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Abstract We study the propagation of probe scalar fields
in the background of 4D Einstein–Gauss–Bonnet black holes
with anti-de Sitter (AdS) asymptotics and calculate the quasi-
normal modes. Mainly, we show that the quasinormal spec-
trum consists of two different branches, a branch perturba-
tive in the Gauss–Bonnet coupling constant α and another
branch, nonperturbative in α. The perturbative branch con-
sists of complex quasinormal frequencies that approximate
the quasinormal frequencies of the Schwarzschild AdS black
hole in the limit of a null coupling constant. On the other
hand, the nonperturbative branch consists of purely imagi-
nary frequencies and is characterized by the growth of the
imaginary part when α decreases, diverging in the limit of
null coupling constant; therefore they do not exist for the
Schwarzschild AdS black hole. Also, we find that the imag-
inary part of the quasinormal frequencies is always negative
for both branches; therefore, the propagation of scalar fields
is stable in this background.
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1 Introduction

4D Einstein–Gauss–Bonnet (EGB) gravity has been recently
reformulated as the limit D → 4 of their higher dimensional
version when the coupling constant is rescaling as α → α

D−4
[1]. Thus, the Gauss–Bonnet term shows a nontrivial contri-
bution to the gravitational dynamics. The theory preserves
the number of degrees of freedom and remains free from
the Ostrogradsky instability. Also, the new theory has stim-
ulated a series of recent research works concerning black
holes solutions and the properties of the novel 4D EGB the-
ory; for instance, spherically symmetric black hole solutions
were discovered [1], generalizing the Schwarzschild black
holes and also being free from a singularity. Additionally,
charged black holes in AdS spacetime [2], radiating black
holes solutions [3] and an exact charged black hole sur-
rounded by clouds of string was investigated [4]. The gener-
alization of these static black holes to the rotating case was
also addressed [5]. On the other hand, regular black holes
and the generalization of the BTZ solution in the presence of
higher curvature (Gauss–Bonnet and Lovelock) corrections
of any order were found in Refs. [6,7], respectively. Also, a
4D Einstein–Lovelock theory was formulated and black hole
solutions were studied in [8,9]. Interesting physical prop-
erties of the black holes in this novel 4D Einstein–Gauss–
Bonnet gravity have been investigated such as their thermo-
dynamics [10–14], Hawking radiation and graybody factors
[15,16], quasinormal modes and stability [17–21], geodesics
motion and shadow [22–24], and electromagnetic radiation
from a thin accretion disk from spherically symmetric black
holes [25]. However, recent work has raised criticisms about
the approach applied in Ref. [1], which arises from the idea
of defining a theory from a set of solutions that are obtained
by the limit D → 4 of the D-dimensional EGB theory, and
there is an active debate on its validity; see for instance [26–
29]. However, in Refs. [30–32] there have been proposed
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other approaches to obtain a well defined D → 4 limit of
EGB theory, and an action with a set of field equations was
found, by using dimensional reduction methods [33,34]. The
resulting theory corresponds to a scalar–tensor theory of the
Horndeski type. It was shown that all the solutions found in
the original paper on 4D EGB theory [1] are also solutions
of the new formulation of the theory. In particular, the spher-
ically symmetric Schwarzschild-like solution generated by
this theory coincides with the metric of the D → 4 limit of
the D-dimensional EGB theory.

In the context of the detection of gravitational waves [35],
the quasinormal modes (QNMs) and quasinormal frequen-
cies (QNFs) are important [36–41]. Despite the detected sig-
nal being consistent with Einstein gravity [42], there are pos-
sibilities for alternative theories of gravity due to the large
uncertainties in mass and angular momenta of the ringing
black hole [43]. It has been shown that the spectrum of
QNMs of theories with higher curvature corrections, such
as Einstein–Gauss Bonnet gravity, consists of two different
branches [44–48]. One of them has an Einsteinian limit when
the Gauss–Bonnet coupling constant α tends to zero, while
the other consists of purely imaginary modes of which the
damping rate is increasing when α decreases. These modes
are qualitatively different from their Einsteinian analogues
and they do not exist in the limit α = 0. Thus, this branch is
nonperturbative in α [44].1

