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After the recent discovery of temperature fluctuations of the cosmic microwave background 
radiation by COBE, the study of the temperature fluctuations becomes more and more important for 
understanding formations of large scale structures of the universe. The treatments for the evolution 
of small density fluctuations of matters and radiation by gauge invariant formalism are summarized. 
And the expected values of temperature anisotropies in various cosmological models are shown. 
Both flat and open universe models with and without the cosmological constant are considered. As 
for open universe models, in particular, any work had never been done by the complete treatment on 
large scale anisotropies. However we could find the complete formula to handle large scale tempera· 
ture anisotropies and here this formula is adopted. Using the results of COBE with previous 
measurements of temperature fluctuations which give the upper limits, severe and reliable constraints 
on various cosmological models are obtained. As a result, it is found that the desirable models are 
the dark matter dominated universe models with initially scale free power spectrum and the density 
parameter .l4J"'1 while some models with low density are still allowed if the models have totally flat 
geometry by including the cosmological constant. 

§ 1. Introduction 

Since the discovery of Cosmic Microwave Background Radiation (CMB) by 

Penzias and Wilkinson at 1964,1) CMB has been one of the most important objects of 

study for cosmologists. It directly shows us the feature of the universe at the last 

scattering time of photon with baryon.' This time is the earliest epoch of the universe 

we can show by light. The energy spectrum of CMB takes completely black body 

form, as was shown by the Cosmic Microwave Background Explore (COBE).2) This 

means that thermal equilibrium state was realized in the universe at the last scatter

ing epoch and anything producing such large thermal energy that distorts the CMB 

has never happened after this epoch. This fact strongly supports the standard Big 

Bang model of the universe. The black body temperature is 2.735±0.06 K and it is 

almost independent of the direction. This isotropy of the black body temperature is 

regarded as the direct evidence of the isotropy and homogeneity of the universe on 

large scales. 

On the other hand, we know our universe has the variety of structures such as 

stars, globular clusters, galaxies, clusters of galaxies and so forth. And as the 

proceeding of the observations, more giant structures are appearing. These struc

tures are understood as the objects originated from the small fluctuations in the 

isotropic and homogeneous background at the early epoch of the universe. Before 

the baryon-photon decoupling time, baryon and photon are strongly interacted by the 

Thomson scattering. Then if the density distributions of baryon fluctuate, the 
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804 N. Sugiyama and N. Gouda 

density fluctuations of photon are also given rise to and the behavior of time evolution 

of both fluctuat.ions are approximately the same. As the recombination process of 

hydrogen atom progresses, their interaction becomes weak. After all, baryon fluctua

tions have been freely growing up since the last scattering epoch without the pressure. 

These fluctuations are considered becoming present large scale structures. Hence we 

. can expect to find seeds of fluctuations in the CMB. Until the recent discovery of 

COBE group,3) however, no temperature fluctuations had been found except the dipole 

moment of anisotropies which is produced by our peculiar motion relative to the CMB 

rest frame. The observational limits of the temperature fluctuations oTjT became 

lower and lower, and it reached almost 10-5
• This extreme isotropy of CMB gave the 

most severe and reliable constraints on the various cosmological models. Desirable 

models must produce enough density fluctuations of matter to make large scale 

structures of the universe without producing too much value of temperature fluctua

tions. 

For example, it is known that the simple baryon dominated universe model was 

difficult to survive. This is one of the reasons to consider nonbaryonic dark matter. 

Dark matter was originally motivated by explaining the discrepancy between the 

luminous mass of the universe and the mass estimated by dynamical methods. The 

nonbaryonic dark matter is classified as hot (HDM), warm (WDM) and cold (CDM) 

according to how large the kinetic energies of the constituent particles of the dark 

matter are. Among them, CDM has been considered the most desirable one bacause 

CDM scenario has an advantage for explaining the fomation of the hierarchical 

structure in the universe. Such dark matter decouple with photon at very early time 

in the universe. And their density fluctuations were growing up faster than those of 

baryon because nonbaryonic dark matter are l)ot affected by the photon pressure. 

Hence density fluctuations of matter may become enough larger than those of photon 

to explain the existence of large scale structures with small anisotropies of the CMB. 

However, the observational upper bound of the CMB anisotropies rapidly lowered 

since late '80s and it became more and more difficult to find a consistent model with 

observations. Moreover, the recent progress of the deep survey of the universe shows 

us new and larger structures such as Great Wall,4) Great Attractor5
) and so on. It is 

diffiucult for CDM to make such large objects. Now, it looks like that the paradigm 

of the CDM scenario stands for the difficulty. Instead of the structure formation by 

CDM or other dark matter candidates, recently, the structure formation by 

topological defect such as string, domain wall and texture began to be considered. 

These defects directly make nonlinear objects without the help of the self

gravitational field of these objects. Hence there had been the expectation to make 

structures without producing too much temperature fluctuations. However, it is not 

the case. The gravitational potential field of defects themselves or the resultant 

objects must reproduce temperature fluctuations. This is known as the Sacks-Wolfe 

effect.6) These scenarios would also become difficult to survive if the observational 

upper bounds of CMB isotropy had decreased any more. 

It was just the time when the cosmology faced on the confusion that COBE found 

the temperature fluctuations.3) This detection is one of the most important observa

tional results after the discovery of CMB itself. At last we can see the seeds of the 
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Perturbations of the Cosmic Microwave Background Radiation 805 

large scale structure of the universe on the last scattering surface. From the view

point of the struct)lre formations, these observational data can be used to estimate the 

amplitude of the photon density fluctuations directly. Before this discovery, we 

usually estimated it theoretically from the amplitude of matter density fluctuations 

obtained by the observations of the large scale structures such as two point galaxy

galaxy correlation functions in cosmological models. Using this method, we could 

not escape the so-called biasing problem that is whether the light trace mass or not. 

Now we have obtained both density fluctuations and temperature fluctuations indepen

dently. 

The linear analysis of the evolution of small fluctuations in spatially homogene

ous, isotropic cosmological models was pioneered by Lifshifz}) This work was then 

extended by many workers. And many works8
)-lO) have· been done for the analysis of 

density fluctuations and anisotropies of the CMB in photon-baryon system. Here we 

also briefly show the procedure of the linear analysis of density fluctuations. Then 

we compare the expected temperature anisotropies in models of the structure forma

tions with the data by COBE and other upper limits on small angular scales and give 

constraints on the models and cosmological parameters. We consider almost all 

representative cosmological scenarios, tha~ is, baryon, cold dark matter or hot dark 

matter dominated models with initially adiabatic and isocurvature perturbations. 

Peebles' fully reionized universe models12
) are also shown. As for models with the 

cosmological densiy parameter, .Qo< 1.0, both open geometry and flat one with cos

mological constant are treated. As for the evolution of fluctuations, we adopt the 

gauge-invariant formalism of Bardeen13
) which is further developed by Kodama and 

Sasaki.14
) This method has several obvious advantages over the conventional syn

chronous gauge method because there exists no unphysical mode in the perturbation 

variables and it is easy to set a correct initial condition accurately in numerical 

calculations especially for isocurvature perturbations. Treating large scale tempera

ture anisotropies, in particular, we use complete formula even in the open geometry15) 

and calculate the quadrupole moment for all universe models considered here. Since 

COBE found the quadrupole and large scale anisotropies, we believe this complete 

treatment increases its importance. 

The plan of the paper is as follows: In § 2, we review the method for analyzing the 

evolution of fluctuations by the gauge-invariant formula. Various cosmological 

models of structure formations based on the gravitational instability are shown in § 3. 

The brief review of observations on CMB anisotropies including the recent discovery 

of COBE and the constraints on cosmological models from these observational results 

are given in § 4. Other effects on CMB anisotropies which produce fluctuations 

between last scattering surface and present are shown in § 5. Finally, § 6 is devoted 

to conclusions and discussion. 

§ 2. Methods 

2.1. The unperturbed background16
),17) 

We assume that the matter is distributed uniformly and isotropic in the very early 
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806 N. Sugiyama and N. Gouda 

universe. Then the unperturbed background is assumed to be described by a 

Robertson -Walker metric, 

dr
2 

+ 2d'n2 
1-Kr2 r .:>& 

(2·1) 

Here dQ2 is the metric of the 2-dimensional Euclidean sphere and K is an constant 

curvature. The energy momentum tensor takes a perfect fluid form 

(2·2) 

(2·3) 

where pa and Pa denote unperturbed energy density and pressure for a-component 

(e.g., for baryon; a=b and for photon; a=r). And Up is the 4-velocity, (uP)=(a-I, 0, 

0,0). The Einstein equations are reduced to the two equations 

(2·4) 

P· =-3J£h 
a ' 

(2·5) 

where 

. h==-p+p. (2·6) 

Here A is a cosmological constant and C )=d/dt. In this paper, we adopt the unit 

c=1. 

2.2. Perturbation in gauge-invariant scheme 

As mentioned in § 1, it is desirable to adopt the gauge-invariant scheme in the 

cosmological perturbation analysis. Here at first the variables representing pertur

bations are introduced and next the gauge invariant perturbed variables are con

structed. 

1) Perturbed variables 

We consider only scalar perturbations (i.e., density perturbations) which are the 

only type of perturbations that would grow after docoupling and are of interest with 

respect to the problem of structure formations. In general, a perturbed metric is 

represented by 

(2·7) 

where a tilde denotes a perturbed quantity and Y is a scalar harmonics, that is, an 

eigenfunction of the spatial Laplace operator and Y i and Y ij are vectors and tensors 

associated with it. To be more specific, they are defined as follows: 
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Perturbations 0/ the Cosmic Microwave Background Radiation 807 

(2-8) 

where I is a covariant derivative with respect to Yij and an eigenvalue k is interpreted 

as a wavenumber (in what follows, the indices i and j run from 1 to 3, and f1. and l/ 

from 0 to 3). We omit the summation symbol with respect to the eigenvalues as well 

as the eigenvalue indices of harmonic functions because there is no coupling among 

the expansion coefficients of harmonic functions with different eigenvalues in the 

linear perturbation analysis. 

Accordingly, the perturbed energy-momentum tensor fl~)v has the following 

components: 

t(~)o= - Pa(l + Oa Y) , 

t(~)j=(Pa+ Pa)(Va- B)Y j , 

t(~)o= -(Pa+ Pa)Va yj , 

f(~)j= Pa(Oij + TCLa Y Oij + TCTa Y/) , (2-9) . 

where Pa and Pa denote unperturbed energy-density and pressure for a-component. 

The quantities Oa, Va, TCLa and TCTa are perturbations with respect to energy density, 

spatial velocity and isotropic and anisotropic stresses. All of the above quantities 

can be regarded as functions only of time in the following perturbation equations. 

2) Gauge-invariant variables14
) 

In general relativistic perturbation theories, the notation of a perturbation vari

able loses its direct physical significance, especially on super-horizon scales, due to the 

presence of coordinate gauge freedom. Namely, the variables representing perturba

tions change under the change between the perturbed world and the unperturbed 

background. Then the amplitudes of perturbations in the metric and the energy

momentum tensor shown above are not invariant under this change of correspon

dence. The change of correspondence is called a gauge transformation and formally 

expressed in terms of a coordinate transformation in the perturbed world. A scalar 

type infinitesimal gauge transformation (7J, x)-->( 'if, x) is expressed as 

'if=7J+ TY, 

where 7J is a conformal time defined by d7J=.dt/a and T and L are arbitrary functions 

of time, being regarded as quantities of the same order as the perturbation variables. 

As stated iIi the Introduction, if we take the special gauge condition, such as synchro

nous gauge condition, which was used by many authors, we cannot completely 

eliminate gauge freedom and there leaves room for gauge modes to play an undesir

able role in the perturbation analysis. On the other hand, we can discuss all kinds of 

cosmological perturbations without worrying about gauge modes if we adopt the 

gauge-invariant formalism, that is, we deal only with gauge-invariant perturbation 

variables which are defined to be invariant under gauge transformations. The 

gauge-invariant variables can be constructed by combining them in an appropriate 
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808 N. Sugiyama and N. Gouda 

manner. As for metric perturbations there are two independent gauge-invariant 

quantities. A convenient choice of them is as follows: 

(J)= II +-llT+- B __ T 1 a' ( ll') 
-L3 ak k' 

lJT=A+~(B- llT)+l(B'_llT) 
ak k k k 

(2-10) 

with a prime denoting a derivative with respect to the conformal time 7]. The former, 

(J), represents the perturbation to the intrinsic spatial curvature and, the latter lJT, to 

the gravitational potential for Newtonian slicing, i.e., the gauge condition such that 

k-lllT- B=O. 

