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Perturbations in cosmologies with a scalar field and a perfect fluid

Nicola Bartolo,1 Pier-Stefano Corasaniti,2 Andrew R. Liddle,1 and Michae¨l Malquarti1
1Astronomy Centre, University of Sussex, Brighton BN1 9QH, United Kingdom

2ISCAP, Columbia University, Mailcode 5247, New York, New York 10027, USA
~Received 5 February 2004; revised manuscript received 22 April 2004; published 24 August 2004!

We study the properties of cosmological density perturbations in a multi-component system consisting of a
scalar field and a perfect fluid. We discuss the number of degrees of freedom completely describing the system,
introduce a full set of dynamical gauge-invariant equations in terms of the curvature and entropy perturbations,
and display an efficient formulation of these equations as a first-order system linked by a fairly sparse matrix.
Our formalism includes spatial gradients, extending previous formulations restricted to the large-scale limit,
and fully accounts for the evolution of an isocurvature mode intrinsic to the scalar field. We then address the
issue of the adiabatic condition, in particular demonstrating its preservation on large scales. Finally, we apply
our formalism to the quintessence scenario and clearly underline the importance of initial conditions when
considering late-time perturbations. In particular, we show that entropy perturbations can still be present when
the quintessence field energy density becomes non-negligible.

DOI: 10.1103/PhysRevD.70.043532 PACS number~s!: 98.80.Cq
as
on
o

y

he
n
c

on
pe

an

e
re
he
x
ill
te
r-
ct

s
o

b
ns
w
th
n

ch
rg

n
t

e a
ut,
ua-

er
ere

the
ors

und
I. INTRODUCTION

The material content of the universe is commonly
sumed to be a mixture of fluids, such as radiation or n
relativistic matter, and scalar fields, either driving a period
early universe inflation@1# or playing the role of dark energ
~quintessence! in the present universe@2–4#. The latter pos-
sibility has motivated a number of works devoted to t
study of cosmological perturbations in a multi-compone
system consisting of fluids and a scalar field, for instan
Refs.@3–12#. Nevertheless, the literature contains some c
tradictory statements concerning the properties of such
turbations.

In this paper we aim to resolve these discrepancies
will provide a comprehensive analysis of the problem. W
will study the role of intrinsic entropy perturbation in th
scalar field, and whether the notion of adiabaticity is p
served by the dynamics of the multi-component system w
the evolution of such an intrinsic entropy perturbation is e
plicitly accounted for. In the process of doing so, we w
discuss the number of degrees of freedom which comple
describe the system and we will find a highly efficient fo
mulation of the perturbation equations including the effe
of spatial gradients.

Finally, using our formalism we will specifically discus
the quintessence scenario. We will correct some comm
misconceptions, discuss the evolution of entropy pertur
tions, and clearly show the importance of initial conditio
when considering late-time perturbations. In particular,
will show that entropy perturbations can be enhanced by
evolution of the field and may still be present when its de
sity is no longer negligible. This is an important result whi
has generally been overlooked when studying dark ene
models.

II. THE DYNAMICAL EQUATIONS

A. Background

Our approach builds on an earlier paper by Malquarti a
Liddle @11#, and we will largely follow the notation of tha
1550-7998/2004/70~4!/043532~9!/$22.50 70 0435
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article but with some differences in definitions. We assum
flat Friedmann–Robertson–Walker universe througho
with the background evolution determined by the usual eq
tions

3H253S ȧ

a
D 2

58pGr tot , ~1!

2Ḣ13H252
ä

a
1S ȧ

a
D 2

528pGptot , ~2!

whereH[ȧ/a is the Hubble parameter,a is the scale factor,
a dot stands for a derivative with respect to cosmic timet and
the subscript ‘‘tot’’ always refers to the sum over all matt
components. The fundamental ingredients we consider h
are a perfect fluid with constant equation of statewf[pf /r f
and a minimally coupled scalar fieldw with potentialV(w).
Since we treat the fluid and the scalar field as uncoupled,
conservation of their respective energy-momentum tens
gives

r ḟ523H~11wf!r f ⇒ r f}a23(11wf), ~3!

ẅ523Hẇ2
dV

dw
. ~4!

