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ing matching coefficients of heavy-to-light currents from QCD onto soft-collinear effective

theory. The universal jet function from integrating out the hard-collinear fluctuations ex-

hibits richer structures compared with the one involved in the factorization expressions

of the vacuum-to-B-meson correlation function. Based upon the QCD resummation im-

proved sum rules we observe that the perturbative corrections at O(αs) shift the Λb → Λ

from factors at large recoil significantly and the dominant contribution originates from the

next-to-leading order jet function instead of the hard coefficient functions. Having at hand

the sum rule predictions for the Λb → Λ from factors we further investigate several decay

observables in the electro-weak penguin Λb → Λ ℓ+ℓ− transitions in the factorization limit

(i.e., ignoring the “non-factorizable” hadronic effects which cannot be expressed in terms

of the Λb → Λ from factors), including the invariant mass distribution of the lepton pair,

the forward-backward asymmetry in the dilepton system and the longitudinal polarization

fraction of the leptonic sector.

Keywords: Resummation, Heavy Quark Physics, Perturbative QCD

ArXiv ePrint: 1511.09036

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP02(2016)179

mailto:yu-ming.wang@univie.ac.at
mailto:shenylmeteor@ouc.edu.cn
http://arxiv.org/abs/1511.09036
http://dx.doi.org/10.1007/JHEP02(2016)179


J
H
E
P
0
2
(
2
0
1
6
)
1
7
9

Contents

1 Introduction 1

2 Tree-level LCSR of Λb → Λ form factors 4

2.1 Helicity-based Λb → Λ form factors 4

2.2 Interpolating currents and correlation function 5

2.3 Tree-level LCSR 7

3 Factorization of the correlation function at O(αs) 9

3.1 Hard and jet functions at NLO 9

3.1.1 Weak vertex diagram 10

3.1.2 Λ-baryon vertex diagrams 12

3.1.3 Wave function renormalization 13

3.1.4 Box diagrams 14

3.1.5 The NLO hard-scattering kernels 14

3.2 Factorization-scale independence 17

3.3 Resummation of large logarithms 21

4 The LCSR of Λb → Λ form factors at O(αs) 24

5 Numerical results 25

5.1 Theory input parameters 26

5.2 Predictions for the Λb → Λ form factors 28

6 Phenomenological applications 37

7 Concluding discussion 43

A Spectral representations 45

1 Introduction

Electro-weak penguin b→ sℓℓ decays are widely believed to be sensitive probes to physics

beyond the Standard Model (SM) and continuous efforts have been devoted to investi-

gations of exclusive B → K(∗)ℓ+ℓ− decays towards understanding the strong interaction

dynamics in QCD and constructing the optimized angular observables of phenomenological

interest. Unfortunately, no evident new physics signals have been revealed in the exclusive

B-meson decays yet, albeit with several “anomalies” under extensive discussions and de-

bates. It is therefore natural to explore the dynamics of flavour-changing neutral current

induced hadronic transitions in a complementary way.
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In this respect the baryonic counter channels Λb → Λ ℓ+ℓ− can serve the purpose

thanks to the dedicated b-physics program at the LHC. Theory descriptions of exclusive

heavy baryon decays have been initiated in the early days of the heavy-quark effective

theory (HQET) in an attempt to understand the QCD dynamics of heavy quark decays,

and they have attracted renewed attentions recently [1–3] towards a better understand-

ing of the heavy-to-light baryonic form factors at large recoil in the heavy quark limit.

Also, there are good arguments in favor of studying the exclusive Λb → Λ ℓ+ℓ− decays

on the phenomenological side. First, the polarization asymmetry of the Λ-baryon in the

decay products allows a “clean” extraction of the helicity structure of the weak effective

Hamiltonian in the factorization limit [4, 5]. Second, the angular distribution for the four-

body decays Λb → Λ(→ Nπ) ℓ+ℓ− offers additional information on the Wilson coefficients

of effective weak operators [6, 7], due to the fact that the cascade weak decay Λ → Nπ

is parity violating. Third, the systematic uncertainty entering the computation of the

Λb → Λ ℓ+ℓ− amplitude, induced by the Λ-baryon decay width, is negligible compared

with the counterpart B → K∗ℓ+ℓ− channels.

