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Perturbations of Stable Invariant Tori

for Hamiltonian Systems

L.H. ELIASSON

1. - Introduction

Let (X, a) be a symplectic manifold of dimension 2n + 2m, and let
h : X - R’~+’~ be an analytic mapping such that any two of its components
commute for the Poisson bracket. We assume that h is proper with connected

fibers, and that D h is of constant rank on each fiber. Then the fibers are tori
of dimension 0 up to n + m.

Suppose that h - 1 (c) is a torus of dimension n. Then, under fairly general
conditions on h, there exist a neighbourhood U of h - 1 c and a diffeomorphism
4J of U into X T = such that

and
is a function of y and y’

where The variables y and y’ are generalized
action variables. To y correspond the angle variables x, but y’ are singular and
do not possede any conjugate angle variables. (The case m = 0 is due to Arnold
[ 1 ], the case n = 0 is a theorem of J. Vey [2], and the general result follows
from these two cases).

An integrable Hamiltonian system X = Xh, with the components of h as
integrals, has then a Hamiltonian h which is a function of y and y’ only, and
the action of this system leaves all tori y = const., y’ = const. invariant. It is
well known that the maximal tori, i.e. those of dimension n + m, in general
persist under perturbations of the Hamiltonian [3,4]. In this paper, we will study
the lower dimensional stable tori y = const. y’ = 0. Their perturbation theory

Pervenuto alla Redazione il 29 Maggio 1987 e in fonna definitiva il 19 Aprile 1988.
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involves a particular small divisor problem which we will describe and solve,
and we will show that, under a certain non-degeneracy condition on h, many
of these tori persist under perturbations.

The problem

We therefore consider a real analytic function of the form

defined for y, z in some open subset of R’ x R~"’, h is the Hamiltonian of a
system Xh in X R m) which, neglecting 03 (z), is integrable with integrals
y and y’. The frequency map of h is the map

If we let J = J ( h, B) be the image of some open set B in R’ under
this map, then, to any (w, n) E J, there corresponds a torus y = const., y’ = 0
which is invariant under Xh, and for which w is the tangential frequency vector
of the flow on this torus, and f) is the normal frequency vector. (An invariant
n-torus for a Hamiltonian system is said to have frequency vector (w, 0) if
there exist symplectic coordinates in a neighbourhood of the torus in which the
Hamiltonian can be written as (w, y) + (n, y’), neglecting higher order terms in
y and z. These are normal coordinates in the sense of [6]). The problem is now
what happens with such an invariant torus when we perturb the Hamiltonian
system.

The Hamiltonian h is said to be non-degenerate if, for all y,

(Here (, ) is the usual scalar product and I I I = III + ~ ~ ~ + Ilm 1. Notice that
matrices operate on vectors to the right). Since, by (1), y --+ w(y) is invertible,
we can consider n(y) as a function of w. The right hand side of (2) is then

just the derivative of (1, f1(y)) in the direction w.
° 

Condition (1) is the standard non-degeneracy condition in the perturbation
theory of invariant tori, and the second condition is needed since we are dealing
with non-maximal tori. We briefly explain its role.

Let r &#x3E; n - 1. We say that a frequency vector (w, fl) E R" x R"’ satisfies
the Diophantine condition DC(K) if
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(Since r will be fixed throughout this paper, we will not make it explicit in the
notations). That (w, 0) belongs to DC = U DC(K) is the sine qua non condition
for all perturbation theory of quasiperiodic motions. In fact, the scalar products
(k, w) + (l, 0) are the well known small divisors which appear as denominators
in the Fourier expansion of the formal quasiperiodic solutions.

Let us also consider a homogeneous Diophantine condition. w E R’
satisfies DCo(K) if

and DCo = U DCo(K).
Let B be an open set on which the frequency map is defined. Condition

(1) now tells us that ,1 is a graph over w(B) and, as we shall see, that

And condition (2) implies not only that

(this is assured also by other conditions) but something more. In fact, if
w E DCO, then the whole line Rw belongs to DCO, and condition (2) implies that
the projection of J n DC on the first factor w contains a dense subset of (a part
of) Rw. This means that if w (yo) E DCo for some yo, then (w(y), O(y)) E DC,
if not for the same argument yo, at least for an arbitrarily small 1-dimensional
modification of y in the direction w ( yo ) .

The particular constant K that can be used here depends on J, and it is
better (i.e. smaller) the larger is B and the less degenerate is h.

Formulation of the result

THEOREM A. Let h(y, z) = ho (y) + (fl (y), y’) + 03(z) be a non-degenerate
real analytic function, defined in a neighbourhood DR of {(x, y, z) : y = z = 0)
in T*(Tn x R’). Let B be a ball such that {(x, y, z) : 1 y E B, z = 0) C DR,
and let D be a complex neighbourhood of DR. Then

1) there exists a constant C, depending only on h and DR, such that

J(h, B) n DC(K) =1= 0 for K &#x3E; where b is the diameter of B;
2) there exists a constant C, depending only on h and D, such that the

following holds: for any K &#x3E; 0, for any real analytic function f on D
such that 

,

and for any (w(yo), O(Yo)) E DC(K) f1 J(h, B), there exists an n-torus A,
which is invariant under the Hamiltonian vector field X f. Xf is linearizable
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on A, with frequency vector (w, fi) satisfying Co = tw (yo), for some scalar
t such that

Moreover, A is a graph { ( x, t(x)) : x E T" } for some function t and

This theorem establishes the existence of an invariant torus for X f in a

neighbourhood of { y = yo, z = 0 } . In order to have (w,O) = we

need, as described in [5,6], more parameters than are available in our problem.
We cannot even have w = w ( yo ) . What we do achieve (and here condition (2)
is essential) is that w is parallel to w (yo) . In fact, the lenght of the tangential
frequency vector is an important parameter which we need in order to control
the normal frequencies.

The theorem remains true under weaker assumptions. Indeed, one can

replace 111  3 by |l|  2 in (2) and (3).
It is also worth noticing that we have assumed nothing on that part of h

which is cubic in z. In particular, it is possible that the perturbed system has
no invariant tori of maximal dimension near A.

Theorem A is effective when f is of the form h + and h is non-

degenerate. In this case it proves the existence of invariant tori for sufficiently
small e. Often, however, also h depends on e, and then it is necessary to
have a precise description of how the constant C depends on h. Our proof
provides such a description in terms of the inequalities (1) and (2) and the
supremum norm of h. As an immediate consequence of this description we get
the following theorem.

THEOREM B. Let h = hJw, z) be defined and real analytic in a neigh-
bourhood of the origin in
be the symplectic structure on

Assume that h = Dh = 0 at the origin, and that h satisfies
the following two conditions:

1) the quadratic part h2 = (w, y) + (n, y’) satisfies

2) the Birkhoff normal form
non-degenerate.

Then the Hamiltonian flow of h has n-dimensional invariant tori, close to
the subspace z = 0, in any neighbourhood of the origin.
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About the proof

The proof proceeds by a quadratic iteration of Newton type (KAM-
technique). We start with an Hamiltonian h on normal form, for example
the form described above, and a small perturbation f. Let J be the image of
the frequency map of h, and let (Cù, n) E DC(K) n J be the unique image
of some yo, which we may assume to be 0. In a neighbourhood of the torus
y = 0, z = 0 we construct a symplectic diffeomorphism 4», close to the identity,
such that (h + f) 0 4» is a sum of a Hamiltonian h+, on normal form, and a
perturbation f+ which is much smaller that f near the torus, but may become
large far away. Moreover, f + becomes large with K.

Since there is an n-parameter family of n-dimensional tori, we have n
parameters in our problem (by condition (1)). By an appropriate choice of n -1
of these parameters we can achieve that h+ (y, y’) = (w, y) + (f, y’), neglecting
non-linear terms in y and "’y’, with w parallel to Cù. Since DC is dense in 
(as can easily be shown) we can assume that (w, 0) E DC(K+) for some K+.

In order to proceed by an iteration we must control K+ since it will
influence the size of the perturbative term in the next step. Using the last pa-
rameter we can now start to vary the lenght of w. Let therefore Wt = tw, and

let fit be defined by the condition that (Wt, J+, where J+ is the image of
the frequency map of h+. Since h+ satisfies condition (2), DC for
almost all t (for which fit is defined). Let Kt be the best admissible constant.
It depends on t in the following way: the smaller one takes It - 1 ~ I the larger
will be Kt, and it is only for "not too small" values of It - I) I that one can

hope to have a Kt which is not too large (compared with K).
Now we got two contradictory requirements. In order to assure that, in

the next step of the iteration, the perturbative term becomes sufficiently small
we must keep f + small, i.e. we must stay "close to" the torus y = 0, z = 0. On
the other hand, we must also control the admissible constant K+ = Kt, which
requires that t is "not too close to" 1, i.e. that we are "not too close to" the

torus y=0, z=0
In section II we give all the necessary details about the sets DC(K) and

J n DC(K). Theorem Al) follows from proposition 1 proven there, but part 2)
requires the more detailed description of proposition 2. In section III, where we
formulate the usual "inductive lemma" (proposition 3), we show that one can
control the size of both f + and K+. In section IV, finally, we use this result
as the inductive step in a standard rapid iteration process in order to prove the
"stability" of certain Hamiltonians under perturbations (Theorem C.). Theorem
A and B will then follow easily from this more general result.

We will formulate the proposition 3 and theorem C for a slightly different
class of functions (the normal forms) than the ones introduced above. The
particular normal form chosen is very much a matter of convenience, and the
one we propose is certainly not the most general.
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Literature

We want to finish by giving some references to previous works on the
perturbation theory of quasi periodic motions.

Periodic solutions ( n = 1). This is a much simpler problem since there
are no small divisors at all, and a perturbation theory for such solutions was
constructed by Poincar6 [7,16].

Maximal tori ( m = 0). In this case there are small divisors but also

sufficiently many parameters available (under condition (1)) in order to restore
the perturbed frequencies completely. This problem was solved by Kolmogorov
and Arnold [3,4].

Next to maximal tori ( m = 1 ) . For such solutions, a perturbation theory
was constructed by Moser [5,6] under condition (1) and under the condition
that 

, ,

(These two conditions are equivalent to (1) + (2), and our condition is indeed
inspired by that of Moser).

In this case there are sufficiently many parameters available so that we
can let the perturbed frequency vector be parallel to the unperturbed one.

Unstable invariant tori. In this case 01,"’, nm are non real, and if the
imaginary parts 90m avoid certain hyperplanes (finitely many) then
DC reduces to DCo. These tori have been studied by Moser and Graff [6,8,9].
(Actually, [8,9] deal with a. more general situation).

The case of stable invariant tori, which is the object of this paper, poses
more difficult small divisor problems. A perturbation theory using other non-
degeneracy conditions has been described by Melnikov in two articles [10,11].
(We shall discuss his conditions in section II).
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II SMALL DIVISORS

In this section we study the intersection J n DC defined in the introduction.
In particular, we ask for which constants K the set is non void, and
we explicitly determine K in terms of J. All results are of measure theoretical
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, character, stating that these intersections are non void since they have positive
Lebesgue measure. The results needed for the construction of invariant tori are
formulated in proposition 1 and 2.

The set DC(K)

Let w be a vector in and let u be a real number. For any positive
number d and any non-negative number N we define

LEMMA 1. 
that only depends on n.

where C is a constant

PROOF. By homogeneity, we can assume that Iw I = 1. Now the balls of
radius ] and centered at the points in are disjoint and contained in the
intersection of a slab of width (d + 1) with a ball of radius N + 1, centered at
the origin. Since this intersection has volume less than C’(~V+ l)"’~(d+ 1), the
estimate follows..

LEMMA 2. Let B be a ball in R"+"‘ of radius b and centered at (wo, no).
Then ~

where C is a constant only depending on n, m and r. (CDC denotes the
complementary set of DC, and meas is the Lebesgue measure in and

R"’’, respectively).

PROOF. Let (k, 1) 1= ( 0, 0) be given. The set of all (w, fl) E B, such that

is contained in the intersection of B with a slab of width less than
hence of measure less than 

Since r &#x3E; n - 1, the series

converges, and 1) follows.
The proof of 2) is slightly different. Let (k, l) be given as before. We can

assume 0 since wo E DCo(K). Then the set X of all n in Bn{m = wo},
such that
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is contained in the intersection of B n fw = a;o} with a slab of width less than
+ 111) -r, hence of measure less than C4bm-1K-1(lkl + 111) -r.

Moreover, since

the set X is void unless

Hence, the measure in 2) can be estimated by

and, using Abel’s summation formula, by

The result now follows from lemma 1, if we only observe that 1 (since
wo E DCo (K))..

The conclusions of the lemma are the following: almost all (w, n) in

satisfy DC; if wo satisfies DCo, then (wo, n) satisfies DC for almost
all n in In both cases the admissible constant K depends on b -1, and
becomes very large when b is small. However, we shall see below that if B is
centered at (wo, no) E DC ("a good frequency"), then we can get rid of this
dependence on b -1.

The set J n DC(K)

We now consider a C 1 frequency map y ~ (w ( y ) , n(y)) E defined
in a ball B = B ( b ) in R". (B(r) denotes a ball with radius r and center at the
origin). We assume that the map is non-degenerate in the sense that

Let pi and Jj3 satisfy
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It follows from this that

where C is a positive constant that only depends on m and n.

PROPOSITION 1. Under the assumptions (5)-(8), there exists a non void set
G in B such that, for all y E G,

where C is a constant that only depends on m, n and r.

PROOF. Suppose that there is a yo in B ( ~ b ) such that
Let mo = w(yo), and define y(t) through the equation w (y (t)) : =

yo. Then y(t) is defined for I t  b/2u2u3 since2u2u3

Let now 0  3 and consider

This equality defines the function V = Yi. Its derivative is

so we have

(For the upper bound we have used (9)). This

implies that the image of ] - e, e[ under V contains a ball B1 with radius

and is contained in a ball B2 with radius Csell, both balls being
centered at (l, n(yo)).

By lemma 2, it follows that the set X of all V in B2, such that

has measure less than
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This measure is smaller than the volume of Bi, if

(Also here we have used (9)).
Hence, there exists e, e[, such that

if K verifies the above inequality. It is clear that if we take C6 sufficiently
large, then this condition will be fulfilled for all 0  Ill  3 and, hence, for all

III  3 simultaneously.
In order to conclude we need to establish the existence of a point

yo E such that w(yo) E DCo(Ko), where Ko = for some

constant C7. But this follows from lemma 2, if we only observe that w (B ( ~ b) )
covers a ball of radius b/2u2 . This proves the proposition..T/-Z 2

So we see that the preimage G of DC(K), under the frequency map, is
non void if K is sufficiently large, as given by the proposition. Moreover, the
proof gives a stronger statement than announced. The set G, in fact, is quite
large since the projection of w(G) on the unit sphere has positive measure.
It is likely that w(G) itself (and hence G) also has positive measure, but the
argument does not suffice to establish this.

The set DC(K) near good frequencies

The result of the preceeding paragraph shows that one can always find a
Diophantine frequency vector in any (non-degenerate) n-parameter family. The
admissible constant K depends (among other things) on the diameter b of the
domain of definition of the family. When b is small this is rather bad, but we
shall now show that one can get rid of this dependence on b if one is close to
a given Diophantine frequency vector. We start with a lemma.

Then

where the constant C only depends on n.
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PROOF. By homogeneity, we may assume that )w ) = 1. If now k E rN (d),
then

which implies that Kd &#x3E; (N + 1) -r. This proves the second part of the estimate.
In order to prove the first part, we observe that this part follows from lemma
1 unless Kd is small as we now assume.

If k and I are different elements in rN (d), then

which implies that

Since 4d  if Kd is small, the distance between the projections
of k and l, on the plane orthogonal to w, must be greater that 
Since these projections are included in the ball with radius ( N + 1), centered
at the origin, and since ~V + 1 ) &#x3E; the lemma follows. -

We can also sharpen lemma 2 in a similar way if we assume that the ball
B is centered at a Diophantine vector.

LEMMA 4. Let B be a ball in with radius b and center

Then

where C is a constant that only depends on m, n and r.

PROOF. We can assume that both and Ko b are small, smaller

than some Cl , say, which only depends on m, n and r, and which is smaller

than 1. In fact, if Ci , then there is nothing to prove, and if C1,
then lemma 4 follows from lemma 2.

Let now (k, 1) ~’ (0,0), III  3, be given. The set X of all (w, fl) in B,
such that

is of measure less than

Moreover, X is void unless

which implies that



126

(where the last equation defines No ) and this, in turn, implies that
we assume, as we may, that No is sufficiently large. Moreover,

if and and hence lkl, are large as we have assumed.
Hence, the set X is void unless

Then the measure in 1) can be estimated by

which, by Abel’s summation formula, can be estimated by

It now follows, using lemma 3, that this sum is bounded by the estimate 1 ).
The proof of 2) is essentially the same. Since wo E DC’o (K) we can

assume 10 0. The set X of all n in B n (w = wo), such that

is of measure less than + ~ And one shows as above that
this set is void unless

where (2No)-’ = 2Ko6, i.e. it is non void only if

The estimate 2) now follows from lemma 3 in the same way as above (but
easier)..

The set J n DC(K) near good frequencies

We will now use lemma 4 to improve the estimate in proposition 1.
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PROPOSMON 2. Let y ~--. o (w (y), 11 (y)) be a C I family of frequencies
defined on B(b) c R" and satisfying (5)-(8). Assume that there exists

(wo, no) E DC(Ko), such that

for some e  2 1 ,1). Then, for any b E]O, 1[, there is a Cantor set

A(8) c ] - e, e [, of relative measure &#x3E; (1 - b), and, for each t E A(6), there is
a y(t) E B (b), such that

where C only depends on m, n and T. Moreover,

and

PROOF. The proof is merely a repetition of that of proposition 1,
using 4 instead of lemma 2. In fact, there is a yo E B(eJJ2Jj3) such that
wo = w(yo) E DCo(Ko), and we can define y(t) for all It I  21A2 U3 as in.. . 

1 
P2 3

proposition 1.
For 0  3 we define V = Vi as before. By 2) of lemma.4 it follows

then that the set X of all V E B2 (a ball with radius C2ev), such that

has measure less than And this is less if

for C5 sufficiently large. Hence, if C5 is large enough, then the set Ai (6), which
consists of all t such that Vi(t) E X, has measure less than de(4m2)-1.
Since this is true for each l we can just let A(6) be the complement of the
union of all these sets A~ (b).

This establishes the existence of the set A(6). The requirements on w (y (t))
and on I are fulfilled by construction..

REMARK. The results just proven are, of course, valid not only for It  3,
but for l belonging to any finite set A which contains 0. If A does not contain
0, the results are still true if we, to the assumptions in lemma 4 and proposition
2, add that wo E DCo(Ko).



128

Comparison with other non-degeneracy conditions

Much of what we have done in this section is well known, and the measure
theoretical techniques are standard. What is new is the formulation of the non-
degeneracy condition (6), and the proof that if the homogeneous Diophantine
condition is fulfilled for w, then finitely many non-homogeneous conditions can
be satisfied by varying a single parameter, namely the length of w.

In [ 10) Melnikov describes a different approach to our problem, and in [ 11 ]
yet another one in a more degenerate situation. The most interesting difference
in our opinion is that he uses other non-degeneracy conditions, and we shall
now compare them with (2) and its quantitative form (6).

Let (w ( y) , ~ ( y) ) E be a family of frequency vectors which we
assume to be real analytic in a ball B = .B ( b ) c R". As usual we assume that
( 1 ) holds, i.e. 

’

Dw ( y) is invertible on B

and we also assume that and are bounded on B.
Consider the following condition, proposed by Melnikov in [11]:

(* denotes transposition). This condition imposes, in fact, only finitely many
restrictions on the family (since is assumed to be bounded),
and it is therefore equivalent to the existence of an open (and dense) subset of
B, which we still call B, such that

and for all

for all

(In the differentiable case this is still true for each l separately, but the subsets
are no longer dense, so their non void intersection must be postulated explicitly).

That condition (11) is a good one, is easy to see. In order to show this,
we formulate a quantitative version of ( 11 ):

PROPOSITION. Assume that (w(y), n(y)) satisfies conditions (5), (8) and
(12). Then the Set ’



129

has measure

V

where C only dqpends on m, n and T. 

PROOF. Let (k, 1) be given and consider the function

Then

on B. On the other hand,

Hence, the set

has measure less than where

Then the proposition follows if we just observe that and U1U2U4 both are
bounded from below by some positive constant..

So the intersection J n DC is non void also under the condition ( 1 )+( 11 ).
But (1)+(2), proposed in this article, permits us to first fix the tangential
frequencies cv, and then find the normal frequencies Q just by varying the
length of w. This is the reason why we get quasiperiodic solutions with a fixed
tangential frequency direction in theorem A. Condition (2) can also be applied
to certain linear eigenvalue problems, as studied by Sinai and Dinaburg (see
[12] for references), where the tangential frequencies never gets perturbed and
where we can use the eigenvalue to control the normal frequencies. In fact, the
proof of proposition 1 shows that if wo E=- DCo, then any one-parameter family
(wo, ilt) will intersect DC unless some of d (l, I ft), 3, is identically zero.

A case where condition (2) does not apply is "the small planet problem"
for zero eccentricities and inclinations. By averaging over the fast variables (the
mean anomalies) and taking the expansion of the averaged Hamiltonian up to
order 2 in the eccentricities and inclinations, we get an integrable Hamiltonian
whose frequency map verifies

i.e. condition (2) is fulfilled nowhere (see [13]). In this case Melnikovs condition
(11) can perhaps be used to construct quasiperiodic solutions to this problem
in celestial mechanics.
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In [10] Melnikov proposes another condition:

Let I E  3, and suppose that (w, 0) satisfies (13)1. If now

then, for all k,

Hence, ( 13)l implies that

or

for all ,

So the intersection J n DC is non void also under condition (1)+(13).
However, there seems to be no quantitative formulation of (13) as there are for
(2) and (11) - namely (6) and (12).

Before ending this long remark we also want to mention a work of Pyartli
[14]. He gives a generic condition which garanties that (w (y), 11 (y)) E DC for
almost all y (at least if r &#x3E; (n + m)2 + n - m - 1).

His condition is even valid for infinitely many I:s, much more than what
we ask for, but it involves higher order derivatives in y which makes it harder
to apply.

III INFINITESIMAL STABILITY OF NORMAL FORMS

On T* (T" x R"‘) we introduce canonical coordinates so that

the symplectic form becomes

Corresponding to the Lagrangian foliation into tori const., y= = +

z2 ,,) = const., there is a linear action of the torus T on the symplectic
space.
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Let H be a real analytic function defined near the torus { (z, 0, 0) }. With H
we associate its mean value [H] under the action of Tn+m. [H] is a real analytic
function in y and y’. We also define an ordering by writing H = Ho + HI +...,
where

H is homogeneous if H = Hk for some k, and H is of order k if Hi = 0 for
i  k and Hk ~ 0. We denote by H the function H - ( Ho + Hl + H2 + H3).

It is clear that the Poisson bracket I , }, corresponding to the symplectic
form, preserves this ordering.

We define two complex neighbourhoods of the torus { ~x, 0, 0) ) through

and, for p E RBO,

if, and only if,

We finally let ~ I ~D denote the supremum norm over any neighbourhood
D of the torus {(a,0,0)}.

The normal forms NF( I

Let N be a real analytic function defined near the torus { (x, 0, 0) }, and
let us write

if N is defined
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The fact that No is constant and Nl = 0 implies that { {x, 0, 0) ) is invariant
under the Hamiltonian flow of N, and that, by (15), the flow is linear on this
torus. The assumption that n is independent of x is an important restriction,
since no Floquet theory is available for quasiperiodic systems. Condition (16)
is a sort of "twist condition" which tells us that (w + yM1, n + yM2) is a

non-degenerate family of frequencies (i.e. satisfies conditions (5) and (6)), and
that we therefore can apply the results of section II. The reason why we require
N3 to be 0 will be clear when we have stated the next condition.

We say that N E DC (w, K) if

Now the assumption on N3 appears to be no restriction at all. Any function
satisfying (14), (15), (18), with the exception of N3 = 0, can be symplectically
transformed to one that satisfies (14), (15), (18) without exception. This is the
Birkhoff normal form, which we have assumed for N in order to be able to
formulate condition (16).

We notice that these parameters cannot be chosen independently, but that
(16)-(18) implies that .

where C is some constant that only depends on m, n and r. For example,
I = MlMïl implies the first inequality. We will frequently make use of these
bounds in the proof of proposition 3.

It is possible to weaken the assumptions by requiring that (16) holds only
for |l| I  2. In that case it is not reasonable to assume that N3 is 0, but only
that it is independent of y. The result that we shall prove below is also true
under this weaker assumptions, and the proof can easily be so modified, but
we have refrained from doing this just to avoid too much technicalities.

The basic small divisor lemma

The following result is just a variant of a well known small divisor lemma
which, in its sharpest form, is due to Russmann [15].

LEMMA 5. Suppose N2 E DC(w, K) and let F be a real analytic function
on D (r, s ) , homogeneous of order j  3. Then there exists a unique real analytic
function G, homogeneous of order j, such that
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Moreover, this function satisfies

where C is a constant that only depends on m, n and r.

, 

PROOF. It is clearly sufficient to find a complex analytic function G.
We may therefore introduce new variables

This is a symplectic
transformation, hence preserving the Poisson bracket, and it preserves l
Moreover, gets transformed into so we can

therefore assume right away that
We can also assume that F is independent of y, and, since the operator

G -~ { G, N2 } preserves monomials (with coefficients that are functions of
x), we can finally assume that F is such a monomial,

with By assumption,

and ’1 (k) :IE: 0 otherwise. Then clearly

And, by using Abel’s summation formula, we find that is less than

Consider now the function
lemma 3 we have

According to

Let now dj = min{d : r(d) = j}, defined for all positive integers j for
which the set is non void. Let also Nl = C4(N + 1)n-1. Then
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so that the sum

can be estimated by

(since r &#x3E; r~ - 1). Finally, since

the lemma follows..

The inductive step

We shall now formulate the usual infinitesimal stability result which will
serve as the inductive step in the iterative construction of the invariant tori.

Then there exists a constant C, depending only on m, n and r, such that
the following holds: for all d and for all real analytic functions H, defined on
D = D(r, 8) and such that

there exist a Cantor set A c R and, for all t E A, a symplectic diffeomorphism

such that

where
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and

Moreover,

and is of relative measure 1 and 
’

is of relative measure greater than 1 - 6 in A.

Proof of proposition 3

We shall first consider the case s = 1.
We want to construct functions S = So + 81 + S2 + ,S3 and R = Ro + R2 + IR

such that

where A = (Ai, an) are n real parameters. If we let 4&#x3E;¡ be the flow of the
Hamiltonian vector field of S’ = (A, x) + S, then

As the first step of the proof we shall, using lemma 5, solve equation (*) and
estimate the solution.

The solution depends on A. We shall then show that, for A and d sufficiently
small, N+ belongs to NF(r+, -2, vy). This is the second step. In the third step
we shall show that (Di : and d sufficiently small, and we shall
estimate (~~ - id) .

These thing can be done under the assumption that
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where

11

and C2 is some constant.
The fourth step consists in estimating H+, an estimate that will depend

on d’ (and hence on (a ~)..
In order to get H+ as small as possible, we must restrict A to a ball of

radius ~K (r-r+)-r-d.
However, in the last step we shall show that there exists parameter values

A = A(t) in a ball of radius - K(r - such that t(t) = 4)1
has the required properties. (This larger value of A will, of course, influence
the estimate of H+ which will be larger, but still sufficiently small). Now one
sees readily that a choice of A in this larger ball is consistent with the above
restriction on d’, if

for some sufficiently large constant C4.
Before proceeding to the details of the proof we introduce some more

notation. Let

We let be an increasing sequence of constants which only depend
on m, n and r (and which will be determined by the expressions in which they
first appear).

Solution of (*)

We first decompose (*) into its homogeneous components:

We let Since [Hi] = 0, lemma 5 implies that

Using Cauchy estimates for the partial derivatives we find that
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Moreover,

and, since .RZ shall be the mean value of the right hand side of the third

equation, we get

(Notice that IPI + )Q ) I is estimated by d and not by d’). Using lemma 5 again,
we find that 

"K

In the same way we can estimate S3 and R by

where we have used p  1 in the estimate of S’3, and p, ~  1 in that of R.
(Notice that a never appears in the estimate of S or its derivatives since S is
polynomial in y, z, and that (1 - 3~) 2 - ( 1- 4~)~ &#x3E; ~. This explains why we
get a and not a~2 in the denominator of the estimate of .R).

. 

So we finally get

for some new constant which we denote by Cl (and thereby forgetting all the
other Ci: s).

N+=N+RENF(r+,s
We must verify conditions (14)-(17) with p replaced by vy. Now (14)

and (15) are automatic by construction, and (17) follows easily from (22) if i)
1) p3 £ and ii) d’  

So we only need to consider (16) in some detail.
If we write

then we clearly have
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we find that

which is less than

we find that

. , ,, ,- 
- - 

F -

All these conditions i)-v) on d’ are fulfilled if

for some new constant (Here we have used (19)).

Estimate of 01
We get from (21 ) that

where the last equality defines t? 1. Then

which implies that

and

if d’  for some constant C5 . And this condition is implied by (23),
if C2 is sufficiently large.
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Estimate of H+

and we get

an estimate of IH+ ID6 from

(C3, C4, ... are now new constants).
But one can do better. If we write G = { Ft , S ~ and estimate each

homogeneous component separately we find

which is the estimate we want. However, we need this estimate for 
and this does not follow immediately, since composition by (Pt does not preserve
the ordering.

We therefore let F = for some fixed to between 0 and 1, and consider
the analytic function G o 4Pt = { F, §) o ~~ , defined in a neighbourhood of the
closed unit disc in the complex t-plane. Also each homogeneous component of
G o 4DI is such an analytic function. So let us consider the component of order
j. It has a power series expansion

convergent for It I  1. Since F and S are defined in D5, each coefficient is
defined there, and we get Cauchy estimates for the derivatives in some smaller
domain.

Let now p’ and a’ be such that kp’  p and ka’  a. Then

which, by induction, is less than

If we now then we find that

if d’  for some constant Cs, i.e. if d’ fulfills condition (23).
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Determination of A

/We are therefore forced to assume that d’ fulfills (23), and this imposes
a condition on the domain (A : I À  6 } over which A is allowed to vary:

Let now w (A) = and = n+Q-ÀM2, and let b. This

family satisfies conditions (5)-(8) of section II for the parameters (/~, 1 P21 P’31 P’4),
where

for some constant C3 (as usual, we have only keept C1 and C2 from above).
In fact (5) and (8) are trivial, and (7) follows from (20) (under condition (23)).
The verification of (6) is done in the part "N+ = N + ,R E NF(r+, s+, v~c)", if
we there let Ml and M2 be equal to Ml and M2.

Let now e be defined by

Then, from (20)+(23),

if Cs &#x3E; Ci6~~ as we may assume.
In order to apply proposition 2 we must assure that

The second of these two conditions is fulfilled by (23) (if C2 is sufficiently
large), and the first one requires

Hence, if we define b by the right hand side of this inequality, we can apply
proposition 2 which gives the existence of A and A(6).

Finally, in order for (23) to be fulfilled for this choice of b, we need

This proves the case s = 1.
The case of an arbitrary 8 follows by scaling the variables, i.e. by first

doing the change of variables



141

and then dividing ~V + H by s 2 . Under this transformation, the constants will
change in the following way:

And this reduces the problem to the case s = 1. This concludes the proof of
proposition 3.. 

-

IV STABILITY OF NORMAL FORMS

The main theorem

THEOREM C. Let N E NF(r, 8,~) n DC (w, K).
Then there exists a constant C, depending only on m, n and r, such that

the following holds: for any 0  8  1, for any d and for any real analytic
function H such that

there exist a 1-dimensional Cantor set Ab and, for any t E a symplectic
diffeomorphism

such that

Moreover,

and is of relative measure &#x3E; (1 - 6), and

So the system N + H has an invariant n-torus with frequency vector
(wt, (It). This vector is, of course, close to the unperturbed one, and wt = tw,
but we loose control on the arithmetical properties of In particular, we don’t
know if (wt, flt) belongs to DC. It is likely, however, that (eventually under
some what stronger smallness assumptions) flt is regular, C’ in the sense of
Whitney say, as a function of t, and that there therefore exists a subset A’ c A
(of full measure) such that (wt, Ot) E DC for all t E A’.
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Proof of theorem C

We will first consider the case s = 1. The proof will be done by an
iteration process, using proposition 3 as inductive step. We start by proving that
there exists a non void set Ab with the stated properties and after this we shall
prove the statement about the relative measure of this set.

We shall first define a sequence of parameters. Let Co be the constant
whose existence is affirmed in proposition 3.

Definition of parameters , 

Let a be defined by aT + 1 and define for k &#x3E; 1:

(we shall avoid confusion by always using parenthesis when taking powers of
the u:s)

where a is some fixed number greater than 4T+13.
Then it follows, by the choice of a, that

Let

Now it is straightforward to verify that, if ~’ is sufficiently large (depending
on a ), then 

.. i__ ,~ , _

hence 0, and

(Pk ) implies the theorem

Let ’1 = For k &#x3E; 2, consider the statement:
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(Pk) there exists a Cantor set Ak C] 1 - ’1, 1 + ’1 [ and, for each 

there exists a symplectic diffeomorphism

such that , with

and

Moreover,

Ak is of measure

and

Suppose now that (Pk) is true for all k &#x3E; 2. Then, if we define

we find

by the choice of a.
Let now t E A ~ . Then there exists an increasing sequence 1~~ ~’’ oo, such

that t E Akj for all .?. By there is a diffeomorphism W; : -

D ( r,1), such that NkJ + HkJ = ( N + H) o Wj fulfills the statement of 

Since the are uniformly bounded on D(~, 1 ), we may assume (eventually
by taking a subsequence) converges to an analytic function y on
D ’-" , 1 . Since converges uniformly to 0 on D ( r , 1 ) , it follows that

converges uniformly to ( N + H) 
This proves the theorem ( s = 1) modulo ( Pk ) .

Proof of ( Pk )
If we define 1k+l by rk+l)-1’-ldk, we see that (P2)

follows from proposition 3 (with d replaced since y2=4r+1y.
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Suppose now that (Pk) is true, and take t E Ak. By proposition 3 there exist
a subset of ~-7k+1,7k+1~ and, for all Q E At(8a-k), a diffeomorphism

such that ((~V+~) o~()) o$(r) = with Nk +I and Hk+ I (both
depending on Q and t) satisfying the statement of (Px+1). In particular,

So we let consist of all such products (1 + a)t, with t E Ak and
a E and we let + or) t) = T (t) o + a)). Then all properties
of (Pk+1) are immediately fulfilled, except the one concerning the measure of
Ak+l to whose proof we now turn.

Choose fi such that 1Ø-1 is an integer and $7x+1  ,B  2.

(Such an integer exists if 1k+l is smaller than 1, which is the case if C
is sufficiently large). Then we can cover 1 - 1, 1 + 1[ [ by 1,8-1 many disjoint
intervals of length 2,0. Obviously, the number of all such intervals that intersects
,Ak is greater than. meas (A k) (2,8) -1. Let I be such an interval and let t E lnAk.° 

Let now J = {r : (1 + r)t c I}. Then J is an interval containing 0 and
of length less than 4/9 (since y  1/2, if C is sufficiently large, and therefore
t &#x3E; ~). Moreover, J is included [ since 4fi.

Moreover, by proposition 3, we know that At(£5a-k) c~ - 7k+1, 7k+i ~&#x3E; and
have measure larger than (1 - 8a-k)21k+l’ i.e. the complementary set have
measure less than

Since « 2, it follows that the set have measure less than 16~’~2~,
i.e.

c

Hence,

This completes the proof of and, hence, of the theorem when 8 = 1.
The case of an arbitrary s reduces to what we already have done, in the

same way as in proposition 3. That is, by scaling the variables through

and then dividing N + H by s2. Then the proof of the theorem is immediate..
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Proof of Theorem A.

Consider h given in theorem A, and let D be the domain

where we assume that 2 s 2 . Let B be the ball with center at 0 and radius

s in Ran, and let w ( y ) = D ho ( y ) . Let finally pi and p3 be such that

By assumption, there exist such that (5)-(8) are fulfilled for

(W(y),fl(y)). Proposition 1 then gives that

where C only depends on m, n and r. This proves part 1) of the theorem.
Let now K &#x3E; 0 be given and assume that there exists a yo E B, such that

(w, Q) = O(Yo)) E J ( h, B) n D C ( K ) . By replacing y by y - yo we can
assume that yo = 0. We now restrict h to 

By using a symplectic transformation which preserves y = z = 0 we can
transform h to a function, still called h such that ~-~(0,0) = 0 and such that
(26) and (27) are fulfilled (for some other constants and domain D).

if 
Hence, we can assume that 83 h (0, 0) = 0, and we can apply theorem C

if 
az

This proves theorem A..
Notice that (28) gives a quite explicit expression for the constant C in

theorem A. If
D is the domain (25) with Z s 2 

.

and

then the existence of n-dimensional invariant tori is garanteed by the condition

where C only depends on m, n and T.
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Proof of theorem B

Since (k, w) + (l, 0) ~ 0 for 0  Ikl + )1)  4, there exists a symplectic
diffeomorphism $ such that h is on Birkhoff normal form up to order 4

(see [16]). We can therefore assume that h is of the form

By assumption,

If we stretch the variables by a factor qZ and divide by e, then we get

defined for   1, 0  e  eo.

By introducing symplectic polar coordinates

we get, up to a constant factor,

defined for I y I  4 , ~ E I  1, 0  e  eo. Then we can apply theorem
A with constants (161-411 -E P2 3 /-43 1 /-Z4), where the are independent of e.

If we now use the smallness condition (29), theorem B follows since

is of size 0(e) which is larger than 0 ( e t ). This proves theorem B..
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