The subscripts ‘‘f’’ and ‘‘w ’’ will always refer to the perfect
fluid and the scalar field, respectively.

Useful parameters describing completely the backgro
properties of the scalar field are its equation of state

ww[
pw

rw
5

ẇ2/22V~w!

ẇ2/21V~w!
, ~5!

and its adiabatic sound speed

csw
2 [

ṗw

ṙw

5ww2
ẇw

3H~11ww!
511

2

3

dV/dw

Hẇ
. ~6!
©2004 The American Physical Society32-1



e
c

is
d
st

t

s-

d

e
r
hi

a

r–
nd

g

the

uid

en

e
t
ed
o
ns

-

e
wo

and
This
gy-
tions
om-
os-
he
e-

BARTOLO et al. PHYSICAL REVIEW D 70, 043532 ~2004!
We also introduce the total equation of statew[ptot /r tot and
the total sound speedcs

2[ ṗtot / ṙ tot , and in order to simplify
some expressions we define for each componentgx[1
1wx and alsog[11w.

B. Perturbations

We consider only scalar perturbations and we choos
work in Newtonian gauge@13#, where the perturbed metri
reads as

ds252~112F!dt21a2~ t !~122C!dx2. ~7!

HereF andC describe the metric perturbation, and in th
case are equal to the gauge-invariant potentials define
Ref. @13#. We work in Fourier space and compute the fir
order perturbed Einstein equations. As our system has
anisotropic stress, the (i 2 j ) Einstein equations imply tha
the metric potentials are equal,C5F. The remaining Ein-
stein equations are

23H~HF1Ḟ!2
k2

a2
F54pGdr tot , ~8!

F̈14HḞ1~2Ḣ13H2!F54pGdptot , ~9!

2~HF1Ḟ!54pGdqtot , ~10!

where¹dqtot is the total momentum perturbation of the sy
tem. Equation~8! comes from the (020) Einstein equation,
Eq. ~9! from the (i 2 i ) Einstein equation, while Eq.~10! is
obtained from the (02 i ) Einstein equation. The perfect flui
and scalar field perturbation variables are

dpf5wfdr f , ~11!

dqf5r fg fVf , ~12!

drw5ẇdẇ2ẇ2F1
dV

dw
dw, ~13!

dpw5ẇdẇ2ẇ2F2
dV

dw
dw, ~14!

dqw52ẇdw, ~15!

whereVf is the fluid velocity potential defined so that th
fluid velocity is given bydu[¹Vf—this is possible since fo
scalar perturbations the flow is irrotational. Note that t
definition is slightly different from the one used in Ref.@11#.
The conservation of the energy-momentum tensors for e
component provides the equations
04353
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dẅ13Hdẇ1
k2

a2
dw1

d2V

dw2
dw54ẇḞ22

dV

dw
F, ~16!

d ḟ23g fḞ5g f

k2

a2
Vf , ~17!

V̇f53HwfVf2
wf

g f
d f2F, ~18!

where d f[dr f /r f . We also definedw[drw /rw and dp

[dpw /rw . These equations are the perturbed Eule
Lagrange equation for the scalar field and the continuity a
Euler equations for the fluid.

As we will see later, it is useful to introduce the comovin
density perturbation for each component@14#

ex[drx23Hdqx , ~19!

which is a gauge-invariant quantity. We also introduce
gauge-invariant entropy perturbation variables@15–17#,
namely the relative entropy perturbation between the fl
and the scalar field

S[
3Hg fgwV f

g S drw

rẇ

2
dr f

r ḟ
D 5V f

gwd f2g fdw

g
, ~20!

and the intrinsic entropy perturbation of the scalar field

G[
3Hgwcsw

2

12csw
2 S drw

rẇ

2
dpw

pẇ
D 5

dp2csw
2 dw

12csw
2

, ~21!

wheredp[dpw /rw . The normalizations have been chos
in order to simplify some later expressions. Note thatG is
well defined even ifcsw

2 .1 since, as can easily be shown, w
have G5ew /rw . By definition the perfect fluid does no
have an intrinsic entropy perturbation. Adiabaticity is defin
by the conditionS5G50, since in this case it is possible t
define a slicing for which all matter component perturbatio
vanish.