Precision QCD calculations of the electro-weak penguin decays Λb → Λ ℓ+ℓ− are

complicated by the poorly known hadronic form factors and by the notoriously “non-

factorizable” hadronic effects defined by the non-local matrix elements of the weak opera-

tors acting together with the QED quark currents. The main purpose of this paper is to

perform a complete analysis of 10 independent Λb → Λ form factors, at O(αs), from QCD

light-cone sum rules (LCSR) with the Λb-baryon distribution amplitudes (DA) originally

developed in the context of the B-meson decays [8–11], paving the way for the construction

of a systematic approach to the exclusive Λb → Λ ℓ+ℓ− decays in analogy to the mesonic

counterpart case [12]. As already emphasized in [13] one of the primary tasks of construct-

ing the Λb-baryon LCSR is to demonstrate QCD factorization for the vacuum-to-Λb-baryon

correlation function in the proper kinematic regime. In the framework of soft-collinear ef-

fective theory (SCET) factorization of the correlation function defined with the “A-type”

weak current and an interpolating current of the Λ-baryon was established at tree level

in the heavy quark limit [2]. Instead of using the SCET technique we will, following [13],

adopt the method of regions [14] to prove factorization of the vacuum-to-Λb-baryon cor-

relation function at next-to-leading-order (NLO) in αs diagrammatically and resum large

logarithms in the short distance functions with the renormalization-group (RG) approach

in momentum space.

Soft QCD dynamics of the vacuum-to-Λb-baryon correlation function is parameterized

by the non-perturbative but universal wave functions of the Λb-baryon [15] which also

serves as fundamental inputs for the theory description of semileptonic Λb → p ℓν transi-

tions [16], Λb → Λc ℓν decays [17] and hadronic Λb → p π, pK decays [18]. Despite the

recent progress in understanding the renormalization property of the twist-2 Λb-baryon

DA [19, 20], modelling the higher twist DA in compatible with the perturbative QCD con-

straints still demands dedicated studies. As we will observe later, it is actually the twist-4

DA of the Λb-baryon entering the QCD factorization formulae of the vacuum-to-Λb-baryon

correction functions, whose RG evolution equation at one loop is not explicitly known yet

(though building blocks of the renormalization kernels for the desired light ray operators
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can be found in [21]). Investigating renormalization scale evolution of the convolution in-

tegral of the NLO twist-4 partonic DA and the tree-level hard kernel constitutes another

non-trivial target of this paper.

Different QCD-based approaches were adopted in the literature to compute the Λb → Λ

form factors in addition to the recent Lattice QCD determinations [22]. A closely related

approach was applied to construct the LCSR for Λb → Λ form factors at tree level from

the vacuum-to-Λ-baryon correlation function [23] where the Λ-baryon DA entering the sum

rules were only considered at the leading conformal spin accuracy (the non-asymptotic cor-

rections were worked out in [24] now) and the Chernyak-Zhitnitsky [25] type of the Λ-baryon

interpolating current was used (see [26, 27] for alternative choices and [28] for interesting

comments on the choices of the baryonic interpolating currents). Another approach to com-

pute the Λb → Λ form factors based upon the transverse-momentum-dependent (TMD)

factorization was carried out in [29] where the soft overlap contribution was assumed to be

suppressed by the Sudakov factor and only the hard spectator interactions induced by two-

hard-collinear-gluon exchanges are taken into account. A comparison of the resulting form

factors from two different methods tends to indicate that the heavy-to-light baryonic form

factors at large recoil is numerically dominated by the parametrically sub-leading power

contributions induced by soft gluon exchanges instead of the leading power hard specta-

tor contributions which only arise at the second order in the strong coupling αs (see [3]

for more details).1 Both soft and hard contributions to the Λb → Λ form factors can be

computed in the framework of the LCSR approach, however, two-loop computation of the

vacuum-to-Λb-baryon correlation function is in demand to facilitate the comparison with

the hard contributions calculated in TMD factorization. A detailed analysis of the interplay

of soft and hard contributions for the Λb → Λ form factors, along the lines of [30] for the

electromagnetic pion form factor, is certainly interesting but beyond the scope of this paper.

The paper is organized as follows. In section 2 we first set up convention of the

helicity-based parametrization of the Λb → Λ form factors and then discuss the choice of

the interpolating currents for the Λ-baryon and introduce the correlation functions for con-

structions of the LCSR for all the independent form factors. We also present the essential

ingredients for proof of QCD factorization of the correlation functions and derive the tree

level LCSR for Λb → Λ form factors. Applying the method of regions we compute the hard

coefficients and the jet functions at O(αs) entering the QCD factorization formulae in sec-

tion 3 where we demonstrate explicitly cancellation of the factorization-scale dependence in

the correlation functions and resummation of large logarithms in the short-distance func-

tions is also achieved at next-to-leading-logarithmic (NLL) accuracy with the standard

RG approach. Resummation improved LCSR for the Λb → Λ form factors presented in

section 4 constitute the main new results of this paper. The details of the numerical anal-

ysis of the newly derived LCSR, including various sources of perturbative and systematic

uncertainties, the z-series expansion and a comparison with the Lattice determinations at

small recoil, are collected in section 5. Phenomenological applications of our results to

1Strictly speaking, separation of the soft overlap contributions (Feynman mechanism) and the hard-

scattering effects are both factorization scale- and scheme- dependent.

