where�j = �j − ∑
0<�i<�j

�i . Solving (4) as an impulsive system[26,38] and using�-

substitutionone can obtain that the solutionr(	, r0) of (2) has the form

r(	, r0) = exp






	 −

∑
0<�i<	

�i




 ∏

0<�i<	

(1+ ki)r0 (5)

if 	 ∈ [0,2�]	.
Denote

q = exp

(



(
2� −

p∑
i=1

�i

))
p∏

i=1

(1+ ki). (6)

Construct the Poincaré return mapr(2�, r0) on positive half-axis ofOx1 and compare (5)
with (6). Then the following theorem follows:

Theorem 1.1. If

(1) q = 1, then the origin is a centre and all solutions are periodic with periodT = (2� −∑p
i=2 �i )�

−1;
(2) q <1, then the origin is a stable focus;
(3) q >1, then the origin is an unstable focus ofD0-system.

Remark 1.1. Conditions (C1)–(C4) and Theorem 1.1 imply that a trajectory of (1) either
spirals to the origin when time increases (decreases) or is a discontinuous cycle. Moreover,
if the solution spirals to the origin as time decreases (increases) then it spirals to infinity
as time increases (decreases). Thus, the behavior of the trajectory is very similar to the
behavior of trajectories of the planar linear system of ordinary differential equations with
constant coefficients[17,39]. In what follows, we will consider how a perturbation may
change the phase portrait of the system.

1.2. The perturbed system

Consider the following system in the neighbourhoodG:

dx

dt
= Ax + f (x), x /∈�,

�x|x∈� = B(x)x. (7)
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Our basic assumptions for system (7) are the following:

(C5) � = ⋃p
i=1 li is a set of curves starting at the origin and which are defined by the

equations〈ai, x〉 + �i (x) = 0, i = 1, p;
(C6)

B(x) = (k + 
(x))Q
(
cos(� + �(x)) − sin(� + �(x))
sin(� + �(x)) cos(� + �(x))

)
Q−1 −

(
1 0
0 1

)
,

(I + B(x))x ∈ G for all x ∈ G;
(C7) {f, k, v} ⊂ C(1)(G),{�i , i = 1, p} ⊂ C(2)(G);
(C8) f (x)=o(||x||), 
(x)=o(||x||), �(x)=o(||x||), �i (x)=o(||x||2), i=1, p; More-

over, it is supposed that the matricesA,Q, the vectorsai, i =1, p, constantsk, � are
the same as for (1), i.e.

(C9) the associated with (7) system (1) isD0-system.

The system (7) is said to be aD-systemif the conditions (C1)–(C8) hold.

Remark 1.2. Conditions (C5) and (C8) imply that curvesli do not intersect each other in
G, except at the origin, and neither of them has self intersect points inG if G is sufficiently
small. The origin is a unique singular point of theD-system.

In what follows we assume without loss of generality that�i �= �
2 j, j = 1,2,3. Then

one can transform the equation in (C5) to the polar coordinates so thatli : a1i r cos(	) +
a2i r sin(	) + �i (r cos(	), r sin(	)) = 0 and, hence,

	 = tan−1

(
tan �i − �i

a2i r cos(	)

)
.

Using Taylor expansion gives, the previous equation can be expressed as follows: ifr is
sufficiently small

li : 	 = �i + r�i (r,	), i = 1, p, (8)

where functions�i are 2�-periodic in	, continuously differentiable and�i = O(r).
If the phase pointx(t) meets the discontinuity lineli at the angle� then after the jump

the pointx(�+) will belong to the linel′i = {z ∈ R2 | z = (I + B(x))x, x ∈ li}. For the
remaining part of the paper the following assertion is very important.

Lemma 1.1. If the conditions(C7) and (C8) are valid then the linel′i is placed between
linesli andli+1 for every i if G is sufficiently small.