C. Degrees of freedom

The system of Eqs.~8!, ~9!, ~10!, ~16!, ~17! and ~18! de-
scribes the evolution of four variables, namelyF, r f , Vf and
dw. Equations~9! and~16! are second order and if we intro
duce two new variables forḞ and dẇ ~and therefore two
new equations! we end up with six variables describing th
perturbations, six first-order dynamical equations and t
constraint equations@Eqs. ~8! and ~10!#. The two constraint
equations reduce the number of degrees of freedom to 4
as a result two dynamical equations must be redundant.
comes from the fact that the conservation of the total ener
momentum tensor is a consequence of the Einstein equa
and therefore the conservation equations for one matter c
ponent implies the ones for the other. As a result, it is p
sible to write this system as four differential equations for t
four dynamical degrees of freedom which completely d
scribe the perturbations, e.g.,F, d f , dw anddp , which are
2-2
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the basic variables studied in Ref.@11# in the large-scale limit
k/aH!1. A general solution to those equations permits b
an isocurvature perturbation between the scalar field den
contrast and the fluid density contrast, and an isocurva
perturbation intrinsic to the scalar field, i.e., between its d
sity and pressure perturbations.

For our discussion, it is useful to combine Eqs.~8! and
~10! and find the constraint equation

k2

a2
F524pGe tot . ~22!

Note that this is a gauge-invariant equation, though had
included an anisotropic stress thenF must be replaced by
the second metric potentialC @18#. If the fluid is completely
absent, so that we simply have a single scalar field, the c
straint equation, Eq.~22!, reduces to

k2

a2H2
F52

4pG

H2
~ ẇdẇ2ẇ2F2ẅdw!52

3

2
G. ~23!

The system is completely described by two dynamical
grees of freedom and this equation implies that one of

scalar field degrees of freedom is removed, e.g.,dẇ. The
right-hand side of Eq.~23! is simply proportional to the in-
trinsic entropy perturbation of the scalar fieldG, hence in the
large-scale limit this is forced to vanish ifF is to remain
small. This is a known result already shown in Refs.@18,19#.

By contrast, once a fluid is added we have

k2

a2H2
F52

3

2
@VwG1V f~d f23Hg fVf!#. ~24!

This equation shows that the fluid comoving density pert
bation can compensate the scalar field intrinsic entropy
turbation, and, as a result, in the presence of a fluid i
possible to have a non-vanishing scalar field intrinsic entr
perturbation even on large scales. Note that the presenc
the fluid changes the structure of the equations even if it
sub-dominant component of the total energy density. Thi
because the fluid creates a new set of hypersurfaces, tho
which its density is uniform, which need not align with h
persurfaces of uniform scalar field density.

Since we are interested in studying the evolution
isocurvature and adiabatic modes, we find it useful to use
gauge-invariant comoving curvature perturbation@13#

R[
2~HF1Ḟ!

3gH
1F. ~25!
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The equation of motion forR is given by@13#

Ṙ5
2

3Hg F2cs
2 k2

a2
F14pGdpnadG , ~26!

where dpnad[dptot2cs
2dr tot is the non-adiabatic pressur

perturbation. Note that even on large scalesR can evolve
due to the presence of a non-vanishing non-adiabatic p
sure perturbation, as recently stressed in different wo
@16,15#. The non-adiabatic pressure perturbation depends
the intrinsic and relative entropy perturbations@17,16#, and
in our case we find

dpnad

r tot
5Vw@~wf2csw

2 !S1~12csw
2 !G#. ~27!

From now on we find it convenient to describe the system
terms of the gauge-invariant variablesF, R, SandG, rather
than the set of variablesF, d f , dw , anddp . Note that such
a change of variables is completely determined by Eqs.~20!,
~21! and the expression

R5F2
1

3g
~Vwdw1V fd f!2

2

9g

k2

a2H2
F, ~28!

obtained from Eqs.~8! and ~25!. In the next section we find
a first-order system of dynamical equations expressed
these variables.

III. MATRIX FORMULATION

A. Evolution equation

In the long-wavelength limit (k/aH!1) Malquarti and
Liddle @11# were able to express the dynamical equations
a first-order matrix formulation, usingN[ log(a/a0) as a time
variable. They took as basic variablesF, d f , dw , anddp .
Here we show that our set of variables can bring the ma
into an even more efficient form. Moreover, we compute
general equations without the long-wavelength approxim
tion.