Perturbations to the energy-momentum tensor yield four convenient gauge

invariant combinations; the density perturbation defined in the total matter center-of

mass frame ilea, the shear of the four velocity Va, the entropy perturbation ra and the 

anisotropic stress perturbation lla. They are constructed out of ordinary (gauge

dependent) variables as follows: 

. a' 
ilca =oa+3(1 + Wa) (iii (v- B), 

ll' TT _ T 
va=Va-T 

_ c/ 
ra=7CLa---Oa, 

Wa 

where v is the center-of-mass velocity of matter and 

Wa=Pa/Pa, 

2-p'/ ' Ca = a Pa. 

Also for total matter, similar gauge-invariant variables are defined: 

iI=p-l~Pailca , 
a 

(2-11) 

(2 ·12) 

(2·13) 

The non-adiabaticity of total matter rand anistropic stress perturbation II are given 

by 

(2-14) 

where 
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Perturbations of the Cosmic Microwave Background Radiation 809 

(2·15) 

and nnt is the intrinsic entropy perturbation of each component, Frel is that due to the 

difference of the dynamical behavior of each component and cs is the sound velocity 

given by 

2 '" 2 '/ ' Cs =£..JCa Pap. (2 ·16) 
a 

From the perturbed Einstein equations, (JJ and 7Jf are expressed algebraically in 

terms of matter variables, 

(2 ·17) 

and 

(2·18) 

This is one of the advantages of the gauge-invariant method. Since metric perturba

tions (JJ and 7Jf are expressed algebraically in terms of total matter variables, the 

equation for density perturbations becomes quadratic in the present gauge-invariant 

scheme, contrary to the quartic equation in a synchronous gauge. 14
) This is the 

reason why there is no room for the mixing of unphysical gauge modes in the present 

scheme. As stated before, the fact that the unphysical gauge modes are not present 

in the gauge-invariant scheme results in the following merit: The use of synchronous 

gauge, which has often been used, is potentially dangerous and may lead to an 

incorrect result because it is very difficult to single out the purely growing mode 

numerically in the synchronous gauge. and it allows to include a gauge mode in the 

synchronous gauge especially for isocurvature baryon dominated models. However 

we do not worry about the gauge mode in the gauge-invariant formalism. 11
),18)-20) 

2.3. Evolution equations of perturbations before decoupling 

. The detailed evolution equations of perturbations are shown in §§ 2.3 and 

2.4. 14
),11),20) Photon, baryon and other collisionless particles are considered as compo

nents of the universe and we analyze their density fluctuations. 

To calculate the evolution of perturbations, we separate the history of the 

universe into three stages. The first stage is that the photon temperature is so high 

that the univ,erse is fully ionized. The second stage is the era when the recombination 

process of hydrogen atom is working. After the universe being sufficiently optically 

thin, the final stage comes. In this subsection, the method of dealing with the 

evolution of perturbations in first two stages is explained. About the final stage, it is 

shown in § 2.5. 

Here we intoduce a new gauge-invariant variableUa which is defined as 

(2·19) 

in place of shear velocity Va. 

(1) Tr i:: 6000 K 
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810 N. Sugiyama and N. Gouda 

This is the pre-recombination stage. Baryons and photons are coupled strongly 

and we can treat them together as viscous fluid. The perturbed density and pressure 

of this fluid component are expressed as pf=Pr+Pb and Pf=Pr. For each compo

nent, i.e., viscous fluid f and collisionless particles X the evolution equations of 

perturbations are expressed as 

diJa =3 Wa- Ca
2 

iJ __ k_ (1 + ) u. -3 Wa r. _.1. 1 + K/(Ha)2 1+ Wa iJ 
da a ea Ha2 Wa a a· a 2 1 - 3K/k2 a 

dUa 
da 

+3 d ::)a ~ P; [ca2iJea+wara- ~ Wa (1- 3ff)lIa] 

3 K .( 3 I+K/(Ha)2 Ha ) 
+ Ha2 k(1+Wa) U+2 1-3K/k2 k iJ , 

3
c
a:-l Ua+ 23

a 
[(1 +W)( 1 + (ffa)2 )-2c2] U 

3 K 1+ K/(Ha)2 
+2 Ha2k 1-3K/k2 iJ, 

where W=~Pa/P and U=~haUa/~ha. For the viscous fluid component, 

and 

where 

R 
= neCfT __ I_ 

e- H - Hte 

(2·20) 

(2·21) 

(2·22) 

(2·23) 

(2·24) 

with ne, CfT and te being the electron number. density, Thomson scattering cross section 

and th~ mean free time of electrons, respectively. Using the viscous fluid approxima

tion, the relative velocity Vbr between baryons and photons can be solved algebraical

ly as 

(2·25) 

The ~volution equation of the entropy perturbation is as follows: 
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Perturbations of the Cosmic Microwave Background Radiation 811 

(2·26) 

As for the collisionless particles X, rx and llx are dependent on their characters. In 

case of cold dark matter, we do not have to consider these terms because kinematic 

energy of these particles can be neglected. On the other hand, hot dark matter has 

large kinematic energy in the early epoch. The collisionless Boltzmann equation 

must be solved to obtain rx and llX.21
) 

(2) 1000 K~ T r <6000 K 

On this stage, we treat baryons and photons separately since the recombination 

process plays a part. For each component except photons, the same equations as 

stage (1) are solved to calculate the time evolution. On the other hand, the collisional 

Boltzmann equation is solved for photon distribution function I(x!', q!') as 

(2 ·27) 

where ;\ is the affine parameter of photon trajectory and C[ I] is the collision term22
) 

given by 

(2·28) 

where * refers to the quantities associated with a scattered photon and a bar to the 

values in the electron rest frame. Here we introduce the gauge invariant brightness 

function Eer. as 

(2·29) 

where I is the direction cosine of photon propagation. In order to calculate the 

Boltzmann equation, we expand Eer in accordance with Wilson10
) as 

(2·30) 

P{li""il is an l-th rank tensor defined by 

(2·31) 

Parentheses about indices indicate symmetrization of these indices. The previous 

photons perturbation variables are related to the first three terms of the expansion as 

Ller = Eer(O) , 

(2·32) 
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812 N. Sugiyama and N. Gouda 

The evolution equations obtained from the Boltzmann equation are then 

+ (1 +4W) a ~ P; [ca
2
£1ca+ Wara- ~ wa( 1- y;)na J 

+_4_ K (u+ 3 I+K/(Ha)2 Ha £1) 
Ha2 k 2 1 - 3K/k2 k ' 

(2·33) 

d _6[ ( K) 2J K I+K/(Ha)2 
datcT(l)-{i (l+w) 1+ (Ha)2 -3 U+6 Ha2k 1-3K/k2 £1 

l'?:.3, 

(2·35) 

d Rc k [ . 1 1 + 1 [ 
datcT(l)=----;;-tcT(l)+ Ha2 2l-1 tCT(i-l)- 2l+3 1 l(l+2) J J k2 K tCT(l+1) • 

(2·36) 

In our calculations, we take the maximum number of 1 as 1000. 

2.4. Evolution equations of perturbations after decoupling 

The calculation based on the two fluid description is carried out until recombina

tion of protons and electrons is effectively completed as shown in the previous 

subsection. We take this epoch to be at T=1000 K for the ordinary models except 

Peebles' model (see § 3). By this epoch, matter density perturbations are dominated 

by the growing mode. After that time, matter and photon perturbations begin to 

evolve independently. In the linear regime, the growing mode of matter density 

perturbations at present and at decoupling time (Zdec) is related as: 16
),17) 

(2·37) 

for J20=1 (J20 is the present value of the cosmological density parameter) and 

for Qo< 1, where 

(cosh!=K 7Jo-l)(cosh!=K 7Jo+5)-3!=K 7Josinh!=K 7Jo 

(cosh! - K 7Jo-l)3 

(2·38) 

(2·39) 

The propagation of photon perturbations in an optically thin universe after Z=Zc!ec is 

governed by the following equation:15
),19) 
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Perturbations of the Cosmic Microwave Background Radiation 813 

a 
=-( 1Jf - (/)) 

a71 ' 
(2,40) 

where 71 is the conformal time (d71=dt/a(t)), x(71) is the spatial trajectory of a null 

geodesic, ,=dx(71)/d71 is the direction cosine of photon propagation, and r.A are the 

connection coefficients with respect to rij. Further 8 s is the gauge-invariant bright

ness temperature perturbation on the shear free hypersurface (i.e., Newtonian gauge) 
and given by19) 

(2°41) 

Integrating Eq. (2·40) along a null geodesic from present 710 back to some arbi

trary time 71 after decoupling, we obtain 

+ l~o a~' (1Jf(71', x(71'))- (/)(71', x(71'»)d71' 

=8s(71, x(71), ,)+ 1Jf(71, x(71))-1Jf(71o, xo) 

(2,42) 

where xo=x(71o) and the last equality follows from the perturbed Einstein equation, 

(/)= - 1Jf, which holds in a universe with negligible anisotropic pressure perturbations 

and is true in the universe after decoupling. 

Although this formulation is perfectly correct, 8s given by Eq. (2·42) itself is not 

the anisotropy we observe. In fact, we observe the anisotropy on the matter rest 

frame on which we stand. The observable temperature anisotropy 8m on the matter 

rest frame is related with 8 s as follows: 11
),19) 

where a prime (') represents d/d71. 

From Eqs. (2·42) and (2·43), the present-day 8m is given by15) 

8int=8m(71, x(71), ,)~ 1 V(71)Y(X(71))lir i + 1 V(71o)Y(XO)lir i , 

8sac=( 1Jf(71JY(x(71))-1 ~ V(71)Y(x(71))) 

(2·43) 
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814 N. Sugiyama and N. Gouda 

-( 7Jf(r;o)Y(xo)-l ~ V(r;o)Y(xo)) , 

edif=21~"( d~' 7Jf(r;') )Y(x(r;'))dr;' . (2'44) 

We note that we have (a' /(ka)) V =(2/3) 'lJf= const in a fiat matter dominated universe. 

Then esac reduces to the familiar Sachs-Wolfe effect,6) 

(2'45) 

and edif vanishes. We call the term ecs= esac + edif the "generalized Sachs-Wolfe 

effect"lO) or Rees-Sciama effect in an open universe. 

2.5. Estimations of the present CMB anisotropy 

(a) Small scale anisotropy 

First, we consider the small angular scale anisotropy of CMB. ll
).19) We find that 

the effect of the negative curvature and the effect due to edif on the small angle scale 

can be neglected. And moreover the monopole component of em is irrelevant to the 

anisortopies and for small angular scales the dipole component (k- 1 VY1iyi evaluated 

at r; = r;o) is negligible. Thus in this case Eq. (2 '44) can be reduced approximately to 

(2'46) 

where em, eint and esac are the expansion coefficients of em, eint and e sac by the 

scalar harmonics with the eigenvalue k, respectively and ,u=(k/lkl)·(,/I,I)=/l·j. 

And the subscript rms denotes the root-mean-squate value of the quantity which is 

defined below. 