The phenomenon of nonperturbative modes seems to be
general and independent on the asymptotic behavior of a
black hole, of the topology of the event horizon, of the spin
of the fields under consideration, and, possibly, even of the
particular form of the higher curvature corrections to the
General Relativity (GR). Thus, nowadays the study of non-
perturbative modes has become a subject of interest, due to
the fact that they may lead to a profile qualitatively different
from the gravitational ringdown. On the other hand, from the
gauge/gravity duality point of view, these modes lead to the
eikonal instability of Gauss–Bonnet black holes at some crit-
ical values of the coupling constant, so that they determine
possible constraints on the holographic applicability of the
black hole backgrounds. Moreover, it is worth to mention
that the new nonperturbative modes were found for several
quite different situations, such as the fourth order in curva-
ture theory [48], asymptotically flat black holes [49–51] and
black branes.

In this work we consider 4D Einstein–Gauss–Bonnet
black holes with anti-de Sitter (AdS) asymptotics and we
study the propagation of scalar fields in such backgrounds, in
order to show the existence of nonperturbative QNMs for this
kind of theories. We obtain the QNFs numerically by using

1 Calling this branch nonperturbative could sound inappropriate
because it is derived by solving the linearized (perturbative) scalar equa-
tion.

the pseudospectral Chebyshev method [52] which is an effec-
tive method to find high overtone modes, and which has been
applied for instance in Refs. [53,54]. In spite of the criticisms
on the original 4D EGB, it is important to emphasize that the
spherically symmetric Schwarzschild-like solution obtained
in the D → 4 limit of the D-dimensional EGB theory is also
a solution of theories formulated with the well defined limit
D → 4 of EGB theory. Furthermore, it is worth to note that
these black holes are also solutions of the semi-classical Ein-
stein equation with Weyl anomaly [55] and for a toy model of
Einstein gravity with a Gauss–Bonnet classically “entropic”
term mimicking a quantum correction [56]. Therefore, it is
worthwhile to perform a study of the physical properties of
these black holes, such as the propagation of matter field
outside the event horizon. The QNFs of scalar, electromag-
netic and gravitational perturbations for this background in
asymptotically flat spacetime were obtained recently in Ref.
[17], and it was shown that when the coupling constant is
positive, the black hole is gravitationally unstable unless the
coupling constant is small enough (0 < α � 0.15). The
instability develops at high multipole number �, and there-
fore is known as an eikonal instability. Also, the negative
coupling constant allows for a stable black-hole solution up
to relatively large absolute values of α (0 > α � −2.0).
The QNFs of the Dirac field were studied in Ref. [20], and
it was shown that the real part of the QNFs is considerably
increased, while the damping rate is usually decreasing when
the coupling constant increased. Here, besides the perturba-
tive modes, we will find nonperturbative modes in α. When
α = 0 the metric corresponds to the Schwarzschild AdS
black hole and the QNMs for this geometry were calculated
in Ref. [57], where the approach to thermal equilibrium was
established, and previously in Ref. [60].

The manuscript is organized as follows: In Sect. 2 we give
a brief review of 4D Einstein–Gauss–Bonnet gravity. In Sect.
3, we study the scalar field stability and calculate numerically
the QNFs of scalar field perturbations by using the spectral
method. Finally, our conclusions are in Sect. 4.

2 Einstein Gauss–Bonnet Black hole in four
dimensional AdS spacetime

The Lagrangian of the D-dimensional Einstein–Maxwell–
Gauss–Bonnet theory with the coupling constant re-scaled
by α → α

D−4 , is given by the relation [2]

L = R − 2� + α

D − 4
G − FμνFμν , (1)

where � = − (D−1)(D−2)

2l2
is the cosmological constant , G =

R2 − 4RμνRμν + Rμνρσ Rμνρσ is the Gauss–Bonnet term
and Fμν is the electromagnetic field tensor. The solutions
for a static and spherically symmetric ansatz in an arbitrary
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Fig. 1 The behavior of the metric function f (r/R) as a function of
r/R for different values of the parameter α/R2 with rH /R = 5, for the
region near the event horizon rH /R

number of dimensions D ≥ 5 have the form

ds2 = − f (r)dt2 + f (r)dr2 + r2d�2
D−2 , (2)

where d�2
D−2 corresponds to a (D − 2)-dimensional hyper-

surface. Then, following the prescription given in [1] and
taking the limit D → 4 it is possible to obtain the exact solu-
tion representing the 4D Einstein–Maxwell Gauss–Bonnet
black hole [2]:

f (r) = 1 + r2

2α

⎛
⎝1 ±

√
1 + 4α

(
2M

r3 − Q2

r4 − 1

l2

)⎞
⎠ , (3)

where M is the mass of black hole and Q is its electric charge.
From now on we will consider the uncharged version Q = 0
of the black hole metric:

f (r) = 1 + r2

2α

(
1 ±

√
1 + 4α

(
2M

r3 − 1

l2

))
. (4)