We define the vectorv[(F,R,S,G)T and use a prime to
denote a derivative with respect toN. Lengthy but straight-
forward algebra leads to the expression

v85FM01M 1

k2

a2H2
1M 2

k4

a4H4G3v, ~29!

where the only relevant matrix for the long-wavelength a
proximation (k/aH50) is given by
2-3



M05

2~113g/2! 3g/2 0 0

0 0 Vw~wf2csw
2 !/g Vw~12csw

2 !/g
2 2 , ~30!

BARTOLO et al. PHYSICAL REVIEW D 70, 043532 ~2004!
S 0 0 3~ww2wf!13g fV f~wf2csw!/g 3g fV f~12csw!/g

0 0 23g/2 3~ww2g/2!

D

u
e

x
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and the two matrices incorporating spatial gradients are

M15S 0 0 0 0

22cs
2/3g 0 0 0

0 0 1/3 1/3

0 2gw 21/3 21/3

D , ~31!

and

M25S 0 0 0 0

0 0 0 0

2gw/9g 0 0 0

22gw/9g 0 0 0

D . ~32!

The different non-vanishing entries clearly show the co
plings between adiabatic and relative/intrinsic entropy p
turbations on large scales (M0) and on small scales (M1
and M2). The first two lines of the matrices~dynamical
equations forF andR) are straightforward from Eqs.~26!
and ~25!. The equation for the relative entropy, here e
pressed as

S85F3~ww2wf!1
3g fV f~wf2csw

2 !

g GS1
3g fV f~12csw

2 !

g
G

1
k2

a2H2 F1

3
S1

1

3
GG1

k4

a4H4 F2

9

gw

g
FG , ~33!

has been obtained both in the context of multiple interact
fluids @16,17,20#, and in the framework of inflation when
several interacting scalar fields are present@18#, Eq. ~33!
being a particular case. However, in general it is not poss
to find a dynamical equation for the intrinsic entropy pert
bation of a given component without knowing its underlyi
physics. In the case under study we are able to fully spe
the evolution of the system through the equation for the
trinsic entropy perturbation of the scalar field as

G852
3

2
gS13S ww2

g

2DG1
k2

a2H2 F2gwR2
1

3
S2

1

3
GG

1
k4

a4H4 F2
2

9

gw

g
FG . ~34!

Equations~33! and ~34! show that, on large scales, the rel
tive entropy perturbation and the intrinsic entropy pertur
tion of the scalar field are mutually sourced and evolve
04353
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dependently of the curvature perturbations. In particular,
~34! confirms the conclusions drawn from the constra
equation, Eq.~24!, namely that in the presence of the fluid
is possible to have an intrinsic entropy perturbation relat
to the scalar field even on large scales. When the fluid is v
sub-dominant (V f.0), we haveS.0 and therefore on large
scales G decays exponentially1 with decay rate 23
13gw/2, dynamically recovering the single scalar field ca
for which the intrinsic entropy perturbation vanishes~cf. Sec.
II C!.

When the fluid is completely absent, the matrices in E
~29! reduce to 333 matrices, in the variablesF, R andG,
but the constraint in Eq.~23! allows one to eliminate one
more degree of freedom. For example, using Eq.~23! one
can find 232 matrices forR and G, or if one additionally
goes to the large-scale limit, the constraint equation,
~23!, forcesG to vanish and givesM0 as a 232 matrix for
F andR.

B. Adiabatic condition

The adiabatic condition requires that the relative entro
perturbationS and the intrinsic entropy perturbationG van-
ish. From our equations it is immediately clear that on la
scales (k/aH!1, so that onlyM0 need be considered! if the
perturbations are initially adiabatic thenSandG remain zero
for all times. In this caseR is constant andF rapidly ap-
proaches its asymptotic valueF53gR/(213g) ~for con-
stant or sufficiently slowly varyingg). This demonstrates
that adiabaticity on large scales holds regardless of any ti
dependence of the background variables such asww andcsw

2

~this was already pointed out in Ref.@11#!. In fact, preserva-
tion of adiabaticity is implied by the separate universe a
proach to large-scale perturbations@15#. However adiabatic-
ity will be broken once the perturbations move out of t
large-scale regime, with the matricesM1 andM2 sourcingS
andG through the curvature perturbationsR andF. In par-
ticular, note that this is also true for the single scalar fie
case, as is evident from looking at Eq.~23!. On the other
hand, as we will see, if an isocurvature perturbation is i
tially present it can be wiped out on large scales by the sc
field dynamics.