Using Eq. (2'46), we can estimate the present small angle anisotropy of CMB as 

follows: The intrinsic temperature angular correlation function C(B) is given by 

C(B)/To
2 =<em(r;o, x, j)' em(r;o, x, j'»x 

=--4 r= Pdkle(k)l;""s F!fsin(kr) , 
27r )0 ksmhj - K r 

(2'47) 

where 

r(B) (2'48) 

To is the present mean temperature of the CMB and 

k=jk2+K. (2'49) 

The quantity e( k) is defined as 

e = esC r;dec, j) + 7Jf( r;dec) , (2'50) 

and its root-mean-square value is calculated as 
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Perturbations of the Cosmic Microwave Background Radiation 815 

In the actual observations, the intrinsic temperature correlation C(8) cannot be 

directly obtained. Thus quantitative comparison of theory and observation is pos

sible by taking into account the antenna response properly. The effect of the antenna 

beam width 6 can be approximated by the following Gaussian distribution function: 9
),10) 

(2-52) 

where 71 and 72 are direction cosines. Convolution of C(8) with the above antenna 

beam function yields the angular correlation function C(e; 6) of two measurements 

spaced an angle e apart with an antenna of beam-size 6: 

(2-53) 

Here it must be noticed that the Gaussian beam size 6 of an antenna is related to the 

beam size defined by FWHM, 6FWHM as follows: 

6FwHM=2J2In26. (2-54) 

Under the small angle approximation, the above expression reduces to 

x 100 

dif; sin( kAdecif;) exp( 
o kAdec 

(2-55) 

where Adec= 7jO-7jdec. The observable temperature anisotropies, oT/T(e, 6), are: 

(
3 - 1 - ) x 2-2Jo( e kAdeCsinu) +2 Jo(2 e kAdeCsinu) (2 -56) 

for triple beam switching experiments23H5
) and 

x (2-2Jo( e kAsinu» (2 -57) 

for double beam switching experiments.26
),27) The explanation about the beam swit

ching will be shown in § 4.1. Using the above formula, we can estimate the predicted 

small-angle anisotropy oT/T in any model. 
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816 N. Sugiyama and N. Gouda 

(b) Large scale anisotropy 

N ow we turn to the large scale anisotropy of the CMB. In this case we have to 

derive the promised formula for multipole moments of the present CMB anisotropy 

while for the small-angle anisotropy we have to consider only the root mean square 

of the radiation perturbation. There has not appeared any work which considers an 

open universe model and includes both the generalized Sachs-Wolfe effect and intrin

sic photon fluctuations at decoupling completely in evaluating the large scale 

anisotropy of the CMB, e.g., quadrupole moment of the CMB aI)isotropy. This 

unsatisfactory situation is mainly due to a technical difficulty in estimating the 

present quadrupole and/or higher multi poles of the CMB anisotropy in an open 

universe. IS) However, we have succeeded in deriving a formula by which one may 

calculate any multipole moment of the CMB anisotropy with particularly arbitrary 

precision. IS) We derive this formula be1ow. 

Instead of dealing directly with Ptli
oo

;" for convenience, we introduce an operator 

Gz which acts on a harmonic function, defined as 

(2·58) 

Then the temperature anisotropy em is expanded into multipole moments as 

(2·59) 

In the flat case K=O, Y=e ik
·
x and Eq. (2·59) reduces to the familiar representation, 

where P l is the l-th Legendre polynomial and k=k/lkl. 
What we need is a relation between different multi pole moments at different 

times. The key property of a harmonic function for this purpose is 

'" 
Y(T))= ~(21 + I)Z,/(T)- T)O)Gl[Y(T)O)] , 

l=O 

where Y(T))=Y(x(T))) and Z/ is defined by 

Z,/(T)- T)o)=i-lXul(T)o- T)), 

Xul(x)=( 2sinh(Ax) f\l/2+ 1)(1/2) P,;~tA/2)(cosh(j - K x)). 

(2·60) 

(2·61) 

Note the change in the sign of the argument. The function Xul(x) is the radial part 

of a harmonic function in the usual hyperspherical coordinates (x, (J, cp) (see the 

Appendix of Ref. 15)) and l/ represents an eigenvalue related to k as 

k
2 

( _ K) = l/2 + 1 . (2·62) 

Then, as shown in the Appendix of Ref. 15), provided Gl acts on yeT)) (i.e., a 

harmonic function along a null geodesic), Gl is expressed as a polynomial of degree 
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Perturbations of the Cosmic Microwave Background Radiation 817 

[ in the ordinary derivative operator p = (ik)-ld/dr; which satisfies the following 

recurrence relation, 

Go=l, Gl=P, 

2l+1 _ [)/2+[2 
Gl+l=---r+lPG1 - [+1 )/2+1 Gl-l. (2'63) 

Operating Gn on Eq. (2'60), we have 

(2'64) 

where po=(ik)-ld/dr;o. 

With these formulas at hand, the present multi pole moments Bm(l)( r;o) are expres

sed from Eqs. (2·44) and (2'59) as follows: 

For [=0 (monopole); 

( 
1 a' ). l~O( dlJf ) 0 - lJf(r;o)-ka V(r;o) +2 ~ dr; Zv (LJr;)dr;, 

where LJr;= r;-r;o and 

{

Bm(l)+ V for n=l, 
Bint(n)= B 

m(n) for n=i=l. 

For [= 1 (dipole); 

i-lBm(1)(r;o)=31~v-nBint(n)(r;)GnZvl(LJr;)+3( lJf(r;)- ~ ~ VCr;) )Zvl(LJr;) 

For [?:. 2 (quadrupole and higher multipoles); 

(2'65) 

(2'66) 

(2·67) 

For a given [, in principle, the above formula can be used to evaluate the moment 

Bm(l) by successive operation of Gn with n=l, 2, 3, ... on the known function Zv1. 

However, in practice, it is a formidable task and this is the reason why no reliable 

work has been done so far. In what follows, we present a multipole moment formula 

which is practically tractable. 

It can be shown that Zv1 has the property (see the Appendix of Ref. 15», 
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818 N. Sugiyama and N. Gouda 

(2'68) 

and that together with Eq. (2'63) it leads to the formula, 

GnZvl=~GzZvn,; cn=j III n ))2+ l 
Cl j=! ))2+ 1 

for n=O, 

for n~l, 
(2'69) 

for arbitrary non-negative integers nand 1. 

Since, given a specific 1, it is straightforward to solve for Gl by using.Eq. (2'63), 

the explicit expression for GIZvn can be easily obtained next by using Eq. (2'68). As 

examples, we give the expressions for dipole and quadrupole: 

(i) Dipole (1=1) 

(2'70) 

(iO Quadrupole (1=2) 

_3 (n-1)n zn-2 
-2 (2n-1)(2n+1)qn v 

[
3 n2 ))2+n2 3 (n+1)2 1J n 

+ 2 (2n-1)(2n+1) ))2+1 qn+ 2 (2n+1)(2n+3)qn+l-2 Zv 

where 

+
3 (n+ 1)(n+2) Z n+2 
2 (2n+ 1)(2n+3) qn+2 v , 

for n<3, 

for n~3. 

(2·71) 

Equations (2·66) and (2'70) give the desired formula for the dipole moment and 

Eqs. (2'67) with 1=2 and (2'71) for the quadrupole moment. 

Here we remark that in the flat universe (K =O),Gn reduces to the Legendre 

polynomial Pn and Z/( r;) to in times the spherical Bessel function i1jl(kr;). Following 

the above formula, we can estimate the expected anisotropy of CMB in any model. 

2.6. Initial condition of perturbations 

Here the initial conditions on the evolution of small fluctuations are shown. 

Though the real initial conditions are concerned with the detailed mechanism of 

creation of fluctuations such as the inflation, we can classify the set of the solution for 

the evolution of fluctuations in the very early universe. Hence we only have to set up 

some initial conditions at radiation dominated era. We take this epoch at the photon 
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Perturbations of the Cosmic Microwave Background Radiation 819 

temperature T=10 8 K after occurring the e+e- annihilation. Then we can get 

approximately analytic two independent growing mode solutions at this early stage in 

the evolution equations. Physically, they correspond to the adiabatic and the isocur

vature condition. We show here the relation between those initial conditions and the 

entropy perturbation. In the early'universe, the cosmological entropy is dominated 

by the radiation and the universe is in the radiative equlibrium. Then we can neglect 

the intrinsic entropy of the matter other than radiation and the entropy perturbation 

Smr becomes 

Smr 
Os 
s 

Llcm 
l+wm 

Llcr 
l+wr' 

(2·72) 

where the suffix m stands for matter, i.e., baryon or other nonbaryonic dark matter 

particles if there exist, r for radiation and s=(4a3 /3 T)Pr is the entropy density of 

radiation. As for the adiabatic condition, we set Smr=O for all matter components. 

The growing mode. solution of the total density perturbation Ll is proportional to a
2

• 

As for the isocurvature initial condition, Smr is set to a constant in time for one matter 

component. The growing mode solution is Llex:a3
•
22

) It is noted that the entropy 

perturbations of other matter components become negligibly small. In order to know 

the geometrical meaning of these conditions, we show the curvature perturbation. 

The curvature perturbation (]) is concerned with Ll through the Poisson equation 

(2·17). If we take the adiabatic initial condition, the term on the right-hand side of 

Eq. (2·18) becomes constant because pex:a-4 in the early universe. Hence (]) becomes 

constant in time. On the other hand, if the isocurvature initial condition is taken, (]) 

ex: a and is negligible small in the early epoch. So this type of initial condition is 

called isocurvature. 

The power spectrum of the total density perturbation is usually assumed the 

power-law form. We define the power law index as follows: 

(2·73) 

where P=.k2+ K. In particular, the spectrum with n=1 for both adiabatic and 

isocurvature fluctuations becomes scale free. This is known as Harrison-Zeldovich 

spectrum and naturally obtained by the inflationary scenario.46
) It should be noticed 

that our power index differs by 4 from that used by, e.g., Peebles l2
) for isocurvature 

perturbations (Le., n= npeebleS+4) because his definition of index is the power-law 

index of the entropy perturbation. 

2.7. Normalization of density perturbations 

Finally, we summarize the procedure how the CMB anisotropy in any model can 

be estimated and how we can give constraint on the models: For any model we can get 

the present perturbations numerically by the method which we described before. 

However since our analysis in the present paper is carried out in the framework of 

linear theory, consideration of its cosmological consequences requires an appropriate 

normalization method based on a reliable quantitative measure of the present cos

mological structures in its linear regime. Usually, before the discovery of the large

angle anisotropy of the CMB by COBE (see § 4. 2), the conventional method uses the 
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820 N. Sugiyama and N. Gouda 

galaxy-galaxy correlation function ,;:(r)9),19) or its volume integral, !3(r):19),29) Accord

ing to linear theory, they are calculated as follows: IO) 

';:(r)=~ roo PdiiP(ii) ~sin(iir) , 
2JZ' )0 ksmhj-Kr 

(2·74) 

where ii is defined in Eq. (2 ·49) and P( ii)=ILlcm( ii)12 is the fluctuation power spectrum 

at the present time. The volume integral of ';:(r) gives !3(r): 

(2·75) 

Furthermore, we often use the normalization condition that the mass excess 

8M/M within te radius r=8h- 1 Mpc, equals 1.0. Although the above quantities have 

well-established values from an observational point of view,30)-32) a normalization 

procedure based on either of them necessarily assumes that galaxies trace the mass 

distribution of the universe, which may not be the case in reality.33)-35) 

A way out of this is to use the large-scale peculiar velocity field which should 

measure the dynamical mass distribution. The rms peculiar velocity field with a 

Gaussian window function36) can be expressed as 

(2·76) 

while the velocity correlation function I7),37) is 

(2· 77) 

where Ho=lOO hkm/sec/Mpc is Hubble's constant. The normalization based on 

either Eq. (2·76) or (2·77) provides a potentially promising method since it does not 

require any' assumption about the connection between luminous objects and the 

underlying actual mass distributions.38)-40) Unfortunately the present observational 

data are still controversial4lH5) and do not yet provide a reliable measure for 

normalization. 

Using the power spectrum of matter perturbations obtained from the numerical 

integration, we found that the overall normalization factor is sensitive to the linear 

scale where the normalization is performed. This reflects the principal difficulty in 

comparing observations with linear theory predictions; on small scales where observa

tional data are reliable, nonlinear effects should contaminate the linear results to 

some extent, while on large scales where nonlinear contamination is negligible, the 

observational uncertainties become large. Conventionally compromise has been 

made around at r ~ 10h-1 Mpc where';: is of order unity, since beyond this length scale 

the observational data become rather uncertain. 

From the above facts, different normalization schemes in which we use the 

different qualitative measures give the different amplitudeI9),20) and so the ambiguity 

of the normalization exists. However at last COBE has detected 'the intrinsic 

Gaussian tempeiature fluctuation of the CMB smoothed on 100, 6 SkY (10')3) shown in 
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Perturbations of the Cosmic Microwave Background Radiation 821 

§ 4.2. Here we can obtain expected values of the CMB fluctuations directly from the 

observational data (JSkY (10°) of COBE. We normalize the amplitudes of the tempera

ture fluctuations by coinciding the expected (JSkY (10°) with the observed one by COBE. 

Using this new normalization scheme, there is no biasing problem that is whether 

galaxies trace the mass or not. 

