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We analyze perturbative aspects of gauged matrix models, including those where clas-

sically the gauge symmetry is partially broken. Ghost fields play a crucial role in the

Feynman rules for these vacua. We use this formalism to elucidate the fact that non-

perturbative aspects of N = 1 gauge theories can be computed systematically using per-

turbative techniques of matrix models, even if we do not possess an exact solution for the

matrix model. As examples we show how the Seiberg-Witten solution for N = 2 gauge

theory, the Montonen-Olive modular invariance for N = 1∗, and the superpotential for

the Leigh-Strassler deformation of N = 4 can be systematically computed in perturbation

theory of the matrix model/gauge theory (even though in some of these cases the exact

answer can also be obtained by summing up planar diagrams of matrix models).
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1. Introduction

In this paper we study perturbative aspects of matrix models as applied to non-

perturbative dynamics of N = 1 supersymmetric gauge theories in four dimensions (ad-

mitting a large N description) [1,2,3]. The connection between the matrix model and the

supersymmetric gauge theory proceeds by identifying the superpotential of the gauge the-

ory with the potential of the matrix model. It was shown in [1,2,3], building on previous

work [4,5,6,7], that the planar diagrams of the matrix model effectively compute the exact

glueball superpotential for the associated supersymmetric gauge theory and thus yield,

upon extremization, exact results for the gauge theory. There has been some further work

in this direction [8,9,10,11,12,13,14].

In some cases the planar diagrams of matrix model can be summed up exactly. This

then gives rise to a dual geometry at the planar limit, from which one can read off non-

trivial holomorphic information about the associated supersymmetric gauge theory. In this

respect it is interesting to note that up to now all the cases where the supersymmetric gauge

theory can be solved using strong/weak coupling dualities fall in the class of exactly soluble

matrix models. In all these cases the solution takes the form of a dual geometry. However,

in most cases (i.e. for a generic matter content and interactions) the exact solution of the

corresponding matrix model is not available, even in the planar limit.

But, even if the planar diagrams cannot be exactly summed, we still can resort to

perturbative techniques of the matrix model. This yields, as noted in [3], a systematic

instanton expansion in the gauge theory. Thus, for a large class of supersymmetric gauge

theories for which we had no dual descriptions, we can now nevertheless compute in a

systematic way instanton corrections to interesting holomorphic quantities. Thus, in a

sense, we are going beyond duality, and we may hope that this will ultimately give us a

new perspective about the meaning of duality in gauge theory and string theory.

Perturbative techniques for matrix models are not completely trivial. This is because

we are dealing with a gauged matrix model, and it is crucial to take this gauging into

account properly. For vacua where the gauge symmetry is not broken, this can be easily

taken into account by dividing by the volume of the gauge group, which simply leads to an

overall factor. However, for vacua where the gauge group is partially broken, not only do we

have to divide by the volume of the unbroken gauge group, we also have to deal with naive

flat directions of the matrix fields, which are pure gauge degrees of freedom. To address

this, we can implement the standard method of Faddeev-Popov ghosts, now applied to the
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broken part of the gauge group. The main aim of this paper is to develop this further

and apply it to a number of interesting examples. This will include examples where we

know the exact solutions as well as some where we do not know how to sum up the planar

diagrams. Since our emphasis in this paper is the applicability of perturbative techniques

we illustrate the power of the perturbation theory, even for some of the examples where we

do know how to sum up planar diagrams. We will consider in particular N = 1∗ and Leigh-

Strassler deformation of the N = 4 super-Yang-Mills, as well as N = 2 Seiberg-Witten

geometry.

As a byproduct of the results of this paper, which might be interesting to the matrix

model specialists, we demonstrate how the matrix models with several eigenvalue supports

in the large N limit can be studied by means of the planar diagram technique and estab-

lished well-defined Feynman rules for it. (This subject is also discussed in [15].) Another

novelty which is not well explored in the matrix model literature is the possibility of filling

not only the minima but also the maxima of the matrix potential (the “unstable” cuts), by

virtue of the analytical continuation in the filling parameters. We demonstrate this with

the example of the one matrix model with the cubic potential where we fill by eigenvalues

both the minimum and the maximum. One can show that this model is equivalent to a

particular case of the models of random paths studied in [16], where the solution can be

written in terms of elliptic functions.

The organization of this paper is as follows: In section 2 we show how gauge fixing in

the one matrix model with the cubic potential is done, when the classical vacuum partially

breaks the gauge symmetry. We establish the planar diagrammatic rules for this model.

We show the importance of ghosts for matrix models in this context and relate it to the

ghosts of the supersymmetric gauge theory. We also demonstrate that the Feynman rules

for the multi-cut solutions have a nice geometric interpretation in terms of domain walls

on the closed string world-sheet. In section 3 we study various examples. In appendix A

we recall how the exact solution can be obtained in the case of the cubic superpotential

as well as some connections with c = 1 strings on the self-dual radius. In appendix B we

show how to setup the perturbation theory for massive vacua of N = 1∗ where the rank

of the gauge group is reduced.

2. Gauge Fixing in Field Theory and Matrix Models

2.1. The Problem
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Fig. 1: The two planar two-loop diagrams, with combinatorial weight 1

6
and 1

2
,

that contribute to the order S3 term in the free energy.

To explain the setup and review the proposal of [1,2,3], let us start with a simple

integral over a single M ×M matrix Φ

Z =
1

volU(M)

∫

dΦ exp

(

1

gs
tr W (Φ)

)

, (2.1)

where W (x) is a cubic polynomial with two critical points at x = a1 and x = a2

W ′(x) = (x− a1)(x− a2). (2.2)

It was explained in [1] how to compute the genus zero free energy in this model if we put

all the eigenvalues of the matrix Φ at one critical point, say at a1. Shifting the matrix as

Φ → a11+Φ we obtain (up to a constant)

W = tr

(

1

2
∆Φ2 +

1

3
Φ3

)

(2.3)

with

∆ = a1 − a2.

From this action we easily read off the Feynman rules: a propagator 1/∆ for the Φ variable

and a three-point vertex with weight 1. This gives for example the following two-loop

contribution to the perturbative part of the genus zero free energy, with contributions 1
6

and 1
2 from the two planar diagrams of fig. 1

Fpert
0 =

2

3

1

∆3
S3 + . . . (2.4)

Here S = gsM plays the role of the ’t Hooft parameter.

According to [1], the planar limit of this matrix model can be used to obtain exact

holomorphic quantities in the corresponding N = 1 gauge theory, which in this case is
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simply a U(N) supersymmetric gauge theory with a single adjoint superfield and a tree-

level superpotential trW (Φ) given by (2.2). For example, the effective superpotential is

essentially given by the derivative of the F0(S),

Weff(S) = NS log(S/Λ3)− 2πiτ0S +N
∂Fpert

0 (S)

∂S
(2.5)

where the first term can be seen as coming from the contribution of the measure factor to

the free energy F0 [17]. Here the variable S is identified with the chiral glueball field,

S =
1

32π2
trWαWα.

From the effective superpotential Weff one can read off non-perturbative information about

the infra-red dynamics and vacuum structure of N = 1 theory. Thus, critical points of

Weff generically correspond to massive vacua in the low-energy theory. On the other hand,

the difference ∆Weff between the value of the superpotential at two different critical points

determines the tension of the BPS domain wall separating the two vacua.

In order to find the value of Weff at each vacuum, one should extremize it with respect

to S and then reexpress the result in terms of the (bare) gauge coupling τ0. As a result,

one typically finds an instanton expansion, in which the n-instanton terms are fixed by

the perturbative contributions to F0 up to the n-loop order. For example, already the

two-loop result (2.4) can be used to determine Weff exactly up to two-instanton order.

It is important to stress here that the rank M of the gauge group in the matrix model

is completely unrelated to the rank N of the gauge group in the corresponding N = 1

theory. In order to appreciate this point, note that M enters the effective superpotential

(2.5) in a very complicated manner (via the S dependence), whereas the N dependence

is very simple (linear). In particular, the value of N does not have to be large; the result

(2.5) can be applied just as well to a U(2) gauge theory. Henceforth, we will be very careful

to distinguish between M and N .