Proof. Suppose that linessi, si+1, li , li+1 are transformed by the mapy = Q−1x into
liness′′

i , s′′
i+1, l′′i , l′′i+1, respectively. LetLi ={z ∈ R2 | z=Q−1(I +B(Qy))Q, y ∈ l′′i },

�i =Q−1(I +B0)Qs′′
i and�

′
i , �′

i+1, �′
i be the angles of straight liness

′′
i , s′′

i+1, �i .Without
lossof generalitywemayassume that�′

i < �′
i < �′

i+1.Now, toprove the lemma, it is sufficient
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to check whetherLi lies between linesl′′i , l′′i+1. We assume that 0< �′
i < �′

i < �′
i+1<

�
2 ,

otherwise one can use a linear transformation which will not change the position of the lines
with respect to each other. Letc1y1 + c2y2 + l∗(y1, y2) = 0 be the equation of the linel′′i .
Introducing the polar coordinatesy1=� cos(	), y2=� sin(	) one can write this equation
as	 = �′

i + ��∗(�,	), where�∗(�,	) = O(�) and�∗ is a 2�-periodic in	 function. If
y = (y1, y2) ∈ l′′i then the pointy+ = (y+

1 , y
+
2 ), where

y+ = Q−1(B(Qy) + I )Qy, (9)

belongs toLi. Assume without loss of generality thaty+
1 �= 0. Otherwise, we shall use

the conditiony+
2 �= 0. If we denote� = (y21 + y22)

1
2 ,	 = tan−1(

y2
y1
),�+ = ((y+

1 )
2 +

(y+
2 )

2)
1
2 ,	+ = tan−1(

y+
2

y+
1
) then (9) implies that

�+ = ki� + ��∗(�,	), (10)

	+ = 	 + � + �∗(�,	), (11)

where�∗ and�∗ are 2�-periodic in	 and�∗ =O(�), �∗ =O(�).Denote�(y1, y2)=c1y1+
c2y2 + l∗(y1, y2). Then

�(y+
1 , y

+
2 ) = �+(c1 cos(	+) + c2 sin(	

+)) + l∗(�+ cos(	+),�+ sin(	+))

= �+
√
c21 + c22 sin(� + �(�,	) − ��∗(�,�))

+ l∗(�+ cos(	+),�+ sin(	+)),

where�(�,	) = �(Qy). It is readily seen that the sign of�(�+,	+) is the same as that
of sin(�) for sufficiently small�. Consequently,�(�+,	+)>0. Thus the lineLi is placed
above the linel′′i in the first-quarter of the planeOx1x2. Similarly, one can show that it is
placed belowl′′i+1. The lemma is proved.�

Remark 1.3. Notice that Lemma 1.1 guarantees that every nontrivial trajectory meets pre-
cisely onceeachof the linesli , i=1, p,within any time interval of lengthT if G is sufficiently
small.

2. Foci ofD-systems

Using the polar coordinatesx1=r cos(	), x2=r sin(	) one can find that the differential
part of (7) has the following form:

dr

d	
= 
r + P(r,	),

where, as is known[39], the functionP(r,	) is 2�-periodic, continuously differen-
tiable andP = o(r). Denotex+ = (x+

1 , x
+
2 ) = (I + B(x))x, x+ = r+(cos	+, sin 	+),

x̃+ = (x̃+
1 , x̃+

2 ) = (I + B(0))x, where x = (x1, x2) ∈ li , i = 1, p. The inequality
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||x+ − x̃+||� ||B(x)−B(0)||||x|| implies thatr+ = kir +�(r,	).Moreover, using the re-

lation between
x+
2

x+
1
and

x̃+
2

x̃+
1
and condition (C5) one can conclude that	+ =	+�i + �(r,	).

Functions�, � are 2�-periodic in	 and� = o(r), �(r,	) = o(r). Finally, transformed
system (7) is of the following form:

dr

d	
= 
r + P(r,	), (�,	) /∈�,

�r|(�,	)∈li = kir + �(r,	),
�	|(�,	)∈li = �i + �(r,	). (12)

Let us introduce the following system besides the system (12):

d�
d	

= 
� + P(�,	), 	 �= �i ,

��|	=�i = ki� + wi(�),
�	|	=�i = �i , (13)

where all elements, exceptwi, i = 1, p, are the same as in (12) and the domain of (13) is
[0,2�]	. We shall define functionswi below.
Let r(	, r0) be a solution of (12) and	i be the angle where the phase point intersectsli .

Denote also�i = 	i + �i + �(r(	i , r0),	i ) the angle, wherer(	, r0) has to be after the
jump.
Further ˆ(�,�], {�,�} ⊂ R denotes the oriented interval, that is

ˆ(�,�] =
{
(�,�] if ���,
(�, �] otherwise.