Aspects of these results have appeared in previous w
@7,9,10,12#, but without noting that adiabaticity is alway
preserved on large scales. Our set of variables makes un

1Actually, G remains constant in the special caseww51, but when
the field is dominant this equation of state is usually not conside
and anyway would rapidly evolve towardww,1.
2-4
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biguously clear the fact that the adiabatic condition is not
instantaneous notion on large scales, and holds inde
dently of the evolution of the background.

IV. APPLICATION TO THE QUINTESSENCE SCENARIO

A. Analytical description

In this section, we discuss the large-scale evolution
perturbations in quintessence scenarios. As described in
Appendix, before the quintessence field starts dominating
evolution of the universe its dynamics can feature up to f
different regimes during which the coefficients of the mat
M0 are constant. These are summarized in Table I. N
that, as compared to Refs.@8# and@11#, we altered the name
of two regimes~potential I and II! in order to make our
explanations clearer. Now, following Ref.@11#, for each re-
gime it is possible to perform an eigenvector decomposit
of the matrix M0 and therefore compute analytically th
large-scale evolution of the perturbations~i.e., during each
regimev can be written as a sum of four terms proportion
to viexp(niN)5via

ni for i 51 to 4, respectively!. However,
the matching conditions between the different regimes
not obvious asS and G contain non-trivial functions of the
background. In that respect, the formulation in Ref.@11# is
more appropriate when following the modes over differe
regimes, since to a first approximationF, d f , dw , and dp

can be taken as conserved through the transitions betw
regimes.

First of all, it is easy to find that for any regimeM0
possesses two eigenvectors

v15~3g,213g,0,0!, n150,

v25~1,0,0,0!, n252123g/2, ~35!

wherenx is the eigenvalue ofvx . These two vectors corre
spond to the two well-known adiabatic modes, the first o
being constant, and the second one rapidly decaying.

Now, it is possible to find the two remaining entrop
modes for a general case, but they cannot be expressed
simple form. Nevertheless, it is straightforward and mo
clear to perform an eigenmode decomposition by conside
each regime separately. The modes are given for each re
in Table II. For simplicity, we do not display complicate
expressions; for a detailed analysis the reader should ref
Ref. @11#. Most of these results have already been discus

TABLE I. Values of the three parametersVw , gw , and csw
2

during the four different possible regimes of a quintessence scen
~a particular scenario would feature only one type of tracker
gime! until the field starts dominating.

Vw gw csw
2

Kinetic 0 2 1
Potential I 0 0 1
Potential II 0 0 222wf

Usual tracker 0 gw ww

Perfect tracker Vw g f ww
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in that paper, but here we would like to comment further
the light of our new set of variables and new findings.

As is well known, we see that entropy perturbations dec
during the tracker regime@9,11#. This is due to the scaling
and attractor properties of that regime. More striking is t
fast-growing mode during the kinetic regime and the co
stant mode during the second potential regime. This con
dicts the claim by Braxet al. @8# that the final value of the
quintessence perturbations is insensitive to the initial con
tions. The difference comes from the fact that these auth
considered the basic variabledw and its time derivative.
They found that there are two decaying modes for ev
regime. However, this does not mean that observation
relevant variables~such asdw) are decaying, since one has
take into account the evolution of background quantit
~such asrw) as well. Our set of variables is therefore mo
appropriate.