Now let us proceed to a more general classical vacuum with M1 eigenvalues at a1 and

M2 eigenvalues at a2

Φ =

(

a1 0
0 a2

)

.

So in the matrix model we break the gauge symmetry as

U(M) → U(M1)× U(M2).
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Within the string theory realization this corresponds to a background with two clusters

of D-branes of charge M1 and M2 respectively. Taking both M1 and M2 to be large, we

obtain a so-called two-cut solution of the matrix model. To find the perturbative expansion

of this solution it is too naive to simply expand the matrix Φ around this point. Indeed,

if we shift

Φ →
(

a1 0
0 a2

)

+ Φ, (2.6)

and decompose the matrix Φ in blocks

Φ =

(

Φ11 Φ12

Φ21 Φ22

)

(2.7)

(where Φij corresponds to an ij string, going from the ith D-brane to the jth D-brane)

then the quadratic piece in the action takes the form

1

2
∆ tr

(

Φ2
11 +Φ21Φ12 − Φ12Φ21 − Φ2

22

)

=
1

2
∆ tr

(

Φ2
11 − Φ2

22

)

.

So, the kinetic terms for the “off-block diagonal” components Φ12 and Φ21 will vanish.

This makes it problematic to keep track of the 12 and 21 degrees of freedom.

This vanishing of the kinetic term for the off-diagonal components is not surprising

since they are zero-modes. The original U(M) gauge symmetry still acts on the matrix

configurations and the broken gauge transformations will transform a vacuum with two

clusters of eigenvalues into a gauge equivalent state. More precisely, we now have a non-

trivial vacuum manifold parametrized by the coset

U(M)/U(M1)× U(M2).

Since the action is U(M) invariant, the matrix integral will not depend on the choice of

point on this vacuum manifold. The corresponding 2M1M2 zero-modes are exactly the

components Φ12 and Φ21.

The correct way to treat the semi-classical expansion, keeping track of the M1 and M2

dependence, is by the method of Faddeev-Popov ghosts. We will see in a moment how this

emerges both from the four-dimensional gauge theory and from the matrix model. But let

us here remark that the role played by the ghosts is also suggested by going back to the

topological string derivation of the matrix model as described in [1].

There one starts from a reduction to two dimensions of six-dimensional holomorphic

Chern-Simons theory [18]. The six-dimensional open string field theory contains fields
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of various ghost numbers that correspond geometrically to differential forms of different

degree on the Calabi-Yau manifold. If we reduce the theory down to two dimensions, we

find at the physical ghost level (among other fields) a gauged chiral scalar field Φ(z), whose

zero-mode is the variable Φ in the matrix integral.

But there is also a contribution of the ghosts in this two-dimensional world-volume

theory. One finds in particular a scalar ghost C(z) and a conjugate ghost B(z), that is a

(1, 1) form on the world-volume. Both are adjoint valued, with action

1

gs

∫

d2z tr
(

BDAC +B[Φ, C]
)

.

Since both scalars Φ and C reduce to their constant zero-modes, only the overall volume

factor in the two-form B contributes in the path-integral. So we get an additional ghost

contribution to the matrix integral of the form

Wghost = tr
(

B[Φ, C]
)

, (2.8)

where B,C are now anticommuting M ×M matrices. Let us now explain in more detail

the origin of this term more directly in the four-dimensional N = 1 gauge theory and in

the corresponding matrix model.

2.2. Gauge Fixing in N = 1 Supersymmetric Gauge Theory

Consider N = 1 gauge theory with a U(N) vector multiplet and one chiral matter

multiplet in the adjoint representation of the gauge group. In N = 1 superspace the field

content of such theory is represented by a vector superfield V and an adjoint chiral scalar

superfield Φ. Let Sinv(V,Φ,Φ) be the action of the superfields V and Φ, invariant under

U(N) gauge transformations

eV → eiΛeV e−iΛ, (2.9)

where Λ is a chiral gauge parameter.

Our goal will be to study (partial) gauge fixing in the functional integral

Z =

∫

DVDΦDΦ eSinv(V,Φ,Φ) (2.10)

by imposing a gauge fixing constraint on the adjoint scalar Φ. Implementing the standard

Faddeev-Popov procedure, one finds: (a) that (partial) fixing of the U(N) gauge symmetry
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leads to new anti-commuting chiral ghost superfields B and C; and (b) that the ghost action

can be written as an F-term of the form (2.8).

The first statement does not depend on the particular way of gauge fixing. It is

simply related to the fact that the gauge parameter Λ is a chiral scalar and, therefore, the

gauge-fixing function F = F (V,Φ,Φ) should also be a chiral superfield. namely, the gauge

constraint should be of the form [19]:

F = f, F = f (2.11)

where f = f(x, θ) is some chiral function. As we review below, this implies that the ghost

superfields are also chiral.

On the other hand, the second statement above relies on the assumption that the

gauge-fixing function F does not depend on the vector superfield V . Since, as we just

explained, F has to be chiral we conclude that F = F (Φ). In particular, a convenient choice

of gauge is given by a linear function F (Φ). Then, it follows from the gauge transformation

of Φ, that under U(N) gauge symmetry F transforms as:

δF = [Φ,Λ]

Now, in order to apply the usual Faddeev-Popov method to the gauge condition (2.11),

we introduce the functional determinant:

∆F =

∫

DΛDΛ δ(F − f) δ(F − f)

Inserting 1 into the path integral (2.10) in the form ∆F∆
−1
F , we obtain

Z =

∫

DVDΦDΦ ∆−1
F δ(F − f) δ(F − f) eSinv(V,Φ,Φ)

Introducing the chiral ghost fields B, C and expressing the Faddeev-Popov determinant

∆−1
F in terms of the ghost action:

∆−1
F =

∫

DBDBDCDC exp
[

tr

∫

d4xd2θB

(

δF

δΛ
C +

δF

δΛ
C

)

+ tr

∫

d4xd2θ B

(

δF

δΛ
C +

δF

δΛ
C

)

]

=

∫

DBDBDCDC exp
[

tr

∫

d4xd2θB[Φ, C] + c.c.
]

=

=

∫

DBDBDCDC eSghost

7



leads to the path integral

Z =

∫

DVDΦDΦDBDBDCDC eSinv+SGF+Sghost (2.12)

where SGF is the gauge-fixing action and Sghost is given by

Sghost =

∫

d4xd2θ tr
(

B[Φ, C]
)

+ c.c.

This is the tree-level contribution to the superpotential that we were after. Specifically,

it shows that for a (partial) gauge fixing via imposing constraints on the adjoint chiral

superfield Φ, the ghost action can indeed be written as the F-term. Moreover, the form

of this term is exactly the same as the form of the ghost term (2.8) in the matrix model

action, which is in line with the general statement that potential in matrix model should

be identified with classical superpotential in N = 1 gauge theory [1].

2.3. Gauge Fixing in Matrix Models

The ghost term (2.8) can also be derived directly in the matrix model by gauge fixing

the U(M) gauge symmetry that acts by conjugation on Φ

Φ → U · Φ · U−1.

A convenient gauge choice is putting Φ to diagonal form. This gives the condition

Φij = 0, i 6= i.

Implementing this gauge fixing through the BRST formalism introduces exactly the above

ghost fields; see [20,21] for more discussion of ghost fields and gauge fixing in matrix

models.

Decomposing the ghosts also in the block form (2.7), we see that after the shift (2.6)

the kinetic term of the ghosts is given by

∆ tr
(

B21C12

)

−∆ tr
(

B12C21

)

.

So, in the case of the ghosts it is the 11 and 22 blocks that are not propagating and the

12 and 21 block that are “physical.”