– 3 –



J
H
E
P
0
2
(
2
0
1
6
)
1
7
9

the exclusive electro-weak penguin decays Λb → Λℓ+ℓ− at large recoil are discussed in

the factorization limit in section 6. Section 7 is reserved for the concluding discussion.

Appendix A contains dispersion representations of the convolution integrals entering ex-

pressions of the factorized correlation functions, which are essential to construct the LCSR

for the Λb → Λ form factors presented in section 4.

2 Tree-level LCSR of Λb → Λ form factors

2.1 Helicity-based Λb → Λ form factors

Following [2] we define Λb → Λ form factors in the helicity basis which lead to rather

compact expressions for angular distributions, unitary bounds and sum rules, and we collect

the definitions as follows

〈Λ(p′, s′)|s̄ γµ b|Λb(p, s)〉 = Λ̄(p′, s′)

[

f0Λb→Λ(q
2)
mΛb

−mΛ

q2
qµ

+f+Λb→Λ(q
2)
mΛb

+mΛ

s+

(

(p+ p′)µ −
m2

Λb
−m2

Λ

q2
qµ

)

+fTΛb→Λ(q
2)

(

γµ − 2mΛ

s+
pµ − 2mΛb

s+
p′µ

)]

Λb(p, s) , (2.1)

〈Λ(p′, s′)|s̄ γµγ5 b|Λb(p, s)〉 = −Λ̄(p′, s′)γ5

[

g0Λb→Λ(q
2)
mΛb

+mΛ

q2
qµ

+g+Λb→Λ(q
2)
mΛb

−mΛ

s−

(

(p+ p′)µ −
m2

Λb
−m2

Λ

q2
qµ

)

+gTΛb→Λ(q
2)

(

γµ +
2mΛ

s−
pµ − 2mΛb

s−
p′µ

)]

Λb(p, s) , (2.2)

〈Λ(p′, s′)|s̄ iσµνqν b|Λb(p, s)〉 = −Λ̄(p′, s′)

[

h+Λb→Λ(q
2)
q2

s+

(

(p+ p′)µ −
m2

Λb
−m2

Λ

q2
qµ

)

+(mΛb
+mΛ)h

T
Λb→Λ(q

2)

(

γµ − 2mΛ

s+
pµ − 2mΛb

s+
p′µ

)]

Λb(p, s) , (2.3)

〈Λ(p′, s′)|s̄ iσµνqνγ5 b|Λb(p, s)〉 = −Λ̄(p′, s′)γ5

[

h̃+Λb→Λ(q
2)
q2

s−

(

(p+ p′)µ −
m2

Λb
−m2

Λ

q2
qµ

)

+(mΛb
−mΛ) h̃

T
Λb→Λ(q

2)

(

γµ +
2mΛ

s−
pµ − 2mΛb

s−
p′µ

)]

Λb(p, s) , (2.4)

where mΛb
(s) is the mass (spin index) of the Λb-baryon, mΛ (s′) is the mass (spin index)

of the Λ-baryon and we introduce

s± = (mΛb
±mΛ)

2 − q2. (2.5)

We work in the rest frame of the Λb-baryon with the velocity vector vµ = pµ/mΛb
and define

a light-cone vector n̄µ parallel to the four-momentum p′ of the Λ-baryon in the massless

limit. Another light-cone vector can be introduced as nµ = 2 vµ − n̄µ with n · n̄ = 2 for the
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later convenience. At large hadronic recoil we write

n · p′ ≃
m2

Λb
+m2

Λ − q2

mΛb

= 2EΛ ∼ O(mΛb
) . (2.6)

Exploiting the heavy quark symmetry and the collinear equations of motion yields [1, 2]

f0Λb→Λ(q
2) ≃ f+Λb→Λ(q

2) ≃ fTΛb→Λ(q
2) ≃ h+Λb→Λ(q

2) ≃ hTΛb→Λ(q
2)

≃ g0Λb→Λ(q
2) ≃ g+Λb→Λ(q

2) ≃ gTΛb→Λ(q
2) ≃ h̃+Λb→Λ(q

2) ≃ h̃TΛb→Λ(q
2) (2.7)

at large recoil, where the strong interaction dynamics of the hadronic transitions is assumed

to be dominated by the soft gluon exchanges. Hard spectator interactions induced by the

two-hard-collinear-gluon exchanges are shown to still respect these symmetry relations at

leading power in Λ/mb [3], where Λ is a hadronic scale of order ΛQCD. We will first confirm

such form factor relations from the tree-level LCSR (see also [2]) and then compute the

symmetry-breaking effects induced by the hard fluctuations of QCD decay currents (also

known as the matching coefficients of weak currents from QCD onto SCET) and the one-

loop jet function in the next section.