Once P( k) = P( k, Z = 0) is normalized according to the above procedures, the 

power spectrum of matters at decoupling Zdec is calculated for Q=l: 

(2'78) 

and for Q<l: 

x P(k) 
25(1 + Zdec)2 

(2'79) 

(see Eqs. (2·37) and (2·38)). Since the relative amplitudes of photon to matter 

perturbations are calculated in linear theory, Eqs. (2'78) and (2'79) finally fix the 

amplitude of matter and photon perturbations at decoupling. Then the present 

amplitudes of matter perturbations and the temperature fluctuation on any scale are 

obtained as we described before. And by comparing the expected anisotropy on any 

angle scale and the matter fluctuations at the present time in a model with the results 

of the observations, we can constraint on the model as we will show In detail in § 4. 

§ 3. Models 

In this section, we show the models which we consider in this paper. We review 

the characters of the time evolution of density perturbations and the features of the 

resultant power spectra in the models, which are numerically estimated by the method 

presented in § 2. 

10.3 

BDM adiabatic 

0=1.0 h=1.0 

1014Ma 

10. 1 

10. 3 
BDM adiabatic 

0=1.0 b=LO 

1012Ma 

10.5 UJ.1J..LJ....l-,--1U.LLJ.Jc.J.....JI...-UJ.1J.L.L.L....L.........w.J..LI....I...I..JJL!-...J I 0.5 ~.LJ....l-'--1llJ..U..J'-'-I...-lWJ..LJ....l-'--1UJ..U..JL..L..'--' 

107 1()6 lOS 104 103 107 106 lOS 104 103 

T[K] T[K] 

(a) (b) 

Fig. l.(a) The time evolution of baryon and photon density fluctuations, LlCb and LlCT for adiabatic 

BDMs with mass scale M=1014Me. Temperature is that of radiation temperature and SJo=.Qb 

=h=l.O. Normalization is arbitrary. 

(b) The same as Fig. 1 (a), but with mass scale M=1012Me. 
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822 N. Sugiyama and N. Gouda 

3.1. Pure baryonic modei ll
) 

First of all, we consider the pure baryonic model. In this model, the universe 

contains only baryon and photon (then a-component is baryons; a= b and photon; 

a= r) and at the present time the baryon dominated in the universe. 

First, we consider the time evolution of initially adiabatic perturbations. As is 

well known, perturbations with mass scales greater than the Jeans mass Mf (Mf at the 

decoupling time is nearly 1.1 X 1016(tJoh2)-2 M 0 , where tJo is the density parameter at 

present (in this model tJo=Qb)) and h is Hubble constant in units of 100 km s-IMpc-\ 

grows as a2 in the radiation-dominated stage and as a in the baryon-dominated stage.22) 

On the other hand, for perturbations with scales smaller than the Jeans mass, the 

amplitude oscillates. Among them, those with scales larger than a critical mass 

Me(t) «Mf ) are damped gradually due to "adiabatic damping", in proportional to 

10-1 

10-3 

10-5 

M/MQ 

1021 1019 1017 1015 1013 1011 

BDM adiabatic 

Q=1.0 h=1.0 
0=1 T=1000K 

10-7 

10.3 10.2 10-1 

k[hMpc· 1] 

Fig. 2. The spectra of baryon and photon density 

fluctuations, Lleb and LleT at T=lOOO K for 

adiabatic BDMs with Q,,=Qb=h=l.O and n=l. 

Normalization is arbitrary. 

100 

10- 2 

10- 4 

--- --Ill- ---- -- ---;::\-: -, \r '\ 

IAcrl c~ .....- • - \ ' t ~ \ 'f :\~ 

.t.- 111!1!!\ 
BDM isocurvalture I ! 
0=1.0 h=1.0 1 

(a) 

a-1!4 at the baryon-dominated stage. 

However those with scales smaller than 

Me are damped exponentially. 

At the stage before recombination 

when the fluid approximation is good, 

the analytic estimate of Me was done by 

Silk,47) Sato48) and Weinberg,49) yielding 

the damping factor as exp( -(Me/M)2!3) 

with Me ~ lOll M0 at T =4000 K. This 

is in good agreement with our numerical 

results. We show in Figs. l(a) and (b) 

the time evolution of density fluctuations 

with the mass scales M=1014M0 and M 

=1012M0. We can see that as for M 

= 1014M0 the baryon density fluctuation 

oscillates after when it enters the Jeans 

scale and after the decoupling it grows 

freely. As for M=1012M0" we can see 

10.2 

10.4 

1 0- 6 LWJ.JLJ...L...L....U11J..I.J....L....L......Jw.u.J....L...J'----'UllLL..J.....l--'1w..u ............... 

lOS 10' 106 lOS 
T[K] 

(b) 

Fig. 3.(a) The time evolution of total, baryon and photon density fluctuations, LI, Lleb and LleT for 

isocurvature BDMs with mass scale M=1014M 0 • Temperature is that of radiation temperature 

and Q,,=Qb=h=l.O. Normalization is arbitrary. 

(b) The same as Fig. 3(a), but for isocurvature BDMs with mass scale M=lOI2M
0

• 
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Perturbations of the Cosmic Microwave Background Radiation 823 

well that the baryon density fluctuation 

damps exponentially during the recom

bination. Figure 2 shows the spectra of 

baryon and radiation fluctuations just 

after the decoupling era (T = 1000 K). 

One can see the so-called "Silk

damping" below the "Silk-mass" Ms 

=Mc(tD)""1013.Qo1l4.Qb-3/2MOl, where tD is 

the decoupling time. The amplitude of 

perturbations just above Silk-mass in

creases slightly due to weak "velocity

overshoot effect", which results from 

decoupling of baryons from photons. 

For a small value of .Qoh2, Ms is larger 

and the amplitude of the prominent peak 

on the large-scale side decreases. 

Second, we consider initially isocur-

10-1 

10-3 

10- 2 

\ . . . 
"~-I Ik312~crl . -'. I,. 

'" 

Fig. 4. The same as Fig. 2, but for isocurvature 

BDMs. 

vature perturbations. The behavior is quite different from that of initially adiabatic 

perturbations.22) The baryon density perturbation ilCb with a mass scale larger than 

MJ ( "" 1016 MOl) decreases once in baryon-dominated stage and then starts to grow 

again atter decoupling. On the other hand, ilCb with a mass scale less than MJ 

oscillates around a constant value which- is equal to the initial value of the entropy 

perturbation SbT after entering the horizon. These features are in agreement with 

analytic estimates and show that growing adiabatic modes are generated both on 

large-scales and small-scales. In particular, the amplitude of photon perturbations 

on large-scales grows significantly after the equal time. The time evolutions for M 

=1012 MOl and M =1014MOl and the spectrum of density fluctuations in this case are 

shown in Figs. 3(a), 3(b) and 4, respectively. AsJor the time evolution of the isocur

vature density fluctuation, we can see that the baryon density fluctuation does not 

damp exponentially even for the case that M=1012 MOl' 

3.2. Peebles' model 

PeeblesI2
),37) noted that possible reionization in his minimal isocurvature model 

would diminish the residual anisotropies on small scales. As a matter of fact, the 

origin of reionization is difficult to specify; in the pure baryonic models, one realistic 

source of ionizing photons would be the first nonlinear objects on small scales, such 

as Pop. III starts, which might appear in the isocurvature models with initially high 

power spectrum such as n;;::3. In the adiabatic models, such small objects cannot 

form because of Silk damping before decoupling (see Fig~ 2). Although there is no 

specific model of the reionization, it is interesting to calculate the extent to which the 

CMB anisotropies in the isocurvature pure baryonic models would be diminished. 

The epoch of the reionization should be early enough, otherwise the universe would 

not become optically thick even if the ionization rate Xe were unity.40) 

We attempted to examine the effect of reionization as follows: We traced the 

evolution of baryons and photons in isocurvature models until z=20 on the basis of 
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824 N. Sugiyama and N. Gouda 

the formulation described by equations 

in § 2. The ionization rate Xe was 

artificially fixed to unity until that time. 

Strictly speaking, this approach does not 

correspond to reionization;rather it 

describes the situation in which the last 

scattering surface of baryons and 

photons is moved from z~ 1000 to z~20. 

Thus this is an extreme case; we have, 

maximized the effects of reionization. 19
) 

The evolution of perturbations in 

this model is similar with that in the case 

that the coupling of baryon and photon 

is not so weak in the pure baryonic 

model. However the. difference of the 

decoupling time results in the larger 

scale of the last scattering and then the 

1()3 

10-1 

10-3 

10-5 

10-3 

M/M~ 

1021 1019 1017 1015 1013 1011 

'. , 

Peebles' 

Q=1.0 h=1.0 

10-2 

, . . · · · , , 
, , 

, , , , 

Fig. 5, The same as Fig. 4, but for Peebles' model 

at z=20, 

larger smoothing of photon fluctuations on small-scales. The power spectrum at the 

z=20 is shown in Fig. 5. However, Ostriker and Vishiniac50
) and Vishiniac51

) have 

pointed out that significant small scale anisotropy can develop from quadratic non

linearities in the scattering which do not suffer from destructive interference, as 

different wave-modes are coupled. This effect is called "Vishiniac effect" and we 

discuss about this effect later (see in § 5.3 (c)). 

3.3. Cold dark matter model2o
) 

Here, we consider cold dark matter (CDM) dominated universe model. In this 

model, 'the universe contains photon, baryon, CDM and massless neutrinos. The 

suffices a are r, b, x and n, respectively. Generally speaking, the density perturba

tion of CDM is continuously growing in time and the density perturbation of baryon 

is suddenly growing after decoupling gravitationally attracted by that of CDM even 

if it entered the Jeans scale before decoupling. Hence there exists no special scale in 

the spectrum of matter density fluctuations. The only scale shown in the CDM 

spectrum is the horizon scale of the matter radiation equal time, Leq=10(Qh2)-1 Mpc. 

The growth of density perturbations is held down if the perturbations enter the 

horizon in the radiation dominated era. This suppression is known as stagspansion. 

In the spectrum, then we show mild bend at this horizon scale. Detailed evolutions 

of perturbations for the case of adiabatic and isocurvature initial perturbations are 

shown as follows. 

For the case of adiabatic initial condition, the evolution of 'density perturbations 

is proportional to a2 in a radiation dominant era, and to a in a matter dominant stage 

on the scale which is larger than the Jeans scale il] of the baryon and photon system. 

Once the scale becomes smaller than il],Lieb , Lier (and Lien) begin to oscillate as acoustic 

waves and the growth of Liex is suppressed in a radiation dominant era, i.e., stagspan

sion. As baryons recombine, the photo-diffusion takes place and if cold particles did 

not exist, Lieb, Lier would damp. However because of the existence of cold particles, 
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1()3 

CDM adiabatic I~cxl-
0=1.0 h=1.0 I~Cbl-1 

101 
101SM@ 

-"'v,:rf{~'~ l I ' ...... 
10.1 . I I I: t 

. I 1:I~crl 
1,1 . . 

10.3 

10' 1()6 lOS 104 1()3 
T[K] 

Fig. 6. The time evolution of CDM, baryon and 

photon density fluctuations, Llu, Lleb and LleT for 

aidabatic CDMs with .l2o=h=l.O and mass 

scale M=10 15M 0 • Normalization is arbitrary. 

Lleb begins to catch up with Llex as soon as 

the coupling between baryons and photons 

is enough weak. These behaviors of the 

time evolution of the density fluctuations 

are shown in Fig. 6. The spectra of Llex, 

Ller and Lleb for this case at 1000 K with 

initially Harrison-Zeldovich spectrum are 

shown in Fig. 7. At this temperature, Lleb 

is almost close to Llex and we can get the 

present spectrum of the total density per

turbation Ll using analytic solutions as 

mentioned in § 2. 

Next we consider the behavior of ini

tially isocurvature perturbations. But the 

behavior is quite different which isocur

vature condition is taken .. As shown in 

§ 2.6 the isocurvature condition is Sar 

103 

101 

10-1 

10.3 

10- 5 

10-3 10-2 10.1 10° 

k[hMpc· l ] 

Fig. 7. The spectra of CDM, baryon and photon 

density fluctuations, Llu, Lleb and LleT at 

T=lOOO K for aidabatic CDMs with .l2o=h 

=1.0 and n=1. Normalization is arbitrary. 

10-1 

10-3 

M/M9 

I' 

I I'"'' 
" ""'''. 
, """ Ik312~ I 

........ cr 

axiooic isocurvature 

0=1.0 h=1.0 
0=1 T=1000K 

, 
, 

, , , 

10.5 

=const. In the CDM dominated model, 10.3 10-2 10.1 10° 101 

we can choose a as either CDM or baryon. 