We conclude that in the reduction to the matrix integral the 11 and 22 strings represent

physical matter fields and that the 12 and 21 strings represent ghost degrees of freedom.
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This makes sense physically, since, as we already explained, in this two-cut classical vacuum

with reduced gauge symmetry U(M1)×U(M2) the matrix elements in the 11 and 22 blocks

cannot be obtained by gauge transformations and thus they are classically not pure gauge,

whereas the 12 and 21 blocks are pure gauge. In perturbation theory we therefore are left

with only the ghosts in the 12 and 21 blocks.

Before we turn to the Feynman rules that all this implies, let us point out that this

interpretation is consistent with the multi-cut solution of the large M limit of the matrix

integral. Here we first reduce the matrix integral to eigenvalues

Z =

∫

∏

I

dλI

∏

I<J

(

λI − λJ

)2
exp

1

gs

∑

I

W (λI). (2.13)

In the case of a two-cut solution we can split the eigenvalues λI in two subsets. The first

subset ofM1 eigenvalues λ
(1)
I are located around the first critical point a1, the second subset

of M2 eigenvalues λ
(2)
J are located around the second critical point a2. In a semi-classical

expansion these two critical points and the corresponding eigenvalues can be thought to

be well-separated. We can regard the two sets {λ(1)
I } and {λ(2)

J } as eigenvalues of two

matrices, a M1 ×M1 matrix Φ11 and a M2 ×M2 matrix Φ22 with matching potentials W .

In the saddle-point approximation after the shift (2.6) this gives the action

Wtree = tr
(1

2
∆Φ2

11 +
1

3
Φ3

11

)

+ tr
(

−1

2
∆Φ2

22 +
1

3
Φ3

22

)

. (2.14)

From the eigenvalue representation of the matrix integral it is clear that the only way

these matrices Φ11 and Φ22 interact is through the Jacobian factor

∏

I,J

(

λ
(1)
I − λ

(2)
J

)2
.

(This is clearly true for arbitrary W .) This term can be exponentiated directly in the

action (see also [15]) giving the effective action

2 tr log (Φ11 ⊗ 1− 1⊗ Φ22) .

To bring out clearly the M1 and M2 dependence, this part of the Vandermonde deter-

minant can also be exponentiated by using the two pairs of ghosts (B21, C12) and (B12, C21).

(We have two pairs because of the square of the Vandermonde in (2.13).) In order to re-

produce the right determinant the action of these ghosts should be

Wghost =tr
(

B21Φ11C12 + C21Φ11B12

)

+ tr
(

B12Φ22C21 + C12Φ22B21

)

.
(2.15)
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1

1

2

2

1 1

1

2

1

Fig. 2: The three planar two-loop diagrams, with combinatorial weight 1

2
, 1 and

1

2
respectively, that contribute to the order S2

1S2 term in the free energy. The grey

propagator indicates a bosonic Φ11 or Φ22 field; the dashed propagator indicates a

B,C ghost of type 12 or 21. The labeling of the hole or index loop is also indicated.

But this is exactly the action (2.8) restricted to the propagating fields: the 11 and 22

blocks of Φ and the 12 and 21 blocks of B,C.

From the two contributions to the action (2.14) and (2.15) we can read off the Feynman

rules. We have propagators (we suppress the obvious matrix indices)

〈Φ11Φ11 〉 =
1

∆
,

〈Φ22Φ22 〉 = − 1

∆
,

〈B12C21 〉 = 〈B21C12 〉 =
1

∆
,

and all three-point vertices have weight 1.

As a check of this perturbative prescription with the known properties of the two-

cut solution we will compute in this case the two-loop contribution to the free energy

F0(S1, S2). From the explicit answer to the large M solution we know this term is given

by [7]:
1

∆3

(

2

3
S3
1 − 5S2

1S2 + 5S1S
2
2 − 2

3
S3
2

)

(2.16)

The coefficients ±2/3 have already been computed. They come from the two diagrams in

fig. 1 in which only Φ11 and Φ22 (and no ghosts) propagate.

The coefficients ±5 are given by the mixed diagrams in which also the ghosts B,C

appear. Now there are three diagrams to consider, which are given in fig. 2. Here the
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following factors contribute to the weight of the diagram: the symmetry factor of the

(colored) graph, the extra minus signs of the ghost loops, the extra minus sign for the

Φ22 propagator compared to the Φ11 propagator, and the fact that their are two flavors of

ghosts (B and C) running through each ghost loop. With these considerations taken into

account, the three diagrams give a total combinatorial weight to the S2
1S2 term of

1

2
· (−1) · 2 + 1 · (−1) · 2 + 1

2
· (−1)2 · (−1) · 4 = −5.

This indeed reproduces the second and third term in (2.16).

2.4. Relation to Â2 and O(2) models on planar graphs

We will now argue that this two-cut model corresponds to the Â2 “quiver” model1 on

planar graphs introduced and studied in [22]. Indeed, let us consider the Feynman rules of

the previous subsection (we choose the dimensionful parameter ∆ = 1): if we revert at the

same time the sign of the propagator 〈Φ22Φ22〉 from +1 to −1 and the sign of the weight

of each ghost loop from +2 to −2, it is the same as to revert the sign of S2. The latter

will lead to only positive coefficients in the formulas of the type (2.16) for the expansion

for F0(S1, S2) given in the next section. It is easy to check this statement inductively: if

we add one 〈Φ22Φ22〉 to any diagram (like diagrams in fig. 2) it adds up one extra loop

weighted with the factor S2, so their sign changes are compensated. The same about a

ghost loop: its addition leads to a new loop with the S2 factor, so their sign changes are

again compensated.

Hence we can write down the equivalent matrix model with the potential:

W = tr

[

1

2
Φ2

1 +
1

3
Φ3

1 +
1

2
Φ2

2 +
1

3
Φ3

2 +
1

2
C†C+C†CΦ1 +CC†Φ2

]

,

where Φ1 and Φ2 are M1 ×M1 and M2 ×M2 matrices, respectively, and C = (C1, C2) is

a vector of two M1 ×M2 rectangular complex matrix bosonic ghosts. We recognize here

actually the Â2 “quiver” matrix model with a specific matrix potential.

In the symmetric case S = S1 = −S2 this model is equivalent (only in the planar limit,

the difference due to the uncontractible ghost loops on graphs of a nontrivial topology) to

the O(2) model describing the statistics of selfavoiding (ghost) loops on planar Φ3 type

graphs, with the factor +2 for each loop (in the more general O(n) model one has the

weight n for each loop [16,23]). This model is known to describe 2D quantum gravity

coupled to the c = 1 matter at the selfdual compactification radius. In Appendix A we

review the full planar solution [7] of this model from the one matrix model setup. In the

symmetric case the result is presented in terms of elliptic parametrization.

1 The corresponding Coxeter diagram consists of a circle with two nodes.
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(a) (b)

Fig. 3: (a) The distribution of eigenvalues at gs = 0; (b) The dual geometry (spec-

tral curve) at finite ’t Hooft coupling.

2.5. Multiple phases and domain walls on the world-sheet

We would like to put the above construction into a bit more general perspective. As

we already mentioned we are dealing with a toy model for a brane configuration where

we have well-separated clusters of M1,M2, . . . D-branes. In our toy matrix model we can

see clearly how such a multi-center geometry looks like from the open and closed string

perspectives. This might be helpful for understanding gauge/gravity dualities for these

kind of configurations in general.

In the matrix model at zero coupling (gs = 0) such a vacuum state is simply given by

the distribution of the eigenvalues in groups over the critical points of W in the complex

eigenvalue plane as sketched in fig. 3(a). The eigenvalue density is represented as a sum

of delta-functions.

With the use of the large N matrix model techniques we know that in the dual closed

string picture this geometry gets modified at non-zero ’t Hooft coupling [1]. The continuous

eigenvalue density spreads out along branch cuts in the eigenvalue plane. In this way a

non-trivial CY geometry emerges that is essentially given by a hyperelliptic curve obtained

as a double cover of the eigenvalue plane as sketched in fig. 3(b):

y2 = W ′(x)2 + deformations (2.17)

Intuitively the following happens: if we insert a large number of eigenvalues Mi at

the ith critical point of W this builds up a throat region in the dual geometry where the

circumference of the neck is given by the ’t Hooft coupling gsMi. This fact that the size

12



Fig. 4: In a two-cut solution the 11 strings and 22 strings (here indicated in grey and

black) will build up world-sheet theories out of fishnet diagrams with interaction

given by the (super)potential expanded around the relevant critical point. The 12

and 21 strings (here indicated by dashed lines) form self-avoiding loops, separating

the two phases on the world-sheet.

of the geometry is proportional to the rank of the matrix, which is a measure of the total

number of degrees of freedom, should be thought of as a version of the Bekenstein-Hawking

geometric entropy, and it would be interesting to develop this interpretation further.