2.2 Interpolating currents and correlation function

Following the standard strategy we start with construction of the correlation function

Πµ,a(p, q) = i

∫

d4x eiq·x 〈0|T{jΛ(x), jµ,a(0)}|Λb(p)〉 , (2.8)

where the local current jΛ interpolates the Λ-baryon and jµ,a stands for the weak transition

current s̄Γµ,a b with the index “a” indicating a certain Lorenz structure, i.e.,

jµ,V = s̄ γµ b , jµ,A = s̄ γµ γ5 b ,

jµ,T = s̄ σµν q
ν b , jµ,T̃ = s̄ σµν q

ν γ5 b . (2.9)

As discussed in [31] the general structure of the Λ-baryon current reads

jΛ = ǫijk
(

uTi C Γ dj
)

Γ̃ sk , (2.10)

where C is the charge conjugation matrix and the sum runs over the color indices i, j, k.

Implementing the isospin constraint of the light diquark [ud] system we are left with three

independent choices

jAΛ = ǫijk
(

uTi C γ5 /n dj
)

sk , jPΛ = ǫijk
(

uTi C γ5 dj
)

sk , jSΛ = ǫijk
(

uTi C dj
)

γ5 sk .

(2.11)

Projecting out the large and small components of the (hard)-collinear quark fields one

can readily identify that the two currents jPΛ and jSΛ are power suppressed compared with

the axial-vector current jAΛ . As discussed in the context of the nucleon sum rules [28], the

correlation function constructed from the leading-twist current is less affected by the model-

dependent continuum subtraction. Also, it is conceivable that factorization properties of
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the correlation function defined with the high-twist interpolating current could be more

involved in QCD beyond the tree approximation. We will therefore only consider the axial-

vector current jAΛ for construction of the correlation function, and more detailed discussions

on the choices of the baryonic currents can be found in [28, 32, 33].

To derive the hadronic dispersion relation of the correlation function we need to define

the coupling of the Λ-baryon with the jAΛ current

〈0|jAΛ |Λ(p′)〉 = fΛ(µ) (n · p′) Λ(p′) , (2.12)

where the renormalization scale dependence of fΛ(µ) is indicated explicitly and the corre-

sponding evolution equation is given by

d

d lnµ
ln fΛ(µ) = −

(

αs(µ)

4π

)k

γ
(k)
Λ , (2.13)

with γ
(1)
Λ = 4/3 [34, 35]. It is then a straightforward task to write down the hadronic

representations for the correlation functions defined with various weak currents

Πµ,V (p, q) =
fΛ(µ) (n · p′)

m2
Λ/n · p′ − n̄ · p′ − i0

/̄n

2

[

fTΛb→Λ(q
2) γ⊥µ +

f0Λb→Λ(q
2)− f+Λb→Λ(q

2)

2 (1− n · p′/mΛb
)

nµ

+
f0Λb→Λ(q

2) + f+Λb→Λ(q
2)

2
n̄µ

]

Λb(p) +

∫ +∞

ωs

dω′
1

ω′ − n̄ · p′ − i0

× /̄n

2

[

ρhV,⊥(ω
′, n · p′) γ⊥µ + ρhV,n(ω

′, n · p′)nµ + ρhV,n̄(ω
′, n · p′) n̄µ

]

Λb(p) , (2.14)

Πµ,A(p, q) =
fΛ(µ) (n · p′)

m2
Λ/n · p′ − n̄ · p′ − i0

γ5
/̄n

2

[

gTΛb→Λ(q
2) γ⊥µ +

g0Λb→Λ(q
2)− g+Λb→Λ(q

2)

2 (1− n · p′/mΛb
)

nµ

+
g0Λb→Λ(q

2) + g+Λb→Λ(q
2)

2
n̄µ

]

Λb(p) +

∫ +∞

ωs

dω′
1

ω′ − n̄ · p′ − i0

×γ5
/̄n

2

[

ρhA,⊥(ω
′, n · p′) γ⊥µ + ρhA,n(ω

′, n · p′)nµ + ρhA,n̄(ω
′, n · p′) n̄µ

]

Λb(p) , (2.15)

Πµ,T (p, q) = − mΛb
fΛ(µ) (n · p′)

m2
Λ/n · p′ − n̄ · p′ − i0

/̄n

2

[

hTΛb→Λ(q
2) γ⊥µ

+
h+Λb→Λ(q

2)

2

((

1− n · p′
mΛb

)

n̄µ − nµ

)]

Λb(p) +

∫ +∞

ωs

dω′
1

ω′ − n̄ · p′ − i0

× /̄n

2

[

ρhT,⊥(ω
′, n · p′) γ⊥µ + ρhT,+(ω

′, n · p′)
((

1− n · p′
mΛb

)

n̄µ − nµ

)]

Λb(p) , (2.16)