Since in general we expect that there could be an ini
relative entropy perturbationS ~for example in the case of a
quintessence field present during inflation@23#! and sinceS
sourcesG, we can expect a non-zero intrinsic entropy
large scales which would then evolve according to our se
equations, Eqs.~33! and~34!. Now, using the results given in
the Appendix, Eqs.~A4! and ~A5!, we can show that the
growth of G during the kinetic regime—exp(DNkn3(k))
5exp(3gfDNp/2)—is exactly compensated by its subsequ
decay during the potential regime I—exp(DNpIn3(pI))
5exp(23gfDNp/2). As a result, after the three regimes pr
ceding the tracker regime, entropy modes are neither
hanced nor suppressed. However, as shown in the Appen
according to the initial conditions, the potential energy of t
field can undergo a very large drop before it reaches a c
stant value and the kinetic regime starts. In general, this t
sition phase could last a non-negligible number ofe-foldings
and would feature the same eigenmodes as the kinetic
gime, in particular the same growing mode. Since this fi
phase of growth would not be compensated by the de
during the first potential regime, there remains the possibi

rio
-

TABLE II. Eigenvectors and corresponding eigenvalues of
matrix M0 of Eq. ~29! according to the different regimes.

Kinetic regime
v35(0,0,0,1) n35323g f/2
v45(0,0,22g f ,g f) n450

Potential regime I
v35(0,0,0,1) n352323g f/2
v45(0,0,22g f ,g f) n4526

Potential regime II
v35(0,0,222g f ,g f) n350
v45(0,0,22,1) n452313g f/2

Tracker regime (gw<g f)
v35 . . . Re(n3),0
v45 . . . Re(n4),0
2-5
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that entropy modes may be enhanced at the beginning o
tracker regime. Now, if the tracker regime is not long enou
to erase completely these entropy perturbations by the
the field becomes non-negligible, we may be able to see
imprint of these initial perturbations in observations@9,11#.
As a result, we can see that in a quintessence scenario
initial conditions, as well as the history of the evolution
the background, are relevant when considering the late-t
value of the perturbations.

In this respect many different assumptions can be ma
In Ref. @21#, Kneller and Strigari assumed equipartition as
initial value for the field, and in most cases this led to a fie
dynamics featuring a very long kinetic regime followed
the potential regimes and no tracker regime. In Ref.@22#, de
la Macorra studied an actual physical model in which
quintessence field is a dark condensate which arises af
phase transition. Its evolution starts in the kinetic regime a
again does not feature a tracker regime. In both scena
entropy perturbations would still be present today. Altern
tively, Malquarti and Liddle@23# studied the evolution of a
quintessence model during inflation in order to investig
the initial conditions of the quintessence field at the beg
ning of the radiation-dominated era. They found that ty
cally the tracker starts at low redshift after a long period
potential regime II, but again, as a result, entropy pertur
tions generated during inflation could still lead to observa
consequences. Finally, note that in general the initial entr
perturbations do not need to be of the orderF and may be
much larger.

B. Numerical examples

In order to illustrate our results, we carried out simu
tions for two quintessence models in a realistic unive
~with radiation, dark matter and dark energy!. Note that the
initial relative amplitude betweenS andG does not play an
important role, since, as expected, due to the fact that t
are coupled, they quickly become of the same order~this has
been numerically checked by choosing many different ini
conditions!.

The first example is an inverse power-law model@3#
V(w)5V0(w/mPl)

2a, with a51 andV05102123mPl
4 , start-

ing with the initial conditions atN5250 given by rw

510220r f , T5V andS52G5Ei . The results are shown in
Fig. 1 where we display the evolution of some backgrou
variables and of the two entropy variablesS andG. After a
very sharp transition toward the kinetic regime, the field u
dergoes the four regimes described in Table I before star
dominating. First, we can clearly identify these regimes a
see the growing, constant and decaying behavior ofS andG
corresponding to the modes displayed in Table II, except
the fact thatS is constant during the potential regime I. Th
is becauseG is many orders of magnitude larger thanS, and
12csw

2 is not exactly 0, hence the last entry on the third li
of the matrixM0 is not zero. We checked that ifSandG are
of the same order of magnitude at the beginning of the fi
potential regime, thenS decays according to the modes d
played in Table II. We note the oscillations during the track
regime and the non-trivial evolution through the transitio
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~yet keeping the same order of magnitude!. We also observe
that in this particular case the transition phase toward
kinetic regime is too short to enhance the entropy mode
nificantly, leading to the result that at the beginning of t
tracker regimeS andG have about the same amplitude as
the initial stage. In other words they are neither enhanced
suppressed by the dynamics of the field, until tracking
gins.