We have seen that in the open string picture the character of the ij strings, stretching

from the ith to the jth D-brane, is very different depending on whether j = i or j 6= i. The

diagonal ii strings have interactions among themselves that are given by the expansion of

the superpotential W around the ith critical point and can therefore be of arbitrary order.

These interactions build up the fishnet double-line Feynman diagrams that in the large N

limit will describe the closed string world-sheet propagating in the local geometry around

the ith D-brane, just as in the case of a single center geometry.

The interactions of the off-diagonal ij strings with j 6= i do not depend on the potential

W (Φ). They are given entirely by the cubic interaction (2.15) that is dictated by gauge

invariance. Note that the action is quadratic in these i 6= j strings — ghost number is

conserved — and therefore the ghost loops will form well-defined demarcation lines on

the closed string world-sheet separating the “phase” where the string is propagating in

the background of the ith D-brane from the phase where the string propagates in the

background of the jth D-brane, as sketched in fig. 4. Because the absence of interactions

among the ij strings these loops are self-avoiding.
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In this way we observe that the multi-cut solutions of the matrix model translated

into a closed string picture naturally describe a system of dynamical domain walls on the

world-sheet. These domain walls connect different conformal field theories as was analyzed

in [24]. In the open string channel the domain wall corresponds to an ij string stretching

from one throat to another. This picture of different phases of the world-sheet of a single

closed topological string is a further application of the ideas in [17].

3. Examples

In this section we illustrate how matrix perturbation theory can be used to obtain

non-perturbative instanton effects in various supersymmetric gauge theories. We start

with some familiar examples, which include N = 2 Seiberg-Witten theory and N = 1∗

theory, where the exact answer is known to all orders. Despite the existence of the exact

solution in these models, we will not need it here. Instead, our goal is to reproduce it by

computing simple planar diagrams in the corresponding matrix model.

Of course, the real power of the perturbative technique is in those models where exact

solution is not available. It is easy to come up with simple examples of such models. A

particular example that we discuss in this section is a massive deformation of the Leigh-

Strassler theory, which in turn is an (exactly marginal) deformation of the N = 4 super-

Yang-Mills [25]. The case that we consider corresponds to a simple 3-matrix model with

cubic interactions, solution to which is not known even in the planar limit. Nevertheless,

one can systematically obtain instanton corrections to the effective superpotential from

matrix perturbation theory. Similar perturbative analysis can be applied essentially to

any N = 1 theory that admits a large N limit.

3.1. Seiberg-Witten Solution from Multi-Cut Matrix Models

The fact that one can obtain the Seiberg-Witten solution from a perturbative analysis

of the gauge theory, which in turn gets reduced to planar computations of a matrix model

has already been noted in [3] as an interpretation of the string inspired derivation of

Seiberg-Witten geometry in [26]. Our aim in this section is to show that even if the

exact solution of matrix model were not available we could have nevertheless obtained a

systematic instanton expansion for quantities of interest. So in this section we are tying

one hand behind our back.
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The basic idea of [26] is to deform N = 2 theory to N = 1 by a polynomial tree-level

superpotential W (x), which freezes the eigenvalues of the adjoint field Φ to a particular

point on the Coulomb branch. For example, in the case of U(2) gauge theory one deforms

by a cubic superpotential of the form (2.2):

W ′
tree(x) = ǫ(x− a)(x+ a).

Here we explicitly introduced the deformation parameter ǫ, such that ǫ = 0 corresponds

to the undeformed N = 2 theory. Choosing the configuration where one eigenvalue of Φ

is at +a and the other is at −a determines a point on the Coulomb branch of the original

N = 2 theory, and breaks the gauge group to an abelian subgroup,

U(2) → U(1)× U(1).

This leads us precisely to the situation discussed in the previous section, where we

studied vacua of N = 1 field theories with (partial) gauge symmetry breaking. Therefore,

one should be able to compute all holomorphic quantities from the genus zero free energy

F0(S1, S2) of the corresponding two-cut matrix model. Evaluating the two-loop Feynman

diagrams in the previous section we found the leading perturbative behaviour of the genus

zero free energy in the two-cut matrix model with a cubic interaction:

Fpert
0 (S1, S2) =

1

∆3

(

2

3
S3
1 − 5S2

1S2 + 5S1S
2
2 − 2

3
S3
2

)

+ . . .

One can go further and systematically compute higher-order corrections. In this way one

finds a series expansion

F0(S1, S2) = −1

2

∑

i=1,2

S2
i log

(

Si

∆3

)

+ (S1 + S2)
2 log

(

Λ

∆

)

+

+
1

∆3

(

2

3
S3
1 − 5S2

1S2 + 5S1S
2
2 − 2

3
S3
2

)

+

+
1

∆6

(

8

3
S4
1 − 91

3
S3
1S2 + 59S2

1S
2
2 − 91

3
S1S

3
2 +

8

3
S4
2

)

+

+
1

∆9

(

56

3
S5
1 − 871

3
S4
1S2 +

2636

3
S3
1S

2
2 − 2636

3
S2
1S

3
2 +

871

3
S1S

4
2 − 56

3
S5
2

)

+ . . .

(3.1)

Here the first term receives a contribution from the measure of the unbroken gauge group

U(M1) × U(M2) [17], where each factor gives a standard term S2
i logSi that reproduces
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the Veneziano-Yankielowicz superpotential. The one-loop diagrams for Φ and the ghosts

B,C account for the ∆ dependence of the first two terms in (3.1)

(

1

2
S2
1 − 2S1S2 +

1

2
S2
2

)

log∆.

Finally, the Λ dependence reflects the ambiguity in the cut-off of the full U(M1+M2) gauge

group and should therefore multiply (S1+S2)
2. The higher order perturbative terms have

the combinatorial meaning we explained in the previous section. For example, the terms

that involve only S1 or S2 enumerate planar cubic diagrams and were computed in [27].

Note that the function F0(S1, S2) is symmetric in S1 and −S2. This reflects the

symmetry of the potential: we can exchange the stable and unstable critical points if we

change the overall sign of the potential by gs → −gs. Since Si = gsMi this gives S1 ↔ −S2.

From the combinatorial point of view this was explained in section 2.4 in terms with the

connection to the O(2) model on a random surface — it is an obvious property of the

Feynman rules.

We should now extremize the effective glueball superpotential

Weff(S) =
∑

i

(

Ni
∂F0(S)

∂Si
− 2πiτ0Si

)

(3.2)

In the present case we have N1 = N2 = 1 and we will also set to zero the bare coupling τ0.

The physical quantity to compute in this model is the matrix of the U(1) × U(1)

couplings in the effective low-energy theory. It is given by the second derivatives of matrix

model free energy

τij =
∂2F0(S)

∂Si∂Sj
. (3.3)

Note that by a scaling argument the matrix τij does not depend on the deformation

parameter ǫ and therefore it should reproduce the coupling constant of the N = 2 Seiberg-

Witten theory at the relevant point of the Coulomb branch. Minimizing the effective

superpotential (3.2), that in this case simplifies to

Weff (S) =
∑

i

∂F0(S)

∂Si
,

gives the condition
∑

i

τij = 0.
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So we see that at the extremum τij takes the form

(

τ11 τ12
τ21 τ22

)

= τ

(

1 −1
−1 1

)

, (3.4)

where τ is the effective gauge coupling for the ‘off-diagonal’ U(1) ⊂ SU(2) ⊂ U(2). Note

that we automatically managed to get rid of the diagonal U(1) factor by setting the bare

coupling constant to zero in eq. (3.2).