Definition 2.1. We shall say that systems (12) and (13) areB-equivalent inG if for every
solutionr(	, r0) of (12) whose trajectory is inG for all 	 ∈ [0,2�]	 there exists a solution
�(	, r0) of (13) which satisfies the relation

r(	, r0) = �(	, r0),	 ∈ [0,2�]	\
p⋃

i=1

{ ˆ[	i , �i , ] ∪ ˆ[�i , �i]}, (14)

And, conversely, for every solution�(	, r0) of (13) whose trajectory is inG there exists a
solutionr(	, r0) of (12) which satisfies (14).

Fix i = 1, p. Let r1(	, �i ,�), r1(�i , �i ,�) = �, be a solution of the equation

dr

d	
= 
r + P(r,	) (15)

and	 = �i be the meeting angle ofr1(	, �i ,�) with the lineli . Then

r1(�i , �i ,�) = exp(
(�i − �i ))� +
∫ �i

�i
exp(
(�i − s))P (r1(s, �i ,�), s)ds.
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Let now�1i =�i +�+�(r1(�i , �i ,�), �i ) and�
1=(1+ki)r1(�i , �i ,�)+�(r(�i , �i ,�), �i ).

Let r2(	, �1i ,�
1) be a solution of system (15),

r2(�i , �
1
i ,�

1) = exp(
(�i − �1i ))�
1 +

∫ �i

�1i

exp(
(�i − s))P (r2(s, �1i ,�
1), s)ds.

We define that

wi(�) = r2(�i , �
1
i ,�

1) − (1+ ki)� = exp(
(�i − �1i ))

[
(1+ k)

(
exp(
(�i − �i ))�

+
∫ �i

�i
exp(
(�i − s))P (r1(s, �i ,�), s)ds

)
+ �(r1(�i , �i ,�), �i )

]

+
∫ �i

�1i

exp(
(�i − s))P (r2(s, �1i ,�
1), s)ds − (1+ k)�

or, if simplified,

wi(�) = (1+ k)[exp(−
�(r1(�i , �i ,�), �i )) − 1]�
+ (1+ k)

∫ �i

�i
exp(
(�i − � − s − ��(r1(�i , �i ,�), �i )))

× P(r1(s, �i ,�), s)ds +
∫ �i

�1i

exp(
(�i − s))P (r2(s, �1i ,�
1), s)ds

+ exp(
(�i − �1i ))�(r1(�i , �i ,�), �i ). (16)

Differentiating (8) and (16) one can find that

d�i
d�

=
�r1
��

[�i + r1
��i

�r ]
1− (
r1 + P)[�i + r1

��i

�r ] − r1
��i

�	

,
d�1i
d�

= d�i
d�

(
1+ ��

�	

)
+ ��

�r
�r1
��

,

dwi

d�
= (1+ ki)[exp(−
�) − 1] − 
(1+ ki)exp(−
�)

(
��

�r
�r1
��

+ ��

�	

d�i
d�

)
�

+ (1+ ki)exp(
(�i − �i − �i − �))P
d�i
d�

+ (1+ ki)

∫ �i

�i
exp(
(�i − � − s − �))

{
−


(
��

�r
�r1
��

+ ��

�	

d�i
d�

]
P

− �P
�r

�r1
��

− �P
�	

d�i
d�

}
ds

+
∫ �i

�1i

exp(
(�i − s))
�P(r2(s, �1i ,�

1), s)

�r
�r2
��

ds

− exp(
(�i − �1i ))P (�1, �1i )
��1i
��

+ exp(
(�i − �1i ))

[
−��1i

��
� + ��

�r
�r1
��

+ ��

�	

d�i
d�

]
. (17)
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Analysis of (16) and (17) implies that the following two lemmas are valid.

Lemma 2.1. The systems(12)and(13)areB-equivalent if G is sufficiently small.

Lemma 2.2. If conditions(C1)–(C5)are valid thenwi, i = 1, p, are continuously differ-
entiable functions andwi(�) = o(�), i = 1, p.

Theorem 2.1. Assume that conditions(C1)–(C6)hold andq <1 (1<q). Then the origin
is a stable(unstable) focus of Eq.(7).