We call the former the axionic isocur-

vature condition because such condition is 

naturally realized· when the axion plays a 

k[hMpc- 1] 

Fig. 8. The same as Fig. 7, but for axionic isocur· 

vature CDMs at T=lOOOK. 

role of the dark matter. And the latter is called the baryonic isocurvature condition. 

As for the axionic isocurvature condition, the-amplitude of density perturbation 

of CDM Llex is initially positive constant and other components of perturbations are 

approximately zero. For example, the photon density perturbation Ller is factor 

aeq/ai smaller than Llcx, where aeq and ai is the scale factor at matter radiation equal 

time and at the initial time, respectivelly. On the scale larger than Jeans s<;:ale Aj, Llcx 

stays constant and other components approach negative constant modes. However, 

once the scale becomes smaller than Aj, Ller and Llen begin to oscillate. Then Llcx 

becomes growing and Lleb starts catching up with Llex in order to switch over adiabatic 

growing mode. The power spectrum of perturbations at 1000 K is shown in Fig. 8. 
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10-4 

10- 6 

10-3 
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, 
, " 
I' "',I !': ., ",,-# 
," '-, Ik312L\ I 
t '" cr 

baryonic isocurvature 

Q:::1.0 h:::1.0 

n:::l T:::I000K 

, , 

10-2 10- 1 100 

k[hMpc- 1] 

(a) 

, 

100 

10-2 

10-4 

10-6 

101 10-3 

M/M0 

1021 1019 1017 1015 

10- 2 10- 1 100 

k[hMpc- 1] 

(b) 

Fig.9.(a) . The same as Fig. 7, but for baryonic isocurvature CDMs at T=1000K. 

(b) The same as Fig. 9(a), but at T=2.7 K. 

As for baryonic isocurvature condition, you only have to exchange Llex for Lleb . 

After entering the Jeans scale, however, the situation becomes different_ Though Llcx 

starts growing to catch up with Lleb, it takes a long time for the models Q b < Qx. In 

Figs_ 9(a) and (b), the power spectrum of perturbations at 1000 K and 2.7 K are shown. 

We find very different features between these two figures. In this paper, we only 

concentrate our attention on the axionic isocurvature condition. 

As for CDM models, the most important difference between the spectrum of the 

isocurvature initial condition with that of adiabatic one is the existence of the large 

amplitude photon density perturbation on the large scale for isocurvature perturba

tions. This is the remnant of the initial condition. Then the expectation values of 

CMB anisotropies of isocurvature models on large scale become larger than those of 

adiabatic models. 

3.4. Hot dark matter mode121
),52) 

As well known, the candidate of hot dark matter (HDM) is massive neutrino. 

Since neutrino connects with baryon through the weak interaction, the decoupling 

time of neutrino is rather late in the history of the universe and it has large kinetic 

energy. Before the perturbations enter the neutrino Jeans scale, the behavior of 

evolution of perturbations is the same as the CDM model for both adiabatic and 

isocurvature initial conditions_ When the density perturbation of HDM enters the 

Jeans scale, it is damped away by the free streaming. The Jeans scale is comparable 

to the horizon scale when the photon temperature is enough higher than the neutrino 

rest mass_ As the temperature drops under the neutrino mass, the Jeans scale 

suddenly decreases because the neutrino begins to behave as a non-relativistic parti

cle. Hence the largest Jeans scale AMax is that at the temperature of neutrino mass. 

It is expressed as 
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1()2 

10.2 

lOS 
T[K] 

Fig. 10. The time evolution of HDM, baryon and 

photon density fluctuations, Llcx, Lleb and Ller for 

adiabatic HDMs with .l2o=h=LO and mass 

scale M=1014Me. Normalization is arbitrary. 

10-2 

10-4 

10-3 10-2 10-1 

k[hMpc- 1] 

Fig. 1L The spectra of HDM, baryon and photon 

density fluctuations, Llcx, Lleb and Ller at T 

=2000K for adiabatic HDMs with .l2o=h=LO 

and n=L 

10-1 

10-3 

M/MQ 

1018 

. , .. ' .. ' 
1, ", 
1 I I, , .. 

I'~ ~: " ~" 

baryooic isocurvature' "" 

1014 

' .. 
Q=1.0 h=1.0 Ik3/2~crl ' 

10-5 

10-3 

10-2 

10-4 

10-6 

10-3 

T=2000K 

10-2 10-1 

k[hMpc- 1] 

(a) 

HDM 
baryooic isocurvature 

Q=1.0 h=1.0 
0=1 T=2.7K 

10-2 10-1 . 10° 

k[hMpc- 1] 

(b) 

Fig. 12.(a) The same as Fig. 11, but for baryonic 

isocurvature HDMs at T=2000 K 

(b) The same as Fig. 12(a), but at T=2.7K 

(3'1) 

where N is the number of massive Dirac neutrino species. This scale gives us the 

peak of the spectrum. We show the time evolution of density fluctuations for HDMs 

in Fig. 10. In Fig. 11, the spectrum for adiabatic condition at T=2000 K is shown. 

Figures 12(a) and (b) show the spectra for isocurvature conditions and the tempera

ture are 2000 K and 2.7 K, respectively. As for adiabatic perturbations, however, the 

density perturbations grow according to the analytic solution (Eqs. (2·78) and (2'79)) 

and the HDM spectrum does not change their shape till the present. As for isocur

vature perturbations, we take the baryonic isocurvature initial condition since only 

baryon can be treated as dust before HDM decouples. And it should be noted that 
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828 N. Sugiyama and N. Gouda 

there exist not only the large scale perturbations of baryon and photon, but also the 

small scale perturbations of baryon and neutrino. This existence of small scale 

perturbations may become one of the advantage of the isocurvature condition because 

this may directly produce the small scale structures. 

3.5. Effects of the cosmological constant on CMB anisotropies38
),53) 

Here, we investigate effects of the positive cosmological constant on CMB 

anisotropies. Since the cosmological constant plays an important role only at late 

epochs, the evolution of density perturbations is not influenced by it before the 

universe becomes optically thin. Hence the cosmological constant does not affect 

physical processes before recombination such as Silk damping. There are two main 

effects of the cosmological constant. One is the change in the growth factor of the 

total matter perturbation Ll from the recombination to the present. 54) The other is a 

modification of the temperature correlation due to the change of the curvature scale . 

. In what follows, we consider only the totally flat universe, that is, 520+.-1=1.0, where 

X==A/3Ho2. Let us estimate these two effects separately. 

In an open universe, the growth of matter density perturbation is suppressed after 

the redshift of z~1/Qo-2 due to the curvature effect. On the other hand, the suppres

sion occurs at a later stage z~(1/52o-1)1/3-1 in the flat universe with the cosmological 

constant. As a result, the growth factor of the latter becomes larger than that of the 

former. The growing mode solution in the matter dominated stage is obtained by an 

integral form as17) 

LlcxH jda/(Hai . (3'2) 

We show the growth factor Ll(T=2.7K)/Ll(T=1000 K) compared with that in models 

without the cosmological constant in Fig. 13. We found that, for example, the growth 

factor of a low density model with Q o=O.l and .-1=0.9 is about 300 % greater than the 

corresponding model without the cosmological constant. This effect directly affects 

1000 

-------~ - --1..=1-0 

10 
0.1 

o 

- -A=Q 

1 

observer last scattering surface 

Fig. 13. The growth factor of the total density Fig. 14. Light path from the last scattering surface 

perturbations from 1000 K to 2.7 K as a func- corresponding to an observational angle 8 in 

tion of [.1. The solid line and the dashed line the spatially flat and open geometry. 

represent the growth factor for the universe 

with and without the cosmological constant, 

respectively. 
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Perturbations of the Cosmic Microwave Background Radiation 829 

the normalization of the perturbation variables and reduces CMB anisotropies. 

The modification of the temperature correlation occurs as follows. As shown in 

§ 2.4, using the small angle approximation, the intrinsic temperature correlation 

function is obtained (Eq. (2·47» 

(3·3) 

where f1.=ko7/k, 8=17-7'1 and 8(k) is the gauge invariant brightness function for 

the matter rest frame. For a flat universe, a= 7)O-7)d where 7)d is the conformal time 

at photon radiation decoupling. On the other hand, for an open universe model 

a~( - K)-l/zsinh[( - K)l!Z(7)o-7)d)] for a small angular separation with K given by 

K = - aZ H(l - Q). The CMB anisotropy at an observational angle 8 is essentially 

the difference between temperatures in two points separated by a8 on the last 

scattering surface. The difference, i.e., the CMB anisotropy increases as we see 

farther separated points. The curvature term works to enlarge the separation for a 

given observational angle 8 as shown in Fig. 14. Conversely the absence of the 

curvature term reduces the CMB anisotropy at a given angle because we see narrower 

and more strongly correlated points. 

Thus both of the two effects work to reduce the CMB anisotropy aT/T. As a 

result, the expected values of temperature fluctuations in the low density but flat 

universe with cosmological constant are smaller than those without cosmological 

constant. 

§ 4: Constraint on the galaxy formation models 

4.1. Observations of. CMB anisotropies before COBE 

The important observations on CMB anisotropy before the results of the COBE 

group are briefly summarized. 

In order to realize the high degree of accuracy, beam switching experiments are 

usually adopted instead of direct measurements of black body temperature in each 

sky position. The temperature difference between two antennas separated by an 

angle 8 or three antennas by 8 and 28 is measured. Each observation has a different 

antenna beam width 6. The temperature anisotropies of double and triple beam are 

llT/T=« T1 - TzY>I/Z /T and llT/T=<[ To-( T1 - Tz)/2F>I/Z/T, respectively. Here, 

Tl and Tz is the temperature of the two beams separated by angle 8 for the double 

beam experiment. As for the triple beam experiment, To is the temperature of the 

central beam and Tl and Tz are the temperature of beams displaced by an angle 8 to 

either side of the central beam. 

Many observations have done and covered a wide range of angular scale from a 

few arcseconds to the dipole anisotropy. The typical scale of observed galaxies and 

the large scale structures of the universe correspond to several arcminutes and a few 

degrees. So the observations on these scales are very important for structure forma-
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830 N. Sugiyama and N. Gouda 

tions. 

The most severe limit on small scale has been obtained by Readhead et al.25
) It 

is a triple beam experiment and their upper limit of the temperature anisotropy, ~he 

angular scale and gaussian beam width are 

OJ <2.1X10-5, e=7.'15 , 6=0.'77. (4 °1) 

On the intermediate scale, the result by Meinhold and Rubin27
) is the most important. 

Though their measurement is a double beam experiment, fhe scale is nearly equal the 

horizon scale at matter radiation equal time. So expected anisotropies of cos

mological models take the peak value around this scale. Their limit, angular scale 

and beam width are 

(4°2) 

On the large scale, severe bounds are obtained by Watson et al. :55) 

(4°3) 

Meyer et al.56
) made the sky map of microwave though they could not find the intrinsic 

temperature fluctuations. Hence they could obtain the correlation function C(e) 

itself. The upper limit by fitting the correlation function to the Gaussian form is 1.6 

X 10~5 at correlation angle of 13°. Between 3° to 22°, the upper limit of fluctuations is 

4.0 x 10-5. 

But now, real temperature anisotropies have been obtained by the COBE group 

on the scale larger than a few degrees. And the upper limits by Watson et al. and 

Meyer et al. are larger than the COBE's data. We will show the COBE's results in 

the next subsection. 

4.2. Observations by COBE3
) 

Finally, the DMR(Differential Microwave Radiometer) instrument of COBE has 

found CMB anisotropies. The DMR experiment57
),58) is one of three complementary 

experiments to be flown on the COBE mission. The satellite has three DMRs which 

operate at frequencies: 31.5, 53 and 90 GHz in order to remove Galactic emission 

whose strength depends on frequencies. Those three frequencies are chosen to be 

near the minimum in Galactic emission and near the CMB maximum. Each instru

ment contains one pair of (31.5 GHz) or two pairs of (53 and 90 GHz) horn antenna. 

The angle between two antennas of each pair is 60°. The temperature difference 

between these two directions can be obtained. The beam width of each antenna is r 
FWHM. It is practicable to remove the instrumental noise by comparing two in

dependent channels at each frequency. And the combined motions of spacecraft spin 

(75 s period), orbit (103 minute period) and orbital precession (~1 degree per day) 

allow each sky position to be compared to all others through a massively redundant 

set of all possible difference measurements spaced 60° apart. After all, COBE group 

has made all the sky maps of temperature by analyzing the first year of data. And 
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Perturbations of the Cosmic Microwave Background Radiation 831 

the data are fitted to spherical harmonic expansions and sky: maps with 6144 nearly 

equal area pixels (2.°6 x 2.°6) using the least-squares minimization and a sparse matrix 

technique. 