The extremization of Weff (S) we can do using the perturbative expansion of F0 (3.1).

However, before we do this, let us recall that, in terms of the exact solutions, this extrem-

ization has a clear geometric interpretation [7,26]. The free energy F0 can be described

in terms of the dual geometry (2.17) that in this case of a cubic superpotential takes the

form of a genus one curve

y2 = (x2 − a2)2 + b1x+ b0. (3.5)

Here the coefficients b1, b0 are determined by the ’t Hooft couplings S1, S2. In particular

one has the simple relation b1 = −4(S1 + S2). Minimizing Weff(S) with respect to S1 and

S2 gives the condition

S1 = −S2. (3.6)

Therefore the algebraic curve (3.5) reduces to nothing but the Seiberg-Witten curve for

SU(2) theory [28]:

y2 = (x2 − u)2 +Λ4,

where one has to make the identification of parameters (with ∆ = 2a)

u =
1

2
〈trΦ2〉 = 1

4
∆2. (3.7)

So at the extremum the free energy F0 can be thought of as a function of only one variable

S = S1 = −S2 that is determined by the parameter ∆ (or u) of the SW curve.

Both in the matrix model and in the SW solution the exact expression for the cou-

pling τ of the off-diagonal U(1) that appears in (3.4) follows directly from this geometric

interpretation as the modulus of an elliptic curve. Given the parametrization of this curve,

we can expand τ in terms of the variable u or ∆ and obtain the exact result

τ(u) = 2 log

(

Λ

∆

)

+ 20

(

Λ

∆

)4

+ 538

(

Λ

∆

)8

+
62048

3

(

Λ

∆

)12

+ . . . (3.8)
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We can now reconstruct this exact solution in perturbation theory by simply evaluat-

ing the second derivative of F0 at the critical point up to a fixed number of loops. Given

the perturbative expansion (3.1) of F0 in terms of a loop expansion of planar diagrams,

we should first compute S = S1 = −S2 at the extremum. This gives a series of the form

S

∆3
=

(

Λ

∆

)4

+ 6

(

Λ

∆

)8

+ 140

(

Λ

∆

)12

+ 4620

(

Λ

∆

)16

+ . . . (3.9)

Plugging this into ∂2F0/∂S
2 gives us a systematic approximation of the effective coupling

τ . It is instructive to see how the instanton expansion of τ computed from the n-loop free

energy of the matrix model for various n gives a sequence of series expansions gradually

converging to the exact result:

τ1−loop = 2 log

(

Λ

∆

)

τ2−loop = 2 log

(

Λ

∆

)

+ 20

(

Λ

∆

)4

+ 120

(

Λ

∆

)8

+ 1080

(

Λ

∆

)12

+ . . .

τ3−loop = 2 log

(

Λ

∆

)

+ 20

(

Λ

∆

)4

+ 538

(

Λ

∆

)8

+ 7816

(

Λ

∆

)12

+ . . .

τ4−loop = 2 log

(

Λ

∆

)

+ 20

(

Λ

∆

)4

+ 538

(

Λ

∆

)8

+
62048

3

(

Λ

∆

)12

+ . . .

...

τexact = 2 log

(

Λ

∆

)

+ 20

(

Λ

∆

)4

+ 538

(

Λ

∆

)8

+
62048

3

(

Λ

∆

)12

+ . . .

(3.10)

As an aside we point out that the condition S1 = −S2, that naturally emerges from

minimizing the effective superpotential, means that from the point of view of the matrix

model we are dealing with a symmetric filling of the two cuts. The exact solution to this

model has interesting properties and is further analyzed in Appendix A. In particular there

it is discussed that this model, as well as its generalisation with asymmetric filling of the

two cuts, has a non-trivial scaling limit in the universality class of the c = 1 string.

Remembering the relation Si = gsMi, we see that because of the minus sign in (3.6)

in the symmetric filling the number of eigenvalues in the unstable cut (the maximum of

the potential) is negative. This is clearly an unphysical solution and should be interpreted

as obtained by analytic continuation. In fact, if we put a positive number of eigenvalues

at an unstable critical point the eigenvalue cut will not lie on the real axis but the cut will
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rotate itself along the imaginary axis. (This can be seen by simply analytically continuing

Φ → iΦ in the Gaussian approximation.) Instead of working with negative numbers it is

perhaps better to think of this solutions in terms of “eigenvalue holes” obtained by filling

the Dyson sea almost to the top of the potential.

Finally, let us point out that using matrix model results we could also obtain other

holomorphic quantities, such as the SW periods a and aD. For example, for the expectation

values 〈trΦk〉 one finds a nice expression:

〈trΦk〉 =
∮

xkh

written in terms of the 1-form h = W ′′(x)dx/y, which can be interpreted as the smeared

density of the eigenvalues of the adjoint field Φ [3,26]. In particular, the case k = 1 gives

rise to the SW period a.

3.2. N = 1∗ Theory

As another illustration of the perturbative technique in the matrix model applied to

non-perturbative gauge theory, we consider a massive deformation of N = 4 gauge theory,

the so-called N = 1∗ theory. In N = 1 superspace this theory is described by U(N) gauge

theory with three adjoint chiral superfields and a tree-level superpotential:

Wtree = tr

(

gΦ1[Φ2,Φ3] +
m

2

3
∑

i=1

Φ2
i

)

(3.11)

For simplicity, we also assume that the eigenvalues of all the Higgs fields are in the same

classical vacuum (perturbation theory around other vacua is discussed in Appendix B).

Computing planar Feynman diagrams up to 3 loops in the corresponding matrix model

we will be able to reproduce the leading terms in the (exact) effective superpotential of

N = 1∗ theory.

From the topology of planar Feynman diagrams in this matrix model it is easy to see

that the free energy, F0(S), has the following structure

F0(S) =
∑

k

ck+1
g2k

m3k
Sk+2 (3.12)

Following the notations of [3], henceforth we set g = 1.
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Fig. 5: Two-loop contribution to the free energy in the 3-matrix model corre-

sponding to the N = 1∗ theory. The numbers next to propagators label the choice

of one of the three matrix fields.

Given the matrix model free energy F0(S), one can compute the effective superpoten-

tial Weff(S) using the relation (2.5). Furthermore, integrating out the field S in Weff (S)

gives the effective superpotential as a function of the coupling constants. For the N = 1∗

theory the answer can be computed explicitly [3] by using the matrix model techniques

developed in [29]. Specifically, one obtains

Weff = −Nm3

24
E2(τ), (3.13)

where τ = τ0/N and E2(τ) is the Eisenstein series. This agrees with the analysis of [30]

based on field theory dualities. Up to an additive constant, we can write the effective

superpotential (3.13) as a power series in the variable q = exp(2πiτ):

Weff = Nm3(q + 3q2 + 4q3 + 7q4 + 6q5 + . . .), (3.14)

Our goal is to reproduce this result by the perturbative technique in the corresponding

3-matrix model
∫

dΦ exp− tr
(

Φ1[Φ2,Φ3] +
m

2

3
∑

i=1

Φ2
i

)

. (3.15)

Namely, computing the planar Feynman diagrams up to three loops we shall find numerical

coefficients ck in the perturbative series (3.12) and, in particular, to check the first few

coefficients in eq. (3.14).

The two-loop contribution to F0 comes from the Feynman diagrams of the type shown

in fig. 5. It is one of the diagrams that appears in a simple 1-matrix model with cubic

potential, see fig. 1. The second type of 2-loop diagrams in fig. 1 does not appear here due

to the index structure of the cubic interaction. Thus, we obtain the two-loop coefficient

c2 = −1.
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Fig. 6: Two types of 3-loop diagrams that contribute to F0 with one of the possible

labeling of the propagators.

At the next order, i.e. at three loops, there are two types of diagrams which are

presented in fig. 6. Taking into account also the index structure of the diagrams one finds

many different terms. Adding all of them together gives c3 = 7/2.