Πµ,T̃ (p, q) =
mΛb

fΛ(µ) (n · p′)
m2

Λ/n · p′ − n̄ · p′ − i0
γ5

/̄n

2

[

h̃TΛb→Λ(q
2) γ⊥µ

+
h̃+Λb→Λ(q

2)

2

((

1− n · p′
mΛb

)

n̄µ − nµ

)]

Λb(p) +

∫ +∞

ωs

dω′
1

ω′ − n̄ · p′ − i0

×γ5
/̄n

2

[

ρh
T̃ ,⊥

(ω′, n · p′) γ⊥µ+ρ
h
T̃ ,+

(ω′, n · p′)
((

1−n · p′
mΛb

)

n̄µ−nµ

)]

Λb(p) , (2.17)

where we have defined

p′ = p− q , γ⊥µ = γµ − /̄n

2
nµ − /n

2
n̄µ . (2.18)

– 6 –
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b

u

d

q

p′

Figure 1. Diagrammatical representation of the correlation function Πµ,a(n ·p′, n̄ ·p′) at tree level,
where the black square denotes the weak transition vertex, the black blob represents the Dirac

structure of the Λ-baryon current and the pink internal line indicates the hard-collinear propagator

of the strange quark.

Note also that we have naively assumed that effects from the negative-party baryons with

JP = 1/2− can be absorbed into the dispersion integrals in the above expressions and

we refer to [31] for a detailed discussion of eliminating the “contamination” from such

background contributions in the context of the LCSR with the nucleon DA.

2.3 Tree-level LCSR

Now we turn to compute the correlation function Πµ,a(p, q) at space-like interpolating

momentum with |n̄ · p′| ∼ O(Λ) and n · p′ fixed by eq. (2.6), where light-cone operator-

product-expansion (OPE) is applicable. Perturbative factorization of the partonic corre-

lation function Πpar
µ,a(p, q) (defined as replacing the hadronic state |Λb(p)〉 by the on-shell

partonic state|b(pb)u(k1)d(k2)〉 in eq. (2.8)) at tree level takes the following form

Πpar
µ,a(p, q) =

∫

dω′
1

∫

dω′
2 T

(0)
αβγδ(n · p′, n̄ · p′, ω′

1, ω
′
2) Φ

(0)αβδ
bud (ω′

1, ω
′
2) , (2.19)

where the superscript (0) indicates the tree-level approximation and the Lorenz index “µ”

is suppressed on the right-hand side in order not to overload the notation.

Evaluating the diagram in figure 1 leads to the leading-order hard kernel

T
(0)
αβγδ(n · p′, n̄ · p′, ω′

1, ω
′
2) = − 1

n̄ · p′ − ω′
1 − ω′

2 + i0
(C γ5 /n)αβ

(

/̄n

2
Γµ,a

)

γδ

, (2.20)

and the partonic DA of the Λb-baryon is defined as

Φαβδ
bud (ω

′
1, ω

′
2) =

∫

dt1
2π

∫

dt2
2π

ei(ω
′

1t1+ω′

2t2) (2.21)

× ǫijk 〈0|
[

uTi (t1n̄)
]

α
[0, t1n̄] [dj(t2n̄)]β [0, t2n̄] [bk(0)]δ |b(v)u(k1)d(k2)〉 ,

where the b-quark field needs to be understood as an effective heavy quark field in HQET

and the light-cone Wilson line

[0, t n̄] = P

{

Exp

[

−i gs t
∫ 1

0
du n̄ ·A(u t n̄)

]}

(2.22)

– 7 –
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is introduced with the convention of the covariant derivative in QCD as Dµ = ∂µ−igs T aAa
µ.

The tree-level partonic DA entering the factorized expression (2.19) can be readily found

to be

Φ
(0)αβδ
bud (ω′

1, ω
′
2) = δ(n̄ · k1 − ω′

1) δ(n̄ · k2 − ω′
2) ǫijk

[

uTi (k1)
]

α
[dj(k2)]β [bk(v)]δ . (2.23)

Starting with the definition of the general light-cone hadronic matrix element in coor-

dinate space [19]

Φαβδ
Λb

(t1, t2) ≡ ǫijk 〈0|
[

uTi (t1n̄)
]

α
[0, t1n̄] [dj(t2n̄)]β [0, t2n̄] [bk(0)]δ |Λb(v)〉 (2.24)

=
1

4

{

f
(1)
Λb

(µ)
[

M̃1(v, t1, t2) γ5 C
T
]

βα
+ f

(2)
Λb

(µ)
[

M̃2(v, t1, t2) γ5 C
T
]

βα

}

[Λb(v)]δ ,

performing the Fourier transformation and including the NLO terms off the light-cone leads

to the momentum space light-cone projector in D dimensions

M2(ω
′
1, ω

′
2) =

/n

2
ψ2(ω

′
1, ω

′
2) +

/̄n

2
ψ4(ω

′
1, ω

′
2)