Of the two branches of the solution we are interested in the
negative branch because physically it is the most interest-
ing one; by taking appropriate limits it is possible to recover
some special cases. For instance, when α → 0, we have the
Schwarzschild AdS (SAdS) black hole, and the AdS space-
time (M = 0) when 0 ≤ α ≤ l2

4 , and for null cosmological
constant we have the seminal result found in [1] with the
coupling parameter α > 0. It is worth to mention that simi-
lar metrics were found previously in the context of quantum
corrections to gravity [55,56,61].

The black hole horizon rH corresponds to the largest root
of f (r) = 0. In Fig. 1 we show the behavior of f (r) of
different values of α/R2.

It is convenient to measure all the quantities in the units
of the same dimension, so we express M as a function of the
event horizon rH :

M = −�r3
H

6
+ rH

2
+ α

2rH
, (5)

where the cosmological constant � = − 3
l2

can be expressed
in terms of the AdS radius R, which is defined by f (r →

∞) = r2/R2, as

� = −3(R2 − α)

R4 . (6)

3 Scalar field perturbations

The QNMs of scalar perturbations in the background of the
metric (4) are given by the scalar field solution of the Klein–
Gordon equation,

1√−g
∂μ

(√−ggμν∂νϕ
) = m2ϕ , (7)

with suitable boundary conditions for a black hole geometry.
In the above expression m is the mass of the scalar field ϕ.
Now, by means of the ansatz

ϕ = e−iωt R(r)Y (�) , (8)

the Klein–Gordon equation reduces to

f (r)R′′(r) +
(
f ′(r) + 2

f (r)

r

)
R′(r)

+
(

ω2

f (r)
− �(� + 1)

r2 − m2
)
R(r) = 0 , (9)

where � = 0, 1, 2, ... represents the azimuthal quantum num-
ber and the prime denotes the derivative with respect to r .
Now, defining R(r) = F(r)

r and by using the tortoise coordi-
nate r∗ defined by dr∗ = dr

f (r) , the Klein–Gordon equation
can be written as a one-dimensional Schrödinger equation,

d2F(r∗)
dr∗2 − Vef f (r)F(r∗) = −ω2F(r∗) , (10)

with an effective potential Vef f (r), which is parametrically
thought of as Vef f (r∗), given by

Vef f (r) = f (r)

(
f ′(r)
r

+ �(� + 1)

r2 + m2
)

. (11)

The effective potential diverges at spatial infinity and it is
positive definite everywhere outside the event horizon; see
Fig. 2. Therefore, we will consider as a boundary condition
that the scalar field vanishes at the asymptotic region (the
Dirichlet boundary condition).

3.1 Scalar field stability with Dirichlet boundary condition

In order to address the stability of the propagation of scalar
fields, we follow a general argument given in Ref. [57]. So,
by defining

ψ(r) = eiωr
∗
F(r) , (12)
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Fig. 2 The behavior of the effective potential R2Vef f as a function of
r/R for different values of the parameter α/R2 with rH /R = 5, � = 0,
and mR = 0.1

and inserting this expression in the Schrödinger-like equation
(10) yields

d

dr

(
f (r)

dψ(r)

dr

)
− 2iω

dψ(r)

dr
− Vef f (r)

f (r)
ψ(r) = 0 .

(13)

Then, multiplying Eq. (13) by ψ∗ and performing integration
by parts, and using the Dirichlet boundary condition for the
scalar field at spatial infinity, one can obtain the expression

∫ ∞

r+
dr

(
f (r)

∣∣∣∣
dψ

dr

∣∣∣∣
2

+ Vef f (r)

f (r)
|ψ |2

)

= −|ω|2 |ψ(r = rH )|2
Im(ω)

. (14)

In general, the QNFs are complex, where the real part repre-
sents the frequency of the oscillation and the imaginary part
describes the rate at which this oscillation is damped, with
the stability of the scalar field being guaranteed if the imagi-
nary part is negative. The potential (5) is positive outside the
horizon and then the left hand side of (14) is strictly positive,
which demand that Im(ω) < 0, and then we conclude that
the stability of the propagation of a scalar field respecting
Dirichlet boundary conditions is stable.