Summarising, up to three loops the perturbative expansion of F0(S) has the form:

F0(S) = − S3

m3
+

7

2

S4

m6
+ . . . (3.16)

Note, that the expansion we find indeed has the general structure expected in (3.12). The

relative minus signs in this expansion are due to the interaction vertices with both positive

and negative weight arising from the commutator in (3.15).

Substituting (3.16) into (2.5) we obtain the leading behavior of the effective superpo-

tential

Weff = NS log(S/m3)− 2πiτ0S − 3N
S2

m3
+ 14N

S3

m6
+ . . . (3.17)

Now, integrating out the gluino field S we obtain the final expression for the effective

superpotential

Weff = −Nm3q − 3Nm3q2 − 4Nm3q3 + . . . (3.18)

The leading coefficients in this expression agree with the first coefficients in the expansion

of the exact answer (3.14), written in terms of the Eisenstein series E2(τ).

Since we can do this calculation order by order, and since n-loop diagrams give rise to

n-instanton terms in Weff , it is instructive to look at the higher order terms and to see how

the result depends on n. For example, if we keep only the leading term in the perturbative

series F0, the superpotential (3.17) looks like:

Weff = NS log(S)− 2πiτ0S − 3NS2 (3.19)
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This leads to the effective superpotential

Weff = Nm3(q + 3q2 + 18q3 + 144q4 + 1350q5 + . . .) (3.20)

where we retained the terms of higher order in q, most of which can not be trusted in this

approximation.

If we compute perturbative free energy F0 to three loops, as we did above, we obtain

the effective superpotential (3.18), where one can trust three leading terms. Moreover, the

values of the higher order terms in (3.18) are slightly “improved” compared to (3.20). One

can continue and do a similar calculation up to four loops and so on. As a result, one finds

a sequence of instanton expansions which gradually approach the exact answer (3.14):

W1−loop = Nm3q

W2−loop = Nm3
(

q + 3q2 + 18q3 + 144q4 + 1350q5 +
69984

5
q6 +

777924

5
q7 + . . .

)

W3−loop = Nm3
(

q + 3q2 + 4q3 − 108q4 − 1548q5 − 43416

5
q6 +

345744

5
q7 + . . .

)

W4−loop = Nm3
(

q + 3q2 + 4q3 + 7q4 + 1212q5 +
108384

5
q6 +

874744

5
q7 + . . .

)

W5−loop = Nm3
(

q + 3q2 + 4q3 + 7q4 + 6q5 − 72516

5
q6 − 1657856

5
q7 + . . .

)

W6−loop = Nm3
(

q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + 190976q7 + . . .
)

...

Wexact = Nm3
(

q + 3q2 + 4q3 + 7q4 + 6q5 + 12q6 + 8q7 + . . .
)

(3.21)

Here, the underlined terms represent the exact terms in the instanton expansion whose

coefficients “stabilize” beyond a certain order. It is curious to note, that although all the

numerical coefficients in the exact superpotential Wexact are integer numbers, it is not the

case for the result obtained from a finite number of loops in matrix perturbation theory.

Moreover, the n-loop approximation to Wexact is not a modular form, and one can see from

the examples listed above that in the truncation to n loops the mistake in the (n + 1)th

coefficient is quite large. This emphasizes the fact that the Montonen-Olive duality is not

put in by hand in this formalism, but rather is derived. In this sense, we are going one

step beyond duality.

Note that we can express the S-duality of the N = 1∗ theory succinctly as the state-

ment that the effective glueball superpotential Weff(S) is given by a Legendre transform

of a modular form, in this given by E2(τ) (with τ = τ0/N).
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Fig. 7: The Feynman rules in the perturbative 3-matrix model corresponding to

the massive deformation of the Leigh-Strassler model.

3.3. Massive Deformation of the Leigh-Strassler Model

So far we considered only examples for which exact solution was already known. This

was helpful for establishing some confidence in the perturbative technique since it did not

rely on the existence of the exact results, which we used only to verify the perturbative

answer. As we explained in the introduction, in most of the models we don’t have this

luxury and, therefore, perturbative analysis remains as the only tool for obtaining non-

perturbative results, such as instanton expansion of the effective superpotential. Here, we

consider one such model.

Specifically, we consider a Leigh-Strassler deformation [25] of the model discussed in

the previous subsection:

Wtree = tr
(

gΦ1[Φ2,Φ3] +
h

3

3
∑

i=1

Φ3
i +

m

2

3
∑

i=1

Φ2
i

)

(3.22)

The corresponding 3-matrix model with action given by Wtree(Φi) can be solved in the

large M limit if either g = 0 or h = 0, but the exact solution is not known when both

deformation parameters, g and h, are non-zero. On the other hand, perturbation theory

is very simple, with the Feynman rules summarized in fig. 7.
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At the 2-loop order, we find the following expression for the genus zero free energy:

F0 =
S3

m3
(2h2 − g2) + . . .

Substituting this into (2.5) gives the effective superpotential

Weff = NS log(S/m3)− 2πiτ0S + 3(g2 − 2h2)N
S2

m3
+ . . .

Finally, extremizing it with respect to S we obtain the value of the effective superpotential

in the vacuum:

Weff = Nm3
(

q + 3(g2 − 2h2)q2 + . . .
)

The same technique applies to any N = 1 theory that admits a large N limit. In

particular, one can systematically compute instanton corrections to the effective super-

potential in large class of N = 1 theories with any number of adjoint fields and generic

tree-level superpotentials.
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Appendix A. Large M Solution of the Two-Cut Matrix Model

The results of perturbative expansions [7] used in this section can be reproduced, in

accordance with the observations of [3], from the direct solution of the matrix model (2.1),

as was shown in [1]. In this appendix we review, for the sake of completeness, both the
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matrix model derivation as well as the analytic form of the glueball superpotential in terms

of elliptic functions. We take the cubic potential to be of the form:

W (Φ) = tr

(

1

4
Φ− 1

3
Φ3

)

= tr

(

±1

2
(Φ± 1

2
)2 − 1

3
(Φ± 1

2
)3 ∓ 1

12

)

(A.1)

The last line is the expansion around each of the two symmetric extrema of the potential.

Note that we set here ∆ = 1.

In terms of the eigenvalues, Using (2.13), we write the usual for the one matrix model

saddle point equation (SPE) in the large M limit, in terms of the eigenvalues,

x2 − 1

4
= 2λ−

∫

duρ(u)
1

x− u
, (A.2)

where λ = gsM is the overall ’t Hooft coupling. The two-cut solution can be found in

terms of the analytical function

G(x) = 2

[
∫ x2

x1

+

∫ x4

x3

]

duρ(u)
1

x− u

=
1

λ

[

x2 − 1

4
−
√

(x− x1)(x− x2)(x− x3)(x− x4)

] (A.3)

having the large x asymptotics G(x → ∞) = 2S1+S2

λx
and the corresponding couplings on

each of the two intervals Sj = gsMj, j = 1, 2, finite in the limit gs → 0, M,Mj → ∞.