− 1

D − 2
γµ⊥

[

ψ+−
⊥,1(ω

′
1, ω

′
2)
/n /̄n

4

∂

∂kµ1⊥
+ ψ−+

⊥,1(ω
′
1, ω

′
2)
/̄n /n

4

∂

∂kµ1⊥

]

− 1

D − 2
γµ⊥

[

ψ+−
⊥,2(ω

′
2, ω

′
2)
/n /̄n

4

∂

∂kµ2⊥
+ ψ−+

⊥,2(ω
′
1, ω

′
2)
/̄n /n

4

∂

∂kµ2⊥

]

, (2.25)

M1(ω
′
1, ω

′
2) =

/̄n /n

8
ψ+−
3 (ω′

1, ω
′
2) +

/n /̄n

8
ψ−+
3 (ω′

1, ω
′
2)

− 1

D − 2

[

ψ
(1)
⊥,3(ω

′
1, ω

′
2)/v γ

µ
⊥

∂

∂kµ1⊥
+ ψ

(2)
⊥,3(ω

′
1, ω

′
2) γ

µ
⊥ /v

∂

∂kµ2⊥

]

− 1

D − 2

[

ψ
(1)
⊥,Y (ω

′
1, ω

′
2)/̄n γ

µ
⊥

∂

∂kµ1⊥
+ ψ

(2)
⊥,Y (ω

′
1, ω

′
2) γ

µ
⊥
/̄n

∂

∂kµ2⊥

]

, (2.26)

where we have adjusted the notation of the Λb-baryon DA defined in [19]. Applying the

equations of motion in the Wandzura-Wilczek approximation [36] yields

ψ−+
⊥,1(ω

′
1, ω

′
2) = ω′

1 ψ4(ω
′
1, ω

′
2) , ψ+−

⊥,2(ω
′
1, ω

′
2) = ω′

2 ψ4(ω
′
1, ω

′
2) . (2.27)

It is now straightforward to derive the tree-level factorization formulae

Π
(0)
µ,V (A)(p, q) = f

(2)
Λb

(µ)

∫ +∞

0
dω′

1

∫ +∞

0
dω′

2

ψ4(ω
′
1, ω

′
2)

ω′
1 + ω′

2 − n̄ · p′ − i0

× (1, γ5)
/̄n

2
(γ⊥µ + n̄µ) Λb(v) ,

Π
(0)

µ,T (T̃ )
(p, q) = mΛb

f
(2)
Λb

(µ)

∫ +∞

0
dω′

1

∫ +∞

0
dω′

2

ψ4(ω
′
1, ω

′
2)

ω′
1 + ω′

2 − n̄ · p′ − i0

× (−1, γ5)
/̄n

2

[

γ⊥µ +
1

2

((

1− n · p′
mΛb

)

n̄µ − nµ

)]

Λb(v) , (2.28)

at leading power in Λ/mb. Employing the parton-hadronic duality approximation for the

dispersion integrals in the hadronic representations and performing the continuum subtrac-

tion as well as the Borel transformation we obtain the tree-level LCSR

F i
Λb→Λ(q

2) =
f
(2)
Λb

(µ)

fΛ(µ)n · p′ exp
[

m2
Λ

n · p′ ωM

]
∫ ωs

0
dω′ e−ω′/ωM ψ̃4(ω

′) +O(αs) , (2.29)
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where F i
Λb→Λ(q

2) represents any of the 10 Λb → Λ form factors defined in section 2.1 and

ψ̃4(ω
′) = ω′

∫ 1

0
duψ4

(

uω′, (1− u)ω′
)

. (2.30)

Applying the power counting scheme

ωs ∼ ωM ∼ Λ2

n · p′ , ψ̃4(ω
′) ∼ ω′ ∼ ωs , (2.31)

the tree-level contribution (Feynman mechanism) to the Λb → Λ form factors scales as

1/(n · p′)3 in the large energy limit of the Λ-baryon, in agreement with the obervations

of [1, 2]. Since the large-recoil symmetry relations for the form factors are preserved at

tree level, the symmetry violation effect, if it emerges at one loop, must be infrared finite

due to the vanishing soft subtraction at O(αs) in order not to invalidate QCD factorization

of the correlation functions.

3 Factorization of the correlation function at O(αs)

The purpose of this section is to compute the short-distance functions entering the factor-

ization formulae of Πµ,a(p, q) at one loop

Πµ,a(p, q) = T ⊗ Φbud = C · J ⊗ Φbud , (3.1)

where ⊗ denotes a convolution in the light-cone variables ω′
1 and ω′

2. We will closely follow

the strategies to prove the one-loop factorization of the vacuum-to-B-meson correlation

function detailed in [13] and employ the method of regions to evaluate the hard coefficients

and the jet functions simultaneously. We further verify cancellation of the factorization-

scale dependence of the correlation functions by computing convolution integrals of the

NLO partonic DA and the tree-level hard kernel in (2.20) explicitly. Resummation of

large logarithms involved in the perturbative functions is carried out at NLL using the

momentum-space RG approach.