Proof. Let r(	, r0) be a solution of (12) such thatr(0, r0)= r0 and�(	, r0),�(0, r0)= r0
be the solution of (13). Using�-substitutionone can obtain that

�(	, r0) = exp(
	)

{
m∏
i=1

(1+ ki)exp

(
−


m∑
s=1

�s

)
r0

+
m∏
i=1

(1+ ki)exp

(
−


m∑
s=1

�s

)∫ �1

0
exp(−
u)P du

+
m∏
i=2

(1+ ki)exp

(
−


m∑
s=2

�s

)∫ �2

�1
exp(−
u)P du

+ · · ·
∫ 	

�m
exp(−
u)P du +

m∏
i=2

(1+ ki)exp

(
−


m∑
s=2

�s

)
w1

+
m∏
i=3

(1+ ki)exp

(
−


m∑
s=3

�s

)
w2 . . . + exp(−
�m)wm

}
, (18)

where	 ∈ [0,2�]	, P = P(�(	, r0),	), wi = wi(�(�i , r0), �i ). In [1] the differentiable
dependence on parameters for solutions of impulsive systems was considered. Using the
theorem of the paper, conditions (C4), (C5) and Lemma 2.2 one can find that solution

�(�, r0) is differentiable inr0 and its derivative
��(	,r0)

�r0
at the point	=2�, r0=0 is equal

to q. Since (12) and (13) areB-equivalent it follows that:

�r(2�,0)
�r0

= q

and the proof is complete.�

3. The problem of distinguishing between the center and the focus

Consider the critical caseq = 1. Throughout this section we assume that functions
f, g, �i , i=1, p, are analytic inG. The condition (C8) implies that the Taylor expansions of
f andg start with members of order not less than 2, and the expansions of�i , i = 1, p, start
with members of order not less than 3. First we investigate the problem for (13) all of whose
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elements are analytic if� is sufficiently small. Theorems from[2] imply thatwi, i = 1, p,
are analytic in� and the solution�(	, r0) of Eq. (13) has the following expansion:

�(	, r0) =
∞∑
i=0

�i (	)r
i
0, (19)

where	 /∈ (�i , �i], i = 1, p,�0(	) = 0, q = �1(	) = 1. One can define a Poincaré return
map

�(2�, r0) =
∞∑
i=1

air
i
0, (20)

whereai = �i (2�), i = 0,1, . . . , a1 = q = 1.We consider behavior of coefficients of (19)
and define what type of a singular point the origin is. The expansions exist[2] such that

P(�,	) =
∞∑
i=2

Pi(	)�i ,

wj (	) =
∞∑
j=2

wji(	)�i , (21)

wherePi(	), wji(	), j = 2,3, . . ., are 2�-periodic functions which can be defined by
using elements of (12). The coefficients�j (	), j =2,3, . . . , are solutions of the following
systems:

d�
d	

= Pj (	), 	 �= �i ,

��|	�=�i = wji,

�	|	 �=�i = �i (22)

with initial values�j (0) = 0, j = 2,3, . . . . Hence, coefficients in (20) are equal to

aj =
∫ �1

0
Pj (	)d	 +

p−1∑
i=1

∫ �i+1

�i
Pj (	)d	 +

∫ 2�

�p
Pj (	)d	 +

p∑
i=1

wji. (23)

From (20) and (23) it follows that the following lemma is true.

Lemma 3.1. Let q = 1 and the first nonzero element of the sequenceaj , j = 2,3, . . . be
negative(positive). Then the origin is a stable(unstable) focus of(13). If all aj = 0, j =
2,3, . . . then the origin is the centre of(13).

B-equivalence of systems (12) and (13) implies immediately that the following theorem
is valid.