The limits xi, i = 1, 2, 3, 4 are defined by the large x asymptotics:

∑

i

xi = 0

∑

i

x2
i = 1

∑

i

x3
i = 12(S1 + S2)

(A.4)

and by the normalization condition for the two intervals. The latter is given in terms of

the elliptic integrals

S1 =
1

2π

∫ x2

x1

dx
√

(x1 − x)(x− x2)(x− x3)(x− x4)

S2 =
1

2π

∫ x4

x3

dx
√

(x− x1)(x− x2)(x− x3)(x− x4)

(A.5)
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Let us now compute the free energy F0(S1, S2) =
1

M2 logZ. From the eigenvalue represen-

tation of the matrix model we obtain the derivative of the free energy, amounting to the

removal of the eigenvalue at the edge of each cut:

∂S1
F0(S1, S2) = g−1

s

(

F0(S1, S2)−F0(S1 − gs, S2)
)

=
1

λ2
W (x1) +

2

Mλ

∑

j 6=1

log(x1 − xj),

and a similar expression for ∂S2
F0(S1, S2). In terms of the eigenvalue density this gives:

λ2∂S1
F0(S1, S2) =

= W (x1) +
1

2πi

[
∮ x2

x1

+

∮ x4

x3

]

√

(x1 − x)(x− x2)(x− x3)(x− x4) log(x1 − x)dx

λ2∂S2
F0(S1, S2) =

= W (x4) +
1

2πi

[
∮ x2

x1

+

∮ x4

x3

]

√

(x1 − x)(x− x2)(x− x3)(x− x4) log(x4 − x)dx

By expanding the contour of integration we pick up the contribution on the logarithmic

cut (apart from singularities at x = ∞ which we have to subtract in the matrix model

framework). This gives:

∂S1
F0(S1, S2) = W (x1) + Π1 + subtractions for Λ0 → ∞

∂S2
F0(S1, S2) = W (x4) + Π2 + subtractions for Λ0 → ∞

(A.6)

where Λ0 → ∞ is a cut-off and

Π1 =
1

π

∫ x1

−Λ0

√

(x− x1)(x− x2)(x− x3)(x− x4)dx

Π2 = − 1

π

∫ Λ0

x4

√

(x− x1)(x− x2)(x− x3)(x− x4)dx

(A.7)

are the dual periods. Formulas of this type appeared in [31], see also [1]. In [7] they follow

from the analysis of the Calabi-Yau geometry with flux. Using (A.5), (A.6) and (A.7) and

(A.4) one finds the small S1, S2 expansion for the free energy itself (3.1) from [7].

Let us note that the branch points are not necessarily placed on the real axis. For

a general complex gs, they will choose their positions according to the steepest decent

in the eigenvalue integral. For a real gs the stable cut will be on the real axis, whereas

the unstable cut will cross the real axis, having the complex conjugated branch points.

The situation when all branch points are on the real axis corresponds to the analytical

continuation in the (originally positive) variables: S1 > 0, S2 < 0.
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A.1. Symmetric Filling of Two Intervals

Let us consider the case of the symmetric filling of two intervals x ∈ (b, a) and x ∈
(−a,−b). It corresponds to the “unphysical” filling parameters 1

2gsM = S = S1 = −S2 >

0, but nevertheless it will reproduce the corresponding particular case of planar graph

expansion considered in the previous section. One can say that the two intervals are filled

by M/2 eigenvalues and M/2 “holes”, respectively. As discussed in section 3.1, this case

describes the SU(2) Seiberg-Witten solution. We will also see yet another way of obtaining

c = 1 noncritical string at a self-dual radius from matrix models, when the endpoints of

the cuts approach each other.

The function G(x), having the large x asymptotics G(x → ∞) = O(1/x2), can be

represented as

λ G(x) = x2 − 1

4
−
√

(x2 − a2)(x2 − b2)

The function G(x), having the large x asymptotics G(x → ∞) = O(1/x2), can be

represented as

λ G(x) = x2 − 1

4
−
√

(x2 − a2)(x2 − b2)

The large x asymptotics fixes one relation between a and b: a2 + b2 = 1
2 , and the normal-

ization of the density
∫ a

b
dx
2πλ

√

(a2 − b2)(x2 − b2) = 1 gives the relation (using [32], 217.272

and 361.01):

λS =
1

2π

∫ a

b

dx
√

(a2 − x2)(x2 − b2)

=
a3

6π
[(2−m)E− 2(1−m)K]

(A.8)

where whereK(m) and E(m) are the elliptic integrals of the I-st and II-nd kind, a = 1√
4−2m

and the elliptic nome is m = 1 − b2/a2. The derivative of the free energy (A.6) can be

calculated by the deformation of the contour to the dual period correspoding to the interval

(−b, b) as the complete elliptic integral

∂SF(S,−S) =
2

λ

∫ b

−b

√

(x2 − a2)(x2 − b2)dx (A.9)

However, the simplest quantity to calculate is actually the second derivative of the free

energy, which is to be identified with the τ -parameter of the SW curve. The latter can be

2 beware of a mistake there: g → a
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seen already in the form of (A.9). Indeed, by writing (x2 − a2)(x2 − b2) = (x2 − 1
4)

2 −Λ4,

where Λ4 = m2

16(2−m)2 , we obtain

∂2
SF0(S,−S) =

∂m∂SF(S,−S)

∂mS
= 4K(1−m)/K(m) ≡ 4τ (A.10)

We found the explicite elliptic parametrization of the free energy: it is parametrized by m

which can be expressed through S by means of (A.8).

Expanding (A.8) and (A.10) in powers of Λ4 = m2

16(2−m)2
, we get

S =
( Λ√

2

)4
+ 6
( Λ√

2

)8
+ 140

( Λ√
2

)12
+ 4620

( Λ√
2

)16
+ . . . (A.11)

τ = − i

π

(

2 log(Λ2/8) +
5

23
Λ4 +

269

210
Λ8 +

1939

3 · 212Λ
12 +

922253

223
Λ16 + . . .

)

. (A.12)

The last is precisely the instanton expansion of the the SW coupling constant, see e.g.

[33]. It is not surprizing since the numerator and denominator of (A.10) coincide (up

to the same factor) with ωD and ω from the formula (2.2) of [33], whose ratio defines τ

of course. Restoring the modulus u and rescaling Λ2 → 2Λ2, one can write this result

in conventions3 of ref. [34], which also agree with our conventions used in section 3.1.

Specifically, one finds (up to an overall numerical factor):

τ = log(Λ2/4u) +
5

4

Λ4

u2
+

269

27
Λ8

u4
+

1939

3 · 27
Λ12

u8
+

922253

216
Λ16

u8
+ . . . (A.13)

This is in agreement with (3.8), as follows directly from the identification (3.7) of the

u-variable with ∆2/4.

It is not surprizing that inverting the series for S plugging it into (A.10) and expanding

in S we obtain

∂2
SF0(S,−S) = 2 logS + 68S + 1500S2 +

142520

3
S3 +O(S4) (A.14)

which coincides in the particular case S = S1 = −S2 with the expansion from [7] quoted

in section 3.1 (we put the dimensionful coupling λ = 1).

Using (A.8) and (A.10) we could also expand F itself in terms of the variable q =

e−πτ = e−πK(1−m)/K(m), which will be the instanton expansion for the corresponding

N = 1 SYM theory with the U(2) → U(1)×U(1) symmetry breaking cubic tree potential,

according to the recipe of [3].

3 See also the footnote on page 3 in [34].

28



A.2. c = 1 critical regime

In the context of the cubic potential matrix model, there are two distinct ways of

getting a c = 1 non-critical string: As noted in [35] c = 1 at self-dual radius is equivalent

to topological B-model on the deformed conifold, which in turn has been shown to be

equivalent to matrix model with quadratic potential [1]. Thus in the theory we are dealing

with, if we zoom to the region near the critical points of the potential we obtain a c = 1

system at self-dual radius. However, there is another way of obtaining c = 1 as well: We

can consider the limit where the two ends of the cuts touch each other, which again leads

to a conifold geometry but now the vanishing cycle is “magnetic” relative to the original

“electric” cycle of the matrix model.

Let us now look at this regime in more detail. This corresponds to b → 0, when

m1 = 1−m → 0 and the two cuts in F (x) merge into one. From (A.8) we obtain in this

limit

λS ≃ 1

6π
− 1

8π
m1 log(1/m1) +O(m′)

which shows that this transition happens at Sc =
1

6πλ . The free energy (A.10) in this limit

is

∂2
SF0(S,−S) ≃ 2

log 16/m1
+O(m1)

has, as a function of δ = λ(Sc − S), the typical behaviour of the c = 1 matter coupled to

the 2D gravity [36]:

F0(S)−F0(Sc) ≃ λ2 δ2

log 1
δ

Appendix B. Massive Vacua of N = 1∗ Theory

In this appendix we discuss matrix perturbation theory for non-trivial massive vacua

of N = 1∗ theory, corresponding to higher spin representations of SU(2). As we shall see,

there are some novelties in perturbation theory, which make these vacua conceptually sim-

ilar to multi-cut matrix models. In fact, the vacua we are going to discuss also correspond

to multi-cut matrix model [10]. In both cases one finds (partial) gauge symmetry breaking

which leads to new fermionic ghost degrees of freedom.