3.2 Numerical analysis

In this section we will solve numerically the differential equa-
tion (9) in order to compute the QNFs for the black hole
described by the metric by using the pseudospectral Cheby-
shev method; see for instance [52]. First, under the change
of variable y = 1 − rH/r the radial Eq. (9) becomes

(1 − y)4 f (y)R′′(y) + (1 − y)4 f ′(y)R′(y)

+
(

ω2r2
H

f (y)
− �(� + 1)(1 − y)2 − m2r2

H

)
R(y) = 0 ,(15)

where the prime denotes derivative with respect to y. In the
new coordinate the event horizon is located at y = 0 and
the spatial infinity at y = 1. Now, we consider the boundary

Table 1 Some lowest quasinormal frequencies ωR for the branches
nonperturbative and perturbative in α, in the background of the black
hole with rH /R = 5, � = 0 and m = 0

α/R2 Nonperturbative QNFs Perturbative QNFs

0.01 −108.89879i 9.34676 − 13.50717i

0.03 −51.24661i 9.07679 − 13.90768i

0.06 −31.31146i 8.61373 − 14.63611i

0.15 −14.99874i 7.95765 − 18.24388i

Fig. 3 The effective potential for small black holes for rH /R = 0.12,
mR = 0, � = 0, and different values of α/R

conditions. In the neighborhood of the horizon (y → 0) the
function R(y) behaves as

R(y) = C1e
− iωrH

f ′(0)
ln y + C2e

iωrH
f ′(0)

ln y
. (16)

Here, the first term represents an ingoing wave and the second
term represents an outgoing wave near the black hole horizon.
Imposing the requirement of having only ingoing waves on
the horizon, we fix C2 = 0. On the other hand, at infinity the
function R(y) behaves as

R(y) = D1(1 − y)
3
2 +

√(
3
2

)2+m2R2

+D2(1 − y)
3
2 −

√(
3
2

)2+m2R2

. (17)

So, imposing the requirement that the scalar field vanishes
at infinity requires D2 = 0. Taking into account the above
behaviors of the scalar field at the horizon and at spatial
infinity we define

R(y) = e
− iωrH

f ′(0)
ln y

(1 − y)
3
2 +

√(
3
2

)2+m2R2

F(y) . (18)

Then, by inserting this last expression in Eq. (15) we obtain
an equation for the function F(y), which we solve numeri-
cally employing the pseudospectral Chebyshev method. The
solution for the function F(y) is assumed to be a finite linear
combination of the Chebyshev polynomials, and it is inserted
in the differential equation for F(y). The interval [0, 1] is
discretized at the Chebyshev collocation points. Then the
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Fig. 4 Behavior of the imaginary part of the QNFs for the nonper-
turbative in α modes (blue dashed line) and perturbative modes (red
continuous line) of a massless scalar field (left panel). The vertical line

corresponds to the critical value of α where the curves cross. Behavior
of the real part of QNFs for the perturbative modes of a massless scalar
field, with � = 0 as a function of α/R2, for rH /R = 5 (right panel)

differential equation is evaluated at each collocation point.
Thus, a system of algebraic equations is obtained which cor-
responds to a generalized eigenvalue problem and it is solved
numerically for ω.

In Fig. 4, left panel, we show the behavior of the imagi-
nary part of the QNFs for a massless scalar field with � = 0
as a function of α/R2, for the ratio rH/R = 5, and also
we show the real part of the QNFs, under the same consid-
erations, right panel. We can observe the existence of two
branches. One of them corresponds to the branch perturba-
tive in α (red continuous line), which consists of complex
QNFs that in the limit α → 0 approximate the QNFs of
a massless scalar field in the background of the SAdS black
hole [57]. On the other hand, the branch nonperturbative in α