3.1 Hard and jet functions at NLO

We are now ready to compute the one-loop QCD diagrams displayed in figure 2 for deter-

minations of the perturbative matching coefficients. Since the loop integral entering the

amplitude of the diagram (g) with one-gluon exchange between the two soft quarks does

not contain any external hard and/or hard-collinear momentum modes, no contribution to

the perturbative functions can arise from this diagram and we will compute the remaining

diagrams one by one in the following. To facilitate the discussion of the one-loop calculation

we will first focus on the (axial)-vector correlation functions Πµ,V (A)(p, q) and generalize

the computation to the (pseudo)-tensor correlation functions Πµ,T (T̃ )(p, q) in the end of

this section.
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b

u

d

q

p′

(a) (b) (c)

(d) (e) (f)

(g)

Figure 2. Diagrammatical representation of the correlation function Πµ,a(n · p′, n̄ · p′) at one loop.

Same conventions as in figure 1.

3.1.1 Weak vertex diagram

Now we turn to compute the one-loop QCD correction to the weak vertex diagram displayed

in figure 2(a)

Πpar,a
µ,V (A)(p, q) =

i g2s CF

n̄ · p′ − (ω1 + ω2) + i0

∫

dD l

(2π)D
1

[(p′ − k + l)2 + i0][(mbv + l)2 −m2
b + i0][l2 + i0]

ǫijk
[

uT
i (k1)C γ5 /n dj(k2)

] /̄n

2
γρ (/p

′

− /k + /l) γµ (1, γ5) (mb/v + /l +mb) γ
ρ bk(v) , (3.2)

where k = k1 + k2, ωi = n̄ · ki (i = 1, 2) and D = 4 − 2 ǫ. We have approximated

the b-quark momentum as pb = mb v by dropping out the residual momentum, since we

are only interested in extracting the leading power contributions to the correlation func-

tions. The standard strategies to evaluate the perturbative matching coefficients would

be: (i) first computing the loop integrals with the method of regions to determine the

“bare” perturbative kernels without the ultraviolet (UV) and infrared (IR) subtractions,

(ii) decomposing the resulting contributions in terms of independent operator bases (in-

cluding the so-called “evanescent operators” [37, 38] whenever necessary) with the aid of

the equations of motion, (iii) implementing the UV renormalization programs and infrared

subtractions (determined by matrix elements of the effective operators), (iv) applying the

momentum-space light-cone projector of the Λb-baryon to formulate factorized expressions

of the correlation functions in the end. The above-mentioned procedures can be reduced

in the absence of the “evanescent operators” as in our case, since no Fierz rearrangement
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is required in the perturbative matching:

i

∫

d4x eiq·x T{jΛ(x), jµ,a(0)} →
∑

i,j

∫

dt1

∫

dt2 T̃ij(t1, t2, n̄ · q, v · q,mb, µ) [Γi]αβ [Γ′
j ]γδ

×ǫijk
[

uTi (t1n̄)
]

α
[0, t1n̄] [dj(t2n̄)]β [0, t2n̄] [bk(0)]δ . (3.3)

The hard function contributed from figure 2(a) can be determined by expanding eq. (3.2)

in the hard region and by applying the light-cone projector subsequently and this leads to

Πa,h
µ,V (A)(p, q)

= i g2s CF

f
(2)
Λb

(µ)ψ4(ω1, ω2)

n̄ · p′−(ω1+ω2)+i0

∫

dD l

(2π)D
1

[(p′−k+l)2+i0][(mbv+l)2−m2
b+i0][l

2+i0]

× (1, γ5)
/̄n

2

{

γ⊥µ

[

n · l ((D − 2) n̄ · l + 2mb) + 2n · p′ (n̄ · l +mb) + (D − 4) l2⊥

]

+nµ

[

(2−D) (n̄ · l)2
]

+ n̄µ

[

2mb (n · p′ + n · l) + (D − 2) l2⊥

]}

Λb(v) , (3.4)

where the superscript “par” of the partonic correlation functions Πa,h
µ,V (A) is suppressed

from now on and we have introduced

l2⊥ ≡ gµν⊥ lµ lν , gµν⊥ ≡ gµν − nµn̄ν

2
− nν n̄µ

2
. (3.5)

Evaluating the loop integrals with the formulae collected in appendix A of [13] yields

Πa,h
µ,V (A)(p, q) =

αsCF

4π

f
(2)
Λb

(µ)ψ4(ω1, ω2)

n̄ · p′ − (ω1 + ω2) + i0
(1, γ5)