In order to describe this more specifically, let us rewrite the tree-level superpotential

(3.11) in N = 1∗ theory in the following form:

Wtree = tr

(

i[Φ1,Φ2]Φ3 +
3
∑

i=1

Φ2
i

)

(B.1)
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Supersymmetric vacua of the gauge theory correspond to the critical points of this super-

potential. Thus, extremizing (B.1) we find

[Φ1,Φ2] = 2iΦ3 (B.2)

plus two similar equations obtained by permutation of indices 1, 2, 3. One obvious solution

corresponds to Φi = 0. However, there are also some non-trivial solutions, corresponding

to p-dimensional representations of SU(2). In fact, suppose we start with a U(N) gauge

theory, with N = pn. Then, we can take n copies of such p-dimensional representations.

This leads to a partial breaking of gauge symmetry,

U(pn) → U(n) (B.3)

Note that the rank of the gauge group has been reduced in this case due to the fact

that the irreducible representation we have taken for vacuum configurations are not one

dimensional. The exact effective superpotential for all values of p is known [30,37,10], and

can be written in terms of the Eisenstein series E2(τ),

Weff = −Np2

12
E2(τ) (B.4)

very much like the superpotential in the for trivial vacuum, p = 1. The only novelty here

is the relation between τ and the bare coupling constant,

τ = p(pτ0 + k)/N

In the effective field theory, this relation is set by the tree-level term and the one-loop

anomaly term in the superpotential. The functional dependence on τ , on the other hand,

is determined by matrix perturbative expansion F0 (around the corresponding vacuum).

Since for all values of p we have the same functional dependece on τ — given by the

Eisenstein series — we conclude that F0 should be the same for all vacua, i.e. for all

values of p:

F0 = −S3 +
7

2
S4 + . . . (B.5)

In order to reproduce this result directly by perturbative techniques in matrix model,

we have to expand the superpotential (B.1) near a vacuum:

Φ1 → X + Φ1, Φ1 → Y + Φ2, Φ1 → Z + Φ3
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where X , Y , and Z solve (B.2):

[X, Y ] = 2iZ, etc. (B.6)

Substituting this into (B.1) we find:

Wtree = tr

(

i[Φ1,Φ2]Φ3 +

3
∑

i=1

Φ2
i + iX [Φ2,Φ3] + iY [Φ3,Φ1] + iZ[Φ1,Φ2]

)

(B.7)

Let us consider a specific case, corresponding to p = 2. In this case, we have the

following gauge symmetry breaking pattern:

U(2M) → U(M) (B.8)

Hence, it is convenient to write all the matrix variables in terms of M ×M blocks. Specif-

ically, we take (it is easy to check that this is indeed a solution to (B.2)):

X =

(

0 1

1 0

)

, Y = i

(

0 −1

1 0

)

, Z =

(

1 0
0 −1

)

and for each hermitian matrix Φi we introduce the notation

Φ =
1

2

(

A+ + A− D + iF
D − iF A+ − A−

)

(B.9)

where A±, D, and F are M ×M matrices. Using this decomposition for all of the three

matrix fields Φi, we get in total 3× 4 = 12 matrices of size M ×M :

A±
1 , D1, F1, A±

2 , D2, F2, A±
3 , D3, F3 (B.10)

However, the gauge symmetry breaking (B.8) suggests that 3M2 degrees of freedom can

be gauge fixed to zero, so that effectively we should end up only with 9 matrix fields. This

is precisely what one finds.

Rewriting (B.7) in terms of M × M matrices gives the following quadratic (mass)

terms

Wquadr = tr
(1

2

∑

i

(

A+
i

)2
+

1

2
D2

1 +
1

2
F 2
2 +

1

2

(

A−
3

)2
+D1F2 + F2A

−
3 −D1A

−
3 +

+
1

2
(D2 − F1)

2 +
1

2
(A−

2 − F3)
2 +

1

2
(A−

1 +D3)
2
)

(B.11)
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Here, the fields in the first line have non-degenerate mass matrix. However, the fields

in the second line appear only in certain linear combinations. Hence, their orthogonal

combinations,

D2 + F1

A−
2 + F3

A−
1 −D3

(B.12)

represent massless directions and can be potentially dangerous in the matrix integral. In

fact, these are simply the usual Goldstone zero-modes which can be removed by gauge

fixing. We choose the following gauge, suggested by (B.12):

D2 = −F1

A−
2 = −F3

A−
1 = D3

(B.13)

This eliminates three out of twelve M×M matrices. For example, if we choose to eliminate

D2, A
−
2 and A−

1 , we end up with nine bosonic matrices:

A+
1 , D1, F1, A+

2 , F2, A+
3 , A−

3 , D3, F3 (B.14)

Next, we should introduce fermionic ghost fieldss B, C. In order to do this, we note

that under SU(2M) gauge transformation the matrix fields Φi transform as:

δΦ ∼ [Φ, C]

Again, we write C in the 2× 2 block form, similar to (B.9):

C =
1

2

(

CA CD + iCF

CD − iCF −CA

)

(B.15)

Applying the gauge transformation to (B.13) and using the standard Faddeev-Popov

method, one finds the action for the ghost fields Bα, Cα, where we introduced a new
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index notation α = A,D, F . Straighforward, but slightly technical calculation gives:

Wghost = tr
(

8iBACA − 4iBDCD − 4iBFCF+

+
1

2
BA

[

2iCA(D1 − F2) + 2i(D1 − F2)CA ++CD(−A+
2 − iD3) + CF (−A+

1 − iF3)

+ (A+
2 − iD3)CD + (A+

2 − iF3)CF

]

+

+
1

2
BD

[

2CA(iD3 − A+
2 ) + 2(A+

2 + iD3)CA + CD(iF2 − iA−
3 ) + CF (−A+

3 + iF1)+

+ (iF2 − iA−
3 )CD + (iF1 + A+

3 )CF

]

+

+
1

2
BF

[

2CA(iF3 −A+
1 ) + 2(A+

1 + iF3)CA + CD(iF1 + A+
3 ) + CF (−iD1 − iA−

3 )+

+ (iF1 − A+
3 )CD + (−iD1 − iA−

3 )CF

])

(B.16)

Summarising, in the case of p = 2 we find a (9 + 6)-matrix model, that is a matrix

model with 9 bosonic and 6 fermionic (ghost) fields,

Bosonic : A+
1 , D1, F1, A+

2 , F2, A+
3 , A−

3 , D3, F3

Fermionic : BA, BD, BF , CA, CD, CF

(B.17)

and with the following action

Wtree = Wquadr +Wcubic +Wghost (B.18)

where the ghost action is given by (B.16). The quadratic terms of the bosonic action are

given by (B.11):

Wquadr =tr
(1

2

∑

i

(

A+
i

)2
+ 2F 2

1 + 2F 2
3 + 2D2

3+

+
1

2
D2

1 +
1

2
F 2
2 +

1

2

(

A−
3

)2
+D1F2 + F2A

−
3 −D1A

−
3

)

while the cubic interactions read

Wcubic = tr
( i

4

(

[A+
1 , A

+
2 ]A

+
3 + ([F1, F2]− [D1, F1]− [D3, F3])A

+
3 +

+
(

[D3, D1] + [F3, F1]
)

A+
2 + ([D3, F1] + [F2, F3])A

+
1 − [A+

1 , F3]A
−
3 +

+ [D3, A
+
2 ]A

−
3 + i

(

−2F 2
1 −D1F2 − F2D1

)

A−
3 +

+ i
(

−2F 2
3D1 + F1F3D3 + F1D3F3 + 2F2D

2
3 + F1F3D3 + F1D3F3

)

))

(B.19)

Computation of the planar Feynman diagrams in this matrix model is expected to

reproduce the perturbative expansion of the free energy (B.5). We will not pursue it

further in this paper.
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