The dipole anisotropy is dominated in the DMR maps. The temperature ampli

tude LiT is 3.36±0.1 mK and the direction is I =264.7±0.8, b=48.2±0.5. It is believed 

that this dipole anisotropy is produced by our peculiar motion relative to the CMB 

rest frame. The doppler velocity of solar system is v~cLiT/T=370 km/s. 

After removing dipole and kinematic quadrupole, no obvious features are shown 

away from the Galactic plane. By careful statistical analysis, additional features are 

obtained. 

First, the intrinsic fluctuations are obtained by smoothing the maps with a . 

Gaussian of 7° FWHM, which when convolved with the T FWHM antenna beam, 

results in about a 10° smoothing on the sky. The intrinsic sky temperature fluctua

tion (fSkY is 30±5 ILK for Ibl >20°. 

The quadrupole anisotropy is shown in all six channels. By separating the 

Galactic emission,S9) a cosmic signal with a rms-normalized amplitude Qrms=13±4 ILK 

is found. Here, the quadrupole Q(l, b) is expanded as Q(l, b)=Ql(3sin2b-1)/2+Q2 

X sin2bcos I + Q3sin2bsinl + Q4cos2bcos21 + Qscos2bsin21, and Qrms is defined as Qrms 

==(4/15)«3/4)Q12+ Ql+ Q32+ Ql+ QS2). 

COBE group also obtained the temperature correlation function, C( 8) 

=<LiT1LiT2), which is the average product of temperature fluctuation separated by 

angle 8 with a 3.2° effective Gaussian smoothing. 

4.3. Constraint on the models without the cosmological constant 

As mentioned in § 4.2, COBE has detected the quadrupole amplitude of the CMB 

fluctations and the intrinsic Gaussian temperature fluctuation smoothed on 100 

FWHM, (fsky(100).3) In this section, we search the models in which the expected CMB 

anisotropies are consistent with the observed ones in the following procedure:6o
) We 

calculate (fsky(100) in various representative cosmological models including ones with 

open background. Here (fSkY (10°) is given by (fsky(8FwHM=100)=[C(8=0, 8s)]1/2, where 

C(8, 8s) is the intrinsic temperature angular correlation convoluted with a Gaussian 

smoothing angle as and is given by the ordinary method (see Eq. (2-53)). In the 

observation of COBE, the sky maps of temperature are made by smoothing with a 

total 10° FWHM Gaussian and then 8s is 4.°25 as seen in Eq. (2-54). 

At first, in each cosmological model we normalize the fluctuation according to the 

scheme that the expected rms temperature anisotropy (0'(100)==(fsky(100)/To) is equal 

to the observed one «(fsky(100)/To=1.1 X 10-S). As mentioned in § 2.5, this normaliza

tion scheme has a merit because there is no biasing problem. 

And then we estimate theoretically the rms quadrupole moment of the anisotropy 

QtheOry( == Qtheory/To) according to this normalization in each model. Here according to 

the definition of the quadrupole moment used by COBE, the rms quadrupole moment 

QtheOry is given by 

Q-2 _<Q Qij)_ 3 1 1=k-2dk-18 ( .)12(P-4K) 
theory- ij -2 27[2 0 m(2) tjo (P-K) , 
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832 N. Sugiyama and N. Gouda 

k fdQ(r)8mPtd), 
4 7.5Jf 

(4·4) 

where P-=-k2+ K and the definition of QtheOry is the same as that of Qrms by COBE 

shown in § 4.2. We must mind that the qefinition of the quadrupole moment is 

different from each other among the authors (see in detail Ref. 69)). Here Bm(2) is 

estimated by the method mentioned in § 2.5. Again it must be remarked that the 

CMB quadrupole moment, of course, has been calculated by many authors. 9
)-l1),61)-68) 

However, all of these were unsatisfactory in the sense that their consider?-tions were 

restricted either to the spatially flat background or to an incomplete evaluation of the 

quadrupole moment. In other words, so far there has appeared no work which 

considers an open universe model and completely includes both the generalized 

Sachs-Wolfe effeceO) or Rees-Sciama effect and intrinsic photon fluctuations at decou

pIing in evaluating the quadrupole moment. This unsatisfactory situation is mainly 

due to a technical difficulty in estimating the present quadrupole and/or higher 

multipoles of the CMB anisotropy in an open universe. However, we have succeeded 

in deriving a formula by which one may calculate any multipole moment of the CMB 

anisotropy with practically arbitrary precision as shown in § 2.5. 

Finally, we compare the expected quadrupole moment QtheOry in each model with 

the observed one (Qrms/To= 5 X 10-6
) and search the models whose quadrupole moment 

is consistent with the observed one. In this comparison, we must note that the 

theoretically expected rms quadrupole moment is not directly comparable to the 

observed one and the quadrupole moment in our universe will be distributed like x2 

with 5 degrees of freedom under the assumption of random phase Gaussian distribu

tion.70
) Hence it follows that there is a probability of 90 % of measuring arms 

quadrupole Qrms. 

0.48 < QQrms < 1.5 . 
theory 

Moreover we estimate the temperature anisotropy oT/T at 7.'15 and at 1 ° in each 

model using the temperature fluctuations normalized according to the above scheme. 

Comparing the results with the observed upper limits of oT/T at 7.'15 by Readhead 

et al.25
) and at r by Meinhold and Lubin,27) we constrain models more severely than 

from only the large-angular anisotropy alone. 

Furthermore we consider whether or not the matter fluctuations in the allowed 

models are consistent with the observed quantities of matter structures such as galaxy 

two-point correlation functions and so on. Here we try to constrain the models by 

examining whether the expected J3(25h- 1 Mpc) in each model is consistent with the 

observed value, 780 Mpc3 h-3
• We estimate the biasing factor b in each model, which 

is defined by b-=-j C(O, 10", h)/C(O, 10°, COBE), where C(0,10°,]3) is the intrinsic 

temperature angular correlation function estimated according to the normalization 

scheme by h(25 h-1 Mpc) and C(O, 10", COBE) is the observed one by COBE. We 

assume from the definition of b that the allowed models for the constraints by 

anisotropies of the CMB in Table I are still survived if b:S 5. 

The models that we have examined are baryon-dominated universe models 
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Perturbations of the Cosmic Microwave Background Radiation 833 

Peeb h=1.0 , 
10-4 -- .--.--_.-.-- -- ------- --------

~ 10-5 

<l ~ 

"CI 

10- 6 ~~""""'~'-'-,--,-..L...J. ......... -,-~-'-'-.J 

0.0 0.2 0.4 0.6 0.8 1.0 
n 

(a) 

h=1.0 
quad 

10-5 

1 0- 6 ~~""""'~'-'-,--,-..L...J. ......... ....L...J~.>.....L...I 

0.0 0.2 0.4 0.6 0.8 1.0 
n 

(b) 

§ 10- 5 

o 

0.2 0.4 0.6 
n 

(c) 

0.8 1.0 
to- 2 ~~""""'~'-'-,--,-..L...J. ......... -,-~.L..L..J 

0.0 0.2 0.4 0.6 0.8 1.0 
n 
(d) 

Fig. 15.(a) The predicted anisotropies of the CMB at 7.'15 for various models with h=l.O as a function 

of Qu. The models shown here are adiabatic BDMs(BDMad), isocurvature BDMs(BDMis), Pee

bles' model(Peeb), adiabatic CDMs(CDMad), isocurvature CDMs(CDMis) and adiabatic HDMs 

(HDMad). The initial power-law index n in the models shown here is 1 though only in Peebles' 

model n is 3. In these models the cosmological constant vanishes. 

(b) The predicted anisotropies of the CMB at 1° for various models with h=l.O as a function of 

Qu. The models shown here are the same as shown in (a). 

(c) The predicted quadrupole moments of the CMB anisotropies for various models with h=l.O 

as a function of Qu. The models shown here are the same as shown in (a). 

(d) The predicted biasing parameters, b, for various models with h=l.O as a functi~n of Qu. The 

models shown here are the same as shown in (a). 

(BDMs); cold dark matter models(CDMs) with initially adiabatic and axionic isocur

vature perturbations; hot dark matter models(HDMs) with initially adiabatic pertur

bation; and Peebles' reionized universe models. 12
),37) As for dark matter dominated 

models, we set the baryon density parameter Qb=0_03_ We have taken the non

dimensional Hubble parameter h normalized by 100 km/s/Mpc, 0_5 and 1.0_ Models 

with initial power spectrum n=O, 1 and 2 have been calculated except Peebles' 

models_ As for Peebles' models, higher initial power is needed to reionize the inter

stellar matter and we have chosen n=I,2 and 3. Here, we have neglected the 

secondary effect on CMB fluctuations induced by ionized matter, so-called Vishiniac 

effect50
),51) for Peebles' models. This effect plays an important role on small scale 

fluctuations, but do not produce large scale anisotropies. In our calculations, neglect

ing this effect may make the expected fluctuations on 7.'15 scale underestimated. As 
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834 N. Sugiyama and N. Gouda 

Table I. Constraints on Cosmological Models without Cosmological Constant 

model 7.15 min. 1 deg. Quadrupole bias All 

BDM h=LO n=O No Constraint No Constraint 0.52<Q<0.93 No Region No Region 

adiabatic n=l No Constraint Q<0.92 0.21 <Q 0.85<Q 0.85<Q<0.92 

n=2 0.37<Q<OA3 0~12<Q<0.52 Q<0.56 0.90<Q OA1<Q 0041 <Q<0.43 

h=0.5 n=O No Constraint No Constraint 0.35<Q<0.92 No Region No Region 

n=l 0.18<Q Q<LO Q<0.55 0.84<Q 0.86<Q 0.86<Q<LO 

n=2 No Region No Region Q<OA5 0.89<Q No Region 

BDM h=LO n=O No Constraint No Constraint 0.55<Q<0.89 No Region No Region 

isocurvature n=l No Constraint No Constraint 0.21 <Q 0.89<Q 0.89<Q 

n=2 No Region 0.14<Q<0.63 Q<0.57 0.84<Q 0.31 <Q No Region 

h=0.5 n=O No Constraint No Constraint 0.29<Q<0.80 No Region No Region 

n=l No Constraint 0.13<Q Q<0.95 No Region No Region 

n=2 No Region No Region No Constraint No Region 

Peebles h=LO n=l No Constraint No Constraint Q<0.93 No Region No Region 

n=2 No Constraint No Region No Constraint 0.28<Q No Region 

n=3 No Constraint No Region Q<0.18 No Region 

h=0.5 n=l No Constraint No Constraint Q<0.88 No Region No Region 

n=2 No Constraint Q<0.20 No Constraint 0.56<Q No Region 

n=3 No Constraint No Region Q<OA5 No Region 

CDM h=LO n=O No Constraint No Constraint No Region 0.27<Q No Region 

adiabatic n=l 0.65<Q Q-LO 0.62<Q Q-LO 

n=2 No Region No Region 0.53<Q No Region 

h=0.5 n=O No Constraint No Constraint No Region No Region No Region 

n=l 0.76<Q 0.87<Q 0.67<Q 0.87<Q 

n=2 No Region No Region 0.59<·Q No Region 

CDM h=LO n=O No Constraint No Constraint Q<0.54 No Region No Region 

isocurvature n=l No Constraint No Constraint No Constraint 0.37<Q 0.37<Q 

n=2 0.55<Q No Region No Constraint No Region 

h=0.5 n=O No Constraint No Constraint Q<0.55 No Region No Region 

n=l No Constraint 0.10<Q No Constraint No Region No Region 

n=2 OAO<Q No Region No Constraint No Region 

HDM h=LO n=O No Constraint No Constraint OAO<Q<0.60 0.45<Q OA5<Q<0.60 

adiabatic n=l 0.65<Q No Region No Constraint No Region 

n=2 No Region No Region Q<0.590.97<Q No Region 

h=0.5 n=O No Constraint No Constraint No Region No Region No Region 

n=l 0.78<Q O.72<Q No Constraint 0.21 <Q 0.78<Q 

n=2 No Region No Region Q<0.68 No Region 

Note: If there remains no allowed region on the density parameter, we indicate No Region. If the model is not constrained, we 

indicate No Constraint. As for bias parameter b, constraints are obtained from the condition that b must be less than 5. So 

empty means b < 5 through all region of Q. 

a result, the constraint on Peebles' models by the small scale observation may be 

slightly more strict than those obtained in this paper. 