The second example is a double-exponential model@24#
V(Q)5V0@exp(2akw)1exp(2bkw)#, with a51000, b
51, V05102122mPl

4 andk5A8p/3mPl
2 , starting with the ini-

tial conditions atN5250 given byrw5531023r f , T5V
and S5Ei and G50. The results are shown in Fig. 2. W
display the same variables as in Fig. 1. In addition, in or
to observe the transition phase preceding the kinetic regi

FIG. 1. Evolution in a realistic universe of background quan
ties ~top! and entropy perturbation variables~bottom! of a quintes-
sence field undergoing the four different possible regimes befor
domination. We use an inverse power-law potentialV(w)
5V0(w/mPl)

2a ~see Sec. IV B for parameters!. Note the transition
between radiation domination and matter domination atN.29.

FIG. 2. As in Fig. 1, but now for a double-exponential potent
V(Q)5V0@exp(2akw)1exp(2bkw)# ~see Sec. IV B for param-
eters!. We also displayV8/V ~to be read on the right-hand side o
the graph!.
2-6
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we also displayV8/V, whereV is the potential energy den
sity of the field—as described in the Appendix, the kine
regime starts whenuV8/Vu drops under;1. First, we note
that althoughG50 initially, it evolves very quickly to be of
the same order asS; as previously explained, this is due
the coupling betweenS and G. Then, we observe the sam
behavior as for the first example, but this time we can
that the transition phase toward the kinetic regime lasts a
e-foldings. As a result, the entropy modes at the beginning
the tracker regime are nearly a factor 100 larger than initia
This shows that, as discussed in Sec. IV A, entropy mo
can be enhanced before the field reaches the tracker reg

We have shown that, in general, one must take into
count the initial conditions for the quintessence field and
perturbations in order to make any prediction.

V. DISCUSSION

We have explored the nature of scalar perturbations fo
universe filled with both a scalar field and a perfect fluid. W
have introduced a useful set of variables and have provid
full analysis including spatial gradients. In particular, w
have focused on the isocurvature perturbation modes an
the degrees of freedom which completely characterize
system. While for the case where only the scalar field
present its intrinsic entropy perturbation is forced to van
at linear order for superhorizon scales, the presence
fluid—even if sub-dominant—allows the possibility for suc
an intrinsic contribution to be present on large scales. Ho
ever, in the case of a very sub-dominant fluid the intrin
entropy of the scalar field decays, dynamically recover
the single scalar field situation.

We have recast the basic evolution equations in a ra
simple matrix formalism in terms of the gauge-invaria
variables for the adiabatic and isocurvature perturbatio
taking into account the dynamics of the perturbations whe
given wavelength re-enters the horizon. In particular,
have obtained an equation for the intrinsic entropy pertur
tion which shows that, on large scales, an initial adiaba
condition is indeed preserved, regardless of the evolut
Only when the perturbations approach the horizon are
adiabatic and entropy perturbations fully coupled togethe

Finally, we have applied our formalism to the quinte
sence scenario. In this case we have analyzed the large-
evolution of the adiabatic and entropy perturbations in
different regimes which the quintessence scalar field dyn
ics may feature. As is well known, entropy perturbations
suppressed during the tracking regime, but, as already sh
in Ref. @11#, during the kinetic regime one entropy mod
undergoes an exponential growth. We have shown that
then exactly compensated by an exponential decay du
the first potential regime and then remains constant du
the second potential regime. Therefore, after the three
gimes preceding the tracker regime, entropy modes are
ther enhanced nor suppressed. However, we discusse
remaining possibility of an enhancement during the sh
transition phase preceding the kinetic regime. We have s
ied two special cases numerically and have confirmed
analytical analysis. Moreover, we have observed that, in
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of the cases, at the beginning of the tracker regime, entr
perturbations are larger than initially, and therefore we ha
concluded that entropy mode enhancement is possible.