(blue dashed line) consists of purely imaginary QNFs, which
diverge in the limit α → 0; therefore they do not exist for
SAdS black hole. We show in Table 1 some numerical values
of the QNFs. Also, we observe that the imaginary part of the
QNFs is always negative for both branches; therefore, the
propagation of massless scalar fields is stable in this back-
ground. It is worth to mention that there is a critical value
α = αc, where the curves intersect and the two branches have
the same imaginary part, for α lower than the critical value
the nonperturbative branch decays faster than the perturba-
tive branch, while that for α greater than the critical value,
the behavior is opposite, i.e., the pertubative branch decays
faster than the nonperturbative branch; thus the nonpertur-
bative branch dominates in this case. The real part of the
perturbative QNFs, see Fig. 4, shows a smooth behavior and
we observe that the frequency of the oscillation decreases
when α/R2 increases. In addition, we observe that there is a
small range where the frequency increases slightly and then
decreases again.

Fig. 5 The effective potential for rH /R = 5, mR = 0, � = 0 and
α/R2 = 0.05 < αc/R2, α/R2 = αc/R2 = 0.1258 and α/R2 =
0.22 > αc/R2

We observe that for � = m = 0 there exist two different
potentials 2. There is one that looks like a potential barrier
near the outside horizon that is well increasing, see Fig. 3,
while the other is a monotonically increasing function like
Fig. 2. The former shows a small SAdS black hole is featur-
ing, whereas the latter indicates a large SAdS black hole. In
[58] was showed that a potential-step type provides the purely
imaginary QNFs, while the potential-barrier type gives the
complex QNFs of a scalar field for the charged dilaton black
hole. The presence of the bump near the horizon explains
clearly why the QNFs for gravitational and electromagnetic
perturbations of the small SAdS black hole are complex in
[59]. For the 4D Einstein–Gauss–Bonnet AdS black hole, we
observe a similar behavior of the potential; for small black
holes and small values of α we note the presence of a poten-
tial barrier, which disappears when rH/R or α increases;
see Fig. 3. Thus, it is possible to explain the two kinds of
QNFs of a scalar field around the 4D Einstein–Gauss–Bonnet

2 We thank the referee for pointing out this behavior of the potential to
us.
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Fig. 6 Behavior of the QNFs as a function of mR, of a massive scalar field with � = 0 for different values of α/R2 and rH /R = 5. Modes
perturbative in α (top panel), left plot for the imaginary part and right plot for the real part; and nonperturbative modes (bottom panel)

Fig. 7 Behavior of modes perturbative in α as a function of mR, with rH /R = 5, α/R2 = 0.001 and for different values of the angular number
� = 0, 2, 10, 30. The left plot is for the imaginary part and the right plot for the real part of the quasinormal spectrum

AdS black holes by identifying their potentials. While the
potential-barrier type gives the complex QNFs, the monoton-
ically increasing type gives the purely imaginary QNFs. On
the other hand, as mentioned before, in Fig. 4 we observe that
forα < αc the complex QNFs dominate, while forα > αc the
purely imaginary QNFs dominate. Interestingly, we found
that this behavior is related to the change of concavity of the
potential at the event horizon. We found that for α = 0 the
second derivative of the effective potential evaluated at the
horizon is always negative, and it is given by

V ′′
e f f (rH )

= − 6(5 + 2�(� + 1))(rH /R)2 + 18(rH /R)4 + 2(4 + 3�(� + 1) + m2R2(rH /R)2))

r4
H

.

(19)

However, for α 	= 0, the concavity of the potential at the event
horizon can be positive, and we note that the potential has a

point of inflection, see Fig. 5, at the event horizon for α = αc

where the curves in Fig. 4 intersect. For α < αc the potential
has a negative concavity at the event horizon, such as for the
SAdS black hole, and the complex QNF dominates, while
for α > αc the concavity of the potential at the event horizon
is positive and the purely imaginary QNF dominates. The
change of sign of V ′′

e f f (rH ) when α increases is attributed to
the effect of the higher order curvature terms on the metric.

Now, in order to analyze the behavior of the QNFs of
massive scalar field, we plot in Fig. 6 their behavior for the
lowest angular number � = 0 as a function of mR, and
for different values of α/R2. We can observe the complex
branch (top panel) and the purely imaginary branch (bottom
panel), which belong to the perturbative and nonperturbative
branches, respectively. For the perturbative branch, we can
observe that there is a faster decay rate of the perturbations
when the mass of the scalar field increases, and the frequency
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ω
Fig. 8 Behavior of imaginary part of the perturbative in α modes as a function ofmR, with rH /R = 5, for low values of angular number � = 0, 1, 2.
Left top panel for α/R2 = 0.001, right top panel for α/R2 = 0.20 and bottom panel for α/R2 = 0.35

of the oscillations increases too. Also, the decay rate and the
frequency of the oscillation increases when α/R2 decreases,
for a fixed value of mR. On the other hand, for the nonper-
turbative branch the decay rate increases slightly when the
scalar field mass increases. Also, there is a faster decay when
α/R2 decreases.