Here it must be noticed that Wright et a1.7l) also analyzed some cosmological 

models using the results of COBE, however, there are some differences from ours. 

Please refer to Ref. 60) on the detailed explanations of these differences. 

In Figs. 15(a)~(d), the predicted anisotropies of the CMB at 7.'15, r qua

drupolemoments and biasing parameters in various models with n=l are shown, 

respectively. 

Constraints are obtained at 90 % confidence level as previously mentioned. 

Including the constraints by the small scale anisotropies and the biasing parameter, 

results for all models are shown in Table I. 
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Perturbations of the Cosmic Microwave Background Radiation 835 

First, we show the constraints obtained by only using the observations of the 

CMB anisotropies, that is, the observed quadrupole moment by COBE and the upper 

limit of oT/T at 7.'15 by Readhead et al.25
) and 1° by Meinhold and Lubin.27) We 

found from Table I that models with n > 1 are constrained mainly from the result by 

Readhead et al. and models with n ~ 1 and n < 1 are restricted mainly from the 

observations by Meinhold and Lubin and COBE, respectively. If we consider models 

which are consistent with the inflationary scenario such that Qo=l and n=l, BDMs 

with initially adiabatic perturbations and h=0.5, isocurvature BDMs with h=1.0, 

HDMs with h=0.5, CDMs with adiabatic perturbations and h=0.5 and isocurvature 

CDMs are survived and both adiabatic CDMs and adiabatic HDMs with h=1.0 are 

marginally alive. On the other hand, if we believe the dynamical estimates on the 

density parameter, i.e., 0.1 <Qo< 0.3 (see, e.g., Ref. 37)), all BDMs with n=l, Peebles' 

r.eionized universe models with n=l or isocurvature CDMs with n<2 can explain 

such low value of Qo. It should be noted that we neglect the observational error when 

constraints on cosmological models are set. Including the observational error, 

however, constraints obtained here by the quadrupole anisotropy are still 80 % 
confidence level. 

As shown above, there are relatively many allowed models for the constraints by 

the CMB anisotropies. Next we consider whether the allowed models for the con

straints by the CMB anisotropies are consistent with the assumption that b:S5. The 

result is as follows: Adiabatic BDMs, isocurvature BDMs with Qo ~ 1.0 and n= 1 and 

adiabatic BDM with .Qo~O.4 and n=2 might be marginally allowed since b~4. 

However it might be difficult to expect that b~l for BDMs and moreover we cannot 

expect such large baryon densities from the primordial nucleosynthesis.72) Although 

the reionized universe scenario is considered, it is difficult to save isocurvature baryon 

dominated universe since Peebles' models with n=l must be large biasing factor 

b;C 10. Moreover it is difficult for models with scale invariant initial spectrum n= 1 

to produce ionized matter since reheating of the universe may be caused by higher 

power spectrum. The biasing parameter of adiabatic CDMs and HDMs with n=l 

and both h=1.0 and h=0.5 is nearly equal to less than 1 and these models with Qo~l 

are desirable. Moreover adiabatic HDMs with 0.45<Qo<0.60, h=1.0 and n=l is 

alive. As for isocurvature CDMs, there is still surviving model with Qo>0.37, h=1.0 

and n=1. The allowed models for all the constraints are shown in Table 1. 

Basically, the normalization scheme based on other observed quantities, e.g., Is at 

other scales, correlation function itself and peculiar velocities yields the similar 

amplitudes of the fluctuations within the factor 2 or so over a wide range of parame

ters. 19
),20) Then we will get the similar results shown above when estimating the 

constraint on the model from other quantities of matter structures and/or peculiar 

velocities. 

As a result, if the cosmological constant vanishes, only dark matter dominated 

models with n~l and Qo~l are desirable while there is a possibility that the universe 

has low density for isocurvature CDMs and adiabatic HDMs. 

4.4. Constraint on the models with the cosmological constant 

Following the same strategy in § 4.3, we search the cosmological models with the 
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h=1.0 
quad BDMad , 

, __ ... "'...... t 

··,:-o-.,=,~_.~!E~M_ad • 
BD,Mis +HDMa.!l __ 
_ - -- ,CDMis 

1~5 ~~~.~.~·~-·~r·~-~·-~·-~T~··-~··_·~-·L··~-~·-~·-· 

0.0 0.2 0.4 0.6 0.8· 1.0 
Q 

(b) 

h=1.0 
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·:~·~:~::-···TiiDM d 
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10-6 ~~~~~~~~~~~ 
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Q 

(c) 
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HDM..!!<!~::..~:~{:;;:=:;.;::;~:: 

CDMad 
10-1 '--'-~..1.-L~~ ......... ~ ......... ~~~ 

0.0 0.2 0.4 0.6 0.8 1.0 
Q 

(d) 

Fig. 16.(a) The same as Fig. 15(a), but for the models with the cosmological constant. 

(b) The same as Fig. 15(b), but for the models with the cosmological constant. 

(c) The same as Fig. 15(c), but for the models with the cosmological constant. 

(d) The same as Fig. 15(d), but for the models with the cosmological constant. 

cosmological constant which are consistent with the observations. Here we consider 

only the models with totally fiat geometry, i.e., .Qo + A = 1.0. 

We show the predicted temperature fluctuations at 7.'15, 10 and quadrupole

moments and biasing parameters in various models with the cosmological constant 

and n=l in Figs. 16(a)~(d), respectively. 

The results are summarized in Table II. At first, we show the constraints only 

by the CMB anisotropies. We found in this case that there are more allowed models 

than in the case without the cosmological constant for the restriction especially on the 

small angle scale. This reason is explained in § 3.5. As for BDMs, almost all models 

are excluded except for isocurvature BDMs with Qo=h=1.0 and n=1.0. But BDMs 

with J20=.Qb~1.0is prohibited from the primordial nucleosynthesis. There are still 

allowed cases for Peebles' models with low .Qo. As for CDMs and HDMs, there are 

wider allowed ranges of the cosmic parameters than those for the models without the 

cosmological constant. As for Peebles' models with h=0.5, n=3 and HDMs with h 

= 1.0 and n = 1.0, we might say that there are marginally allowed regions, i.e., .Qo::; 0.1 

and 0.5< J20< 1.0, respectively, since oT/T ~ 3.5 X 10-5 on lOin these models though we 

remarked "No Region" in Table II. 

Furthermore we examine the biasing factor b in the allowed models for the 

constraints by the CMB anisotropies. We assume that models with b::; 5 are still 
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Perturbations of the Cosmic Microwave Background Radiation 837 

Table II. Constraints on Cosmological Models with Cosmological Constant 

model 7.15 min. 1 deg. Quadrupole bias All 

BDM h=l.O n=O No Constraint No Constraint No Region No Region No Region 

adiabatic n=1 No Constraint Q<0.10 Q-l.O 0.15<Q No Region 

n=2 No Region No Region 0.90<Q No Region. 

h=0.5 n=O No Constraint No Constraint No Region No Region No Region 

n=l No Constraint Q<0.63 Q-l.O 0.51<Q No Region 

n=2 No Region No Region 0.91 <Q No Region 

BDM h=l.O n=O No Constraint No Constraint No Region No Region No Region 

isocurvature n=l N o Constraint No Constraint Q-LO 0.37<Q Q-l.O 

n=2 Q<0.31 No Region No Constraint No Region 

h=0.5 n=O No Constraint No Constraint No Region No Region No Region 

n=l No Constraint No Constraint No Region No Region No Region 

n=2 Q<0.90 No Region No Constraint No Region 

Peebles h=l.O n=1 No Constraint No Constraint Q-l.O No Region No Region 

n=2 No Constraint Q<0.12 No Constraint 0.18<Q No Region 

n=3 No Constraint No Region Q<0.80 No Region 

h=0.5 n=l No Constraint No Constraint Q<0.88 No Region No Region 

n=2 No Constraint Q<0.47 0.42<Q 0.48<Q No Region 

n=3 No Constraint No Region Q<O.95 No Region 

CDM h=l.O n=O No Constraint No Constraint No Region No Region 

adiabatic n=l No Constraint Q-l.O 0.44<Q Q-l.O 

n=2 No Region No Region 0.32<Q No Region 

h=O.5 n=O No Constraint No Constraint No Region No Region No Region 

n=l No Constraint 0.70<Q 0.26<Q 0.70<Q 

n=2 No Region No Region 0.20<Q No Region 

CDM h=l.O n=O No Constraint No Constraint Q<0.33 No Region No Region 

isocurvature n=1 No Constraint No Constraint No Constraint 0.30<Q 0.30<Q 

n=2 No Constraint No Region 0.27<Q No Region 

h=0.5 n=O No Constraint No Constraint Q<O.33 No Region No Region 

n=l No Constraint No Constraint No Constraint No Region No Region 

n=2 No Constraint O.45<Q O.29<Q O.29<Q<O.45 

HDM h=l.O n=O No Constraint No Constraint Q<O.43 O.38<Q O.38<Q<O.43 

adiabatic n=l No Constraint No Region No Constraint No Region 

n=2 No Region No Region O.95<Q No Region 

h=O.5 n=O No Constraint No Constraint Q<O.39 No Region No Region 

n=l No Constraint O.60<Q No Constraint O.60<Q· 

n=2 No Region No Region No Region No Region 

Note: The same as Table II but the constraints on models with.A+Q=l are shown. 

alive. As a result, we conclude that all BDMs with low density are excluded even if 

they have the cosmological constant. Peebles' models with Q;SO.l, h=0.5 and n=3 

might be marginally allowed even when we consider the constraint by the biasing 

parameter, while we remarked "No Region" in Table II. As for adiabatic CDMs, the 

allowed regions of the cosmic parameters are .Qo~ 1.0, h=1.0 and n=l and .Qo >0.7, h 

=0.5 and n=l. As for isocurvature CDMs, they are .Qo>0.3, h=1.0 and n=l and 0.29 

<.Qo<0.45, h=0.5 and n=2 .. Adiabatic HDMs with .Qo>0.6, h=0.5, n=l and HDMs 

with 0.38<.Qo<0.43, h=1.0, n=O are still alive. Moreover adiabatic HDMs with 0.5 

<.Qo<1.0, h=1.0 and n=l are marginally allowed while we remarked "No region" in 

Table II. 

Here it must be noticed that the theoretical estimation of the angular correlation 

function C(e) goes to infinity if we consider the density fluctuations with k->O and n 
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838 N. Sugiyama and N. Gouda 

::::1 in the flat universe as seen Eq. (2'55). Although the density fluctuations on 

super-horizon scales might be created at the epoch of the inflationary universe, we 

think that they might be neglected since we can now contact the fluctuations causally 

only within the present horizon scale. Then we cut off the integration in Eq. (2'55) 

at the wavenumber corresponding to the present horizon scale. However the conver

gence of the integration is not well, so we have to mind the range of the wavenumber 

for the integration. We treated carefully this integration for all models both without 

and with the cosmological constant in this analysis and then the quantitative estima

tion of the models without the cosmological constant are slightly changed compared 

with the estimation in the previous our work6o
) while the final results are not so much 

changed. 

4;5. Topology of cosmic background fluctuations 

We have constrained the galaxy models in which density fluctuations are assumed 

implicitly to grow from the initially Gaussian fluctuation due to the gravitational 

instability. The temperature fluctuations which have been estimated in the models 

give the dispersion of the fluctuations and the observational results which have given 

by using the x2 test also give the dispersion. Provided that the present temperature 

fluctuations obey the Gaussian statistics, the comparison of the values of temperature 

fluctuations in theory with the observed ones are meaningful. However there might 

be a possibility that the initial fluctuations are non-Gaussian fluctuations and/or the 

density fluctuations grow due to the non-linear effect (e.g., cosmic strings or domain 

walls) beside the instability of the self-gravity. In these cases, the present tempera

ture fluctuations might obey the non-Gaussian statistics. Then the comparison of the 

dispersions of the temperature fluctuations given in theory with ones of the observa

tions might not be meaningful. In this case, however, a good method is proposed of 

comparing the theories and the observations. This is the topological measure; the 

total curvature (genus) of the isotemperature contours are often used to study for the 

maps of the cosmic microwave fluctuations. 73
) By using the relation of the genus to 

the threshold of the isotemperature contour, statistical properties such as Gaussian 

behavior and the power spectrum of the temperature field are analyzed analytically. 