To summarize, we have shown that in general it is inc
rect to assume that the observational imprint of quintesse
perturbations will be independent of the initial condition
because entropy perturbations can still be present when
quintessence energy density is no longer negligible. N
that this can happen as soon as the tracker starts, long b
quintessence domination. In this case, entropy perturbat
would feed curvature perturbations, but then would slow
decay to become negligible today.
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APPENDIX: DYNAMICAL REGIMES OF A
QUINTESSENCE FIELD

As described in Ref.@8#, a tracking quintessence field ca
feature up to four different dynamical regimes when in pr
ence of a dominant fluid with constant equation of sta
Here we clearly demonstrate the existence of these regi
and compute some relevant parameters. We will use the s
notation and definitions as in the main body of the article

We assume that the quintessence field features a trac
solutionr tr(N)—note that it does not need to have a const
equation of state. This means that at each time~i.e., for each
value ofH) there exists a stable field configuration for whic
its kinetic energy densityT[ẇ2/2 and its potential energy
density V are of the same order, and hence in Eq.~4! the
‘‘friction’’ term due to the Hubble expansion and the slope
the potential balance each other. We will show that, acco
ing to the initial conditions, the scalar field can feature up
three different regimes before it reaches the tracker. We
sume that the field is always subdominant and therefore d
not influence the evolution of the universe, especially
evolution ofH. As a result we haveH}exp(23gfN/2). Us-
ing Eq. ~4! it is easy to see that

T8

T
52

V8

T
26, ~A1!

V8

V
5

dV/dw

V

A2T

H
. ~A2!

In order to help the reader to follow the explanation,
example of a quintessence field evolution featuring the f
possible regimes before domination is shown in Fig. 3.

Let us start by looking at the initial conditionT&V@r tr
at time Ni . The field, and hence the slope of the potenti
has the same value as for the tracker configuration at
2-7
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earlier timeN2,Ni , but becauseH(Ni)!H(N2) the fric-
tion term is actually negligible and the field fast-rolls dow
its potential (V8!T8) and its kinetic energy almost instant
neously dominates its energy density. At some timeNk
shortly after Ni ~at the latest whenT;r tr), the potential
freezes at some valueV1!r tr corresponding to the tracke
configuration at a later timeN1.Nk , and, sinceH(N)
@H(N1) for N,N1 , it remains frozen untilN1 . In this
case, the evolution ofT can easily be computed analyticall
We assume that atN1 the tracker solution has an equation
stateg tr

1 , expressdV/dw as a function ofV1 andg tr
1 , and

for Nk,N,N1 we find

T~N!5
g tr

1~22g tr
1!V1

~g f12!2
@Ce23(N2N1)1e(3/2)g f(N2N1)#2,

~A3!

FIG. 3. Example of a quintessence field evolution featuring
four possible regimes before domination: kinetic, potential I, pot
tial II and tracker. Note the transition phase toward the kinetic
gime. The different parameters are described in the Appendix.
,

ev
v.
.

et

04353
whereC is a constant of integration depending on the init
conditions.

Let us explain this behavior. Starting from the timeNk the
field is in the kinetic regime:rw5T}exp(26N) and V
5constant. At some timeNpI the field reaches the configu
ration T;V, and since the friction term is still extremel
large@H(NpI)@H(N1)# the kinetic term keeps on decayin
and the field enters the first potential regime:rw5V
5constant andT}exp(26N). At some timeNpII the term
V8/T can balance the friction term andT starts growing
again. Here begins the second potential regime:rw5V
5const andT}exp(3gfN). Finally, atN1 the field enters the
tracker regime:T;V;r tr . Note that the whole evolution
described above goes through all the possible initial con
tions.

Now we can compute a few parameters. First, using
solution for T given in Eq. ~A3! and noting thatcsw

2 521
2T8/3T, it is straightforward to recover the values display
in Table I. In addition, let us defineDNr as the number of
e-foldings that the field spends in the regime ‘‘r’’ and als
DNp[DNpI1DNpII . Using Eq.~A2!, the fact that atNk and
N1 we haveV8/V523g tr

1;21 and the evolution forT and
H described above, we find

DNk5
g f

22g f
DNp , ~A4!

DNpI5
g f

2
DNpII5

g f

21g f
DNp . ~A5!

These last two results are used in Sec. IV A to show that
growth of one of the entropy modes during the kinetic
gime is exactly compensated by its subsequent decay du
the first potential regime.
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