Now, in order to analyze the behavior of the QNFs of
massive scalar field, we plot in Fig. 7 their behavior, for
low angular numbers � = 0, 2 and high angular numbers
� = 10, 30 as a function ofmR with α/R2 = 0.001 fixed. For
the perturbative branch, we can observe that there is a lower
decay rate and the frequency of the oscillations increases
when the angular number � increases. In Fig. 8, we observe
that the behavior is similar for low angular numbers � =
0, 1, 2 and different values of α/R2.

4 Conclusions

In this work, we considered 4D Einstein–Gauss–Bonnet
black holes in AdS spacetime as backgrounds and we stud-
ied the propagation of probe scalar fields. We found numer-
ically the quasinormal frequencies for different values of
the Gauss–Bonnet coupling constant α/R2, the multipole
number � and the mass of the scalar field mR by using the
pseudospectral Chebyshev method. Mainly, we found two
branches of QNFs, a branch perturbative in the coupling con-
stant α, and another branch, nonperturbative in α, that is, they
do not exist in the limit α = 0.

The branch nonperturbative in α is characterized by purely
imaginary QNFs with a faster decay when α/R2 decreases,
while for the branch perturbative in α the QNFs tend to the
QNFs of the Schwarzschild AdS black hole when α → 0;
a lower decay is observed when α/R2 decreases. Also, we
found that the imaginary part of the QNFs is always neg-
ative for the two branches; therefore, the propagation of
scalar fields is stable for the asymptotically AdS 4D Einstein–
Gauss–Bonnet black hole. There are two different behaviors
of the potential; one looks like a potential barrier near the out-
side horizon-well-increasing, while the other is a monoton-
ically increasing function. The former shows a small SAdS
black hole featuring, whereas the latter indicates a large
SAdS black hole. For small black holes and small values
of α we note the presence of a potential barrier, which dis-
appears when rH/R or α increases. Therefore, it is possible
to explain the two kinds of QNFs of a scalar field around the
4D Einstein–Gauss–Bonnet AdS black holes by identifying
their potentials, i.e., while the potential-barrier type gives the
complex QNFs, the monotonically increasing type gives the
purely imaginary QNFs.

Interestingly, we found that there is a critical value of
α = αc, where the two branches have the same imagi-
nary part, and for values of α lower than the critical value
the nonperturbative branch decays faster than the perturba-
tive branch. Meanwhile for values of α/R2 greater than the
critical value, the behavior is opposite, i.e., the perturbative
branch decays faster than the nonperturbative branch; thus
the nonperturbative branch dominates in this case. Addition-
ally, we have found that for α = 0 the second derivative of
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the effective potential evaluated at the horizon is always neg-
ative, while for α 	= 0, the concavity of the potential at the
event horizon can be positive, and we note that the potential
has a point of inflection at the event horizon for α = αc. For
α < αc the potential has negative concavity at the event hori-
zon, such as for the SAdS black hole, and the complex QNF
dominates, while for α > αc the concavity of the potential at
the event horizon is positive and the purely imaginary QNF
dominates. The change of sign of the second derivative of the
effective potential evaluated at the horizon when α increases
is attributed to the effect of the higher order curvature terms
on the metric.

We showed that the phenomenon of nonperturbative
modes arises for scalar field perturbations for the 4D
Einstein–Gauss–Bonnet theory, by extending the presence
of nonperturbative modes to the other theory. On the other
hand, the inverse of the imaginary part of the fundamen-
tal quasinormal frequency is related, through the AdS/CFT
duality, to the thermalization time of the quantum states in
the boundary field theory [57]. In addition, it was found in
[45,48] that black holes with AdS asymptotics in theories
with higher curvature terms can help to describe the interme-
diate ’t Hooft coupling in the dual field theory; thus, we hope
that the results obtained in this work can have applications
along this line.
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