/̄n

2

·
[

γ⊥µ C
(a)
h ,⊥(n · p′) + nµ C

(a)
h ,n(n · p′) + n̄µ C

(a)
h ,n̄(n · p′)

]

, (3.6)

where the coefficient functions read

C
(a)
h ,⊥(n · p′) =

1

ǫ2
+

1

ǫ

(

2 ln
µ

n · p′ + 1

)

+ 2 ln2
µ

n · p′ + 2 ln
µ

mb
− 2Li2

(

1− 1

r

)

− ln2 r +
3r − 2

1− r
ln r +

π2

12
+ 4 , (3.7)

C
(a)
h ,n(n · p′) =

1

r − 1

(

1 +
r

1− r
ln r

)

, (3.8)

C
(a)
h ,n̄(n · p′) =

1

ǫ2
+

1

ǫ

(

2 ln
µ

n · p′ + 1

)

+ 2 ln2
µ

n · p′ + 2 ln
µ

mb
− 2Li2

(

1− 1

r

)

− ln2 r +
2− r

r − 1
ln r +

π2

12
+ 3 , (3.9)

with r = n · p′/mb.

By proceeding in a similar way, we can extract the hard-collinear contribution from

figure 2(a) as follows

Πa,hc
µ,V (A)(p, q) = i g2s CF

f
(2)
Λb

(µ)ψ4(ω1, ω2)

n̄ · p′ − (ω1 + ω2) + i0
(1, γ5)

/̄n

2
[γ⊥µ + n̄µ] Λb(v) (3.10)
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×
∫

dD l

(2π)D
2mb n · (p′ + l)

[n · (p′+l) n̄ · (p′−k+l)+l2⊥+i0][mb n · l+i0][l2+i0] ,

where the loop integrals are identical to the corresponding case in the vacuum-to-B-meson

correlation function [13]. We then write

Πa,hc
µ,V (A)(p, q) = −αsCF

4π

f
(2)
Λb

(µ)ψ4(ω1, ω2)

n̄ · p′ − (ω1 + ω2) + i0
(1, γ5)

/̄n

2
[γ⊥µ + n̄µ] Λb(v)

×
[

2

ǫ2
+

2

ǫ

(

ln
µ2

n · p′ (ω − n̄ · p′) + 1

)

+ ln2
µ2

n · p′ (ω − n̄ · p′)

+2 ln
µ2

n · p′ (ω − n̄ · p′) −
π2

6
+ 4

]

, (3.11)

with ω = ω1 + ω2.

To facilitate the determination of the jet function for the (pseudo)-tensor correlation

functions Πµ,T (T̃ )(p, q), we can just expand eq. (3.2) in the hard-collinear region without

employing the light-cone projector in momentum space

Πa,hc
µ,V (A)(p, q) =

i g2s CF

n̄ · p′ − (ω1 + ω2) + i0

∫

dD l

(2π)D

2mb n · (p′ + l)

[n · (p′ + l) n̄ · (p′ − k + l) + l2⊥ + i0][mb n · l + i0][l2 + i0]

ǫijk
[

uTi (k1)C γ5 /n dj(k2)
] /̄n

2
γµ (1, γ5) bk(v) , (3.12)

where no information of the weak vertex is used for reduction of the Dirac algebra. It is

then evident that the hard-collinear contribution from figure 2(a) is independent of Lorenz

structure of the weak vertex, at leading power in Λ/mb.

3.1.2 Λ-baryon vertex diagrams

The one-loop contributions to Πµ,V (A)(p, q) from the Λ-baryon vertex diagrams shown in

figure 2(b) and 2(c) are given by

Πb
µ,V (A)(p, q) = − i

2
g2s

(

1 +
1

Nc

)

1

n · p′ [n̄ · p′ − (ω1 + ω2) + i0]
(3.13)

×
∫

dD l

(2π)D
1

[(p′ − k2 − l)2 + i0][(l − k1)2 + i0][l2 + i0]

×ǫijk
[

uTi (k1)Cγρ/lγ5/ndj(k2)
]

(/p
′−/k2−/l)γρ(/p′−/k1−/k2)γµ(1, γ5)bk(v) ,

Πc
µ,V (A)(p, q) = Πb

µ,V (A)(p, q) [k1 ↔ k2] , (3.14)

where the isospin symmetry has been employed to derive the second equation. As already

discussed in [13] it is more transparent to compute the loop integrals in eq. (3.13) exactly

instead of applying the method of regions, then keeping only the leading power terms in

the resulting partonic amplitude and inserting the light-cone projector of the Λb-baryon.

The three-point integral

(4π)2

i

∫

dD l

(2π)D
lα (p

′ − k2 − l)β
[(p′ − k2 − l)2 + i