Theorem 3.1. Let q = 1 and the first nonzero element of the sequenceaj , j = 2,3, . . .
be negative(positive). Then the origin is a stable(unstable) focus of the Eq.(7). If all
aj = 0, j = 2,3, . . . then the origin is the centre of(7).
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4. Bifurcation of periodic solutions

In this section we prove the bifurcation theorem of a periodic solution from an equilib-
rium for the discontinuous dynamical system. After the initial impetus of Poincaré[33],
Andronov[4] and Hopf[18] this method of research of periodic motions has been used very
successfully bymany authors for various types of differential see[8,10,15,17,21,29,30]and
references cited there). Let us consider the system

dx

dt
= Ax + f (x) + �F(x,�), x /∈�(�),

�x|x∈�(�) = B(x,�)x. (24)

Assume that the following conditions are satisfied:

(A1) the set�(�) =⋃p
i=1 li (�) is a union of curves inGwhich start at the origin and are

defined by theli : (ai, x) + �i (x) + ��(x,�) = 0, i = 1, p;
(A2) there exists a matrixQ(�) ∈ R,Q(0)=Q, analytic in(−�0,�0), and real numbers

�, � such that

Q−1(�)B(x,�)Q(�)

= (k + �� + 
(x))
(
cos(� + �� + �(x)) − sin(� + �� + �(x))
sin(� + �� + �(x)) cos(� + �� + �(x))

)

−
(
1 0
0 1

)
;

(A3) associated with (24) systems

dx

dt
= Ax, x /∈�0,

�x|x∈�(�) = B0x, (25)

and

dx

dt
= Ax + f (x), x /∈�(0),

�x|x∈�(0) = B(x,0)x, (26)

areD0-systemandD-system, respectively;
(A4) functions
, � : G → R2 andF, � : G × (−�0,�0) → R2 are analytical inx and�;
(A5) F(0,�) = 0, �(0,�) = 0, uniformly for � ∈ (−�0,�0).

We need also the following system:

dx

dt
= A(�)x, x /∈�0(�),

�x|x∈�0(�) = B(0,�)x, (27)
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whereA(�) = A + � �F(0,�)
�x , and�0(�) =⋃p

i=1mi where

mi :
(
ai + �

��(0,�)

�x
, x

)
= 0, i = 1, p.

Using polar transformation one can write system (24) in the following form:

dr

d	
= 
r + P(r,	,�), (r,	) /∈�(�),

�r|(r,	)∈li (�) = kir + �(r,	,�),
�	|(r,	)∈li (�) = �i + r�(r,	,�). (28)

Let the system

d�
d	

= 
� + P(�,	,�), 	 �= �i (�),

��|	=�i (�) = ki� + wi(�,�),
�	|	=�i (�) = �i (�), (29)

where�i (�), i=1, p, are angles ofmi , beB-equivalent to (28). The functionswi(�,�) can
be defined in the same manner as in (16). Similar to (6) one can define the function

q(�) = exp



(�)


2� −

p∑
j=1

(�j (�) − �j (�))




 1∏

j=p

(1+ kj (�)) (30)

for system (27). The theorem from[2] implies that the functionq(�) is analytic in�.

Theorem 4.1. Assume thatq(0)=1, q ′(0) �= 0and the origin is a focus for(26).Then, for
sufficiently smallr0, there exists a function� = �(r0) such that the solutionr(	, r0, �(r0))
of (28) is periodic with a periodT = (2� − ∑p

i=1 �i )�
−1 + o(|�|). Furthermore, if the

origin is the stable focus of(26) then the closed trajectory is the limit cycle.

Proof. Let �(	, r0,�) be a solution of (29). By the theorem of analyticity of solutions[2]
we have that

�(2�, r0,�) =
∞∑
i=1

ai(�)ri0,

whereai(�) =∑∞
j=0 aij�

j , a10 = q(0) = 1, a11 = q ′(0) �= 0.We define the displacement
function as follows:

V(r0,�) = �(2�, r0,�) − r0

= q ′(0)�r0 +
∞∑
i=2

ai0r
i
0 + r0�2G1(r0,�) + r20�G2(r0,�),
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whereG1,G2 are functions analytical inr0,� in neighbourhood of the(0,0). The bifur-
cation equation isV(r0,�) = 0. Cancelling byr0 one can write the bifurcation equation
as

H(r0,�) = 0, (31)

where

H(r0,�) = q ′(0)� +
∞∑
i=2

ai0r
i−1
0 + �2G1(r0,�) + r0�G2(r0,�).

Since

H(0,0) = 0,
�H(0,0)

��
= q ′(0) �= 0

for sufficiently smallr0 there exists a function�=�(r0) such thatr(	, r0, �(r0)) is a periodic
solution. If we assume thatai0=0, i =2, l − 1 andal0 �= 0, then one can obtain from (31)
that

�(r0) = − al0

q ′(0)
rl−1
0 +

∞∑
i=l

�i ri0. (32)

Analysing the latter expression one can conclude that the bifurcation of periodic solutions
exists if a stable for�=0 focus is unstable for� �= 0 and conversely. Let�(	)=�(	, r̄0, �̄)
be a periodic solution of (29). It is known that the trajectory is limit cycle if

�V(r̄0, �̄)

�r0
<0. (33)

We have that

�V(r0,�)

�r0
= q ′(0)� +

∞∑
i=2

iai0r
i−1
0 + �2G1(r0,�) + 2r0�G2(r0,�).

Assume thatal0 is the first nonzero element amongai0 andal0<0. Then, using (32) one
can obtain

�V(r̄0, �̄)

�r0
= (l − 1)al0r̄

l−1
0 + Q(r̄0),

whereQ starts with a member whose order is not less thanl. Hence, (33) is valid. From
B-equivalence of (28) and (29) one can conclude that the theorem is proved.

Remark 4.1. Notice that the result of the section can be obtained by applying the bifurca-
tion theorem for fixed points of a map[8,21]and theorems of differentiability from[1].We
follow the approach which focused on the expansions of solutions[17,30].
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5. Examples

Example 1. Consider the following dynamical system:

x′
1 = (2+ �)x1 − x2 + x21x2,

x′
2 = x1 + (2+ �)x2 + 3x31x2, x /∈ l,

�x1|x∈l =
(
(
 + �2) cos

(�
6

)
− 1

)
x1 − (
 + �2) sin

(�
6

)
x2,

�x2|x∈l = (
 + �2) sin
(�
6

)
x1 +

(
(
 + �2) cos

(�
6

)
− 1

)
x2, (34)

wherex=: (x1, x2),
 = exp(−11�
6 ), the curvel is given by the equationx2 = x31, x1>0.

One can define, using (30), thatq(�) = (
 + �2)exp((2+ �) 11�
6 ), q(0) = 
exp(11�3 ) =

1, q ′(0)=−11�
6 �= 0.Thus, by Theorem 4.1, system (34) has a periodic solution with period

≈ 11�
12 if |�| is sufficiently small.

Example 2. Let the following system be given

x′
1 = (� − 1)x1 − x2, x′

2 = x1 + (� − 1)x2, x /∈ l,

�x1|x∈l =
(
(
 − x21 − x22) cos

(�
4

)
− 1

)
x1 − (
 − x21 − x22) sin

(�
4

)
x2,

�x2|x∈l = (
 − x21 − x22) sin
(�
4

)
x1 +

(
(
 − x21 − x22) cos

(�
4

)
− 1

)
x2, (35)

wherel is a curve given by the equationx2=x1+�x21, x1>0,
=exp(7�4 ).Using (30) one
can find thatq(�)=
 exp((�−1)7�4 ), q(0)=
 exp(−7�

4 )=1, q ′(0)= 7�
4 �= 0.Moreover,

one can see that for the associatedD-system

x′
1 = −x1 − x2, x′

2 = x1 − x2, x /∈ s,

�x1|x∈s =
(
(
 − x21 − x22) cos

(�
4

)
− 1

)
x1 − (
 − x21 − x22) sin

(�
4

)
x2,

�x2|x∈s = (
 − x21 − x22) sin
(�
4

)
x1 +

(
(
 − x21 − x22) cos

(�
4

)
− 1

)
x2, (36)

wheres is given by the equationx2 = x1, x1>0, the origin is the stable focus. Indeed,
using polar coordinates, denote byr(	, r0) the solution of (36) starting at the angle	 = �

4 .

We can define thatr(�
4 + 2�n, r0)= (
 − r2(�

4 + 2�(n− 1), r0))exp(−7�
4 ). From the last

expression it is easily seen that the sequencern=r(�
4+2�n, r0) ismonotonically decreasing

and there exists a limit ofrn. Assume thatrn → � �= 0. Then it implies that there exists a
periodic solution of (36) and�= (
−�2)exp(−7�

4 )�which is a contradiction. Thus�=0.
Consequently, the origin is the stable focus of (36) and by Theorem 4.1 the system (35) has
the limit cycle with period≈ 7�

4 if �>0 is sufficiently small.
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