Then we can easily determine whether the temperature fluctuations are Gaussian or 

not. This method is also applied to the study for the topology of the large-scale 

structures (see references in Ref. 73». In the near future, COBE will show the 

temperature gradient map with more precision. Then the topological measure, such 

as genus will be useful to study the simulated microwave background anisotropy 

maps in a model and then to compare them with those of the observations. 

§ 5. Other effects on CMB anisotropies 

We constrained the galaxy formation models from both small-angle scales and 

quadrupole moment of CMB anisotropies. However some phenomena which we do 

not consider in the above estimation of the present temperature fluctuations would 

influence the small-angle scale anisotropies of the CMB. Among these effects, we 

comment about the effect of gravitational lens, the non-linear effect of the growth of 
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Perturbations of the Cosmic Microwave Background Radiation 839 

matter density fluctuations and the effect on the CMB by the hot plasma of the 

intergalactic medium. It should be noted that the large-angle anisotropies of CMB 

would not be influenced by such local effects. 

5.1. Effect of the gravitational lens 

It had been pointed out that CMB anisotropies on small angular scales might be 

strongly suppressed due to the gravitational lens effect during the propagation of the 

radiation from the last scattering surface to the present time. Hence the constraint 

on the galaxy models is supposed to be weakened by this gravitational lens effece4
) 

However SasakF5
) has pointed out clearly that the anisotropies on scales smaller than 

a characteristic coherence angle associated with the lens distribution may be enhan

ced, while those on larger scales are suppressed as usually expected if the characteris

tic angular scale associated with the gravitational lens effect is comparable to the 

coherence angle of the cosmic microwave anisotropy. That is, the gravitational 

lensing may enhance anisotropies at B:S Be if Bg;(: BD ~ Be, where Be is the intrinsic 

coherence angle of the CMB anisotropy, Bg is the characteristic deflection angle by 

gravitational lensing, and BD is the characteristic angle determined by the coherence 

length of gravitational potential inhomogeneities (see the detailed definitions of the 

angle scales in Ref. 75». 

However we have to take into account the finite beam width, (J, of a telescope 

when we relate the gravitational lens effect to an observation and the effect of 

enhancement or suppression depends on the angular sizes of (J, Be, Bg and BD while the 

result mentioned above remain true if (J is appreciably smaller than Be. These angle 

sizes depend on the models and the experiments. Then we have to take into account 

the gravitational effect in each model when estimating the small angular anisotropies 

in the model and comparing them with the results of observations, while a few models 

have been analyzed and it is found that the anisotropies of the CMB would be 

decreased by a few decade percent in the models.76
) 

5.2. Effect of the non-linear growth of density fluctuations 

We estimated the density fluctuations in the linear analysis. However matter 

density fluctuations grow into the non-linear stage and then the linear analysis breaks 

out. The non· linearity of the growth of matter density fluctuations may reflect the 

estimation of the temperature fluctuations as follows. 

(1) We estimated fa by using the present matter density perturbations which are 

analyzed in the linear analysis when we constrain the models. Then the estimated J3 
may be changed when we estimated the present matter density fluctuations in taking 

into account the non-linear growth. And so constraint on the models will be changed 

while the results in the linear analysis will not change so appreciably when using the 

J3 on very large-scales. 

(2) The present photon fluctuation is described by Eq. (2·44). Bdif vanishes for flat 

universe models because the gravitational potential perturbation does not change 

with time increasing in the linear analysis. As for open universe models the potential 

perturbations change especially the later stage even in the linear analysis. However 
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840 N. Sugiyama and N. Gouda 

8dif does not contribute dominantly to the total photon fluctuations on small angular 

scales while it contribute dominantly to the quadrupole moment of CMB anisotropies 

as shown in Gouda et al.15
) The non-linear growth of density perturbations, of course, 

reflect the time evolution of the potential perturbations and may change the estima- . 

tion of 8dif even in the flat universe. We must consider this effect in estimating the 

CMB anisotropies on both small-angular scales and large-angle scales while some 

works have been done for the special models77),78) and it is found that the non-linear 

effect of very large scale structures would create temperature fluctuations by the 

amount of a few times 10-6 and more larger ones. 

5.3. Secondary temperature fluctuations induced by hot gas 

Usually, it is assumed that recombination occurs at the time of z~ 1000 and that 

the intergalactic medium remains neutral thereafter. In that case, perturbations of 

photon are freely streaming from the last sccattering surface to us and do not change 

their rms amplitude, as shown in § 2. Under some special situations such that the 

intergalactic medium is reionized, however, it happens that new fluctuations are 

produced. Here, we briefly review these secondary temperature fluctuations. 

(a) Sunyaev-Zeldovich effec(9
) 

In the hot ionized medium, distortion of the black body spectrum of the CMB 

occurred as a result of inverse Compton scattering from thermal electrons. This is 

known as Sunyaev-Zeldovich effect. The Kampaneetz equation which describes the 

evolution of the photon distribution function due to repeated, nonrelativistic inverse 

Compton scattering is 

(5·1) 

where n is the occupation number of photon tC=(ne(JTc)t, Te and me are electron 

temperature and elecron mass and x=hv/kT with ne, (JT, v and T being the electron 

number density, the Thomson cross-section, the radiation frequency and radiation 

temperature, respectively. Here, the speed of light is shown in equations because of 

the clearness of the physical meaning for quantities. Following Kampaneetz, the 

dimensionless variable, Compton y parameter is introduced as 

l ' kTe 
Y =- --dr 

o mec2 
, 

where r=J (JTnedl is the optical depth due to Thomson scattering. The physical 

meaning of y parameter is the fractional energy change of photon energy by the 

Compton scattering. In the case Te~ T r , the Kampaneetz equation is rewritten as 

an 1 a 4 an -=--x-
ay x 2 ax ax' 

(5·3) 

This equatibn can be easily solved for small values of y when the deviations from a 

Planck spectrum are small. By inserting in the right-hand side the unperturbed 

Planck function no(x)=1/(eX -1), we obtain 
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(5-4) 

where] =(2hv3 /c2)n is the specific intensity or brightness. Then, the temperature 

fluctuation is obtained as 

il T _ il] / dIn] _ ( x 
To -To dIn T - Y tanh(x/2) 

(5-5) 

Taking the limit of small x, i.e., hv/kT~l, the expected temperature fluctuation is 

obtained as ilT/To= -2y or 

T= Toe-
2y

. (5-6) 

In clusters of galaxies, the temperature decrease towards the center has been 

detected indeed.80
)-82) From the observations of Sunyaev-Zeldovich effect, we can 

directly obtain the information of intergalactic medium. And combining the observa

tions of Sunyaev-Zeldovich effect with the observations by the X-ray we can know the 

distance to the clusters of galaxies.83
) In the near feature, the value of the Hubble 

constant will be determined by this method. 

We have believed that the Sunyaev-Zeldovich effect affects the CMB only on a 

small scale less than one artminute. However Makino and Sut084
) show this effect 

also plays an important role on arcminutes scale. We may have to take into account 

this effect when we examine the cosmological models by the observational results on 

a few arcminutes. 

b) Velocity.induced fluctuations5
1),50) 

If the reheating occurs in the whole universe after the decoupling of baryon

photon, the primary anisotropies of CMB generated before the decoupling are 

modified. The Peebles' model that the universe remains fully ionized until the 

present is the extreme example. In such reionized universe, the Plank function f 
obeys not a tollisionless (Eq. (2 -40)) but a collisional Boltzmann equation. The 

gauge invariant form of the radiative transfer is22
) 

where {'} denotes the derivative according to coriformal time, ilsr is the photon density 

perturbation on the shear free hypersurface and the suffix b denotes baryon. Other 

notations are shown in § 2. The relation between ilcr and ilcs is ilcr=ilsr+4(a' fa) V/k. 

Even after last scattering at the time when the optical depth from the present epoch 

equals unity, the collisional term on the right-hand side of the above equation pro

duces secondary temperature fluctuations. Roughly speaking, fluctuations are in

duced by the electron bulk velocity. It is very interesting that the first order 

anisotropies are not so efficient in temperature fluctuations because the different 

phases of any single plane wave will cancel out each other.50
) Hence the second order 

contributions led by fluctuations in electron density ne become efficient on the small 

angle scale. This is known as Vishiniac effect. 

As for Peebles' models, in particular, these secondary velocity induced fluctua-
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tions are comparable with or sometimes exceed the primary ones which we calcu

lated. As results of numerical calculations,85) the second order term of velocity 

induced fluctuations is dominated on a few arcminutes angle scale. On a few tens 

arcminutes angle scale, the primary terms, first order and second order components of 

secondary terms give approximately the same contributions on the observed tempera

ture anisotropies. The temperature anisotropies of the scale larger than a degree, the 

primary term is dominated. 

§ 6. Conclusions and discussion 

The anisotropies of the CMB give very important information about the forma

tions of the large-scale structures of the universe. For a long time, the intrinsic CMB 

anisotropies had not been detected. At last, however, COBE has discovered the 

large-angle anisotropies of the CMB. By using the results of COBE, we can con

strain the cosmological models for formations of the large-scale structures more 

severely and strictly than before. However, in fact, as shown in §§4.3 and 4.4, there 

are still many surviving models by using only COBE's results as shown in Tables I 

and II. But when we consider whether these allowed models are consistent with the 

upper limits of the small-angle anisotropies of the CMB and/or the observed fa, we 

found that the desirable models without the cosmological constant are dark matter 

dominated models with n~l and Qo=l while there is still a possibility that the 

universe has low density for isocurvature CDMs and adiabatic HDMs. It is remark

able that these models are just consistent with inflationary scenario. The angular 

resolution of COBE's data is 7" which is larger than the horizon scale at the recom

bination. Then the fluctuations observed by COBE are completely uncausal at the 

recombination epoch. Since only the inflation can make uncausal regions which is 

once casually connected,86) it may be the proof of the inflationary scenario that such 

fluctuations exist. 

As for the models with the cosmological constant, there are wider allowed regions 

of the cosmic parameters, Qa, hand n. Although BDMs even with the cosmological 

constant are excluded, Peebles' models with Q o:S0.1, h=0.5 and n=3 might be 

marginally allowed. As for dark matter models, the allowed regions of the parame

ters are extended wider than those for the models without the cosmological constant. 

That is, the models with lower Qa are still survived if the cosmological constant exists 

and moreover they are still consistent with the inflationary scenario if they are totally 

flat universe, that is, Qa+I!=l.O. 

Recently Gould87) claimed that the local value of Qrms estimated by COBE group3) 

is not correct because of the large errors. He proposed that it is better in this case 

to estimate the cosmological Qrms and he suggesed that the cosmological Qrms is 8:!:§6 J-lK 

for 90 % confidence level. The cosmological Qrms is the value which can be compared 

directly to the theoretically estimated Qthe07Y in our analysis .. Following this sugges

tion, the models which have 0.0< Qthe07Y= Qtheo7Y/To<8.8 X 10-6 are consistent with the 

observation for 90 % confidence level. In this procedure, as for the restriction from 

the·quadrupole moment the allowed regions are extended for the case n=2. How

ever we found that almost final results shown before are not changed. 
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As stated in § 4.5, provided that the present temperature ft.uctuations do not obey 

the Gaussian statistics, it is not a good method to consider only the dispersions of 

temperature ft.uctuations in theory and observations. COBE will show the temperture 

map of the CMB with more precision, then we will be able to determine whether the 

intrinsic ft.uctuations are Gaussian or non-Gaussian by analyzing the topology of the 

map, for example, the genus of the isotemperature contours. 

Furthermore we can expect the small angle scale anisotropies of the CMB will be 

detected in the near future. But the theoretical estimation of the small-angular scale 

anisotropies might be changed if we consider the local effect which might inft.uence the 

estimation of the CMB anisotropies. We have not examined in detail yet, such as the 

gravitational lens effect and the effect of reionization after the decoupling era though 

these local effects would not reft.ect the large-angular anisotropies of the CMB( > 1°). 

Then we have to investigate these effects in datail for any model. 

Moreover we will get more useful information about the large-scale structures of 

the universe in the near future beside the further results with more precision by 

COBE. Using the results of these observations, we will be able to get the "true" 

cosmological model in the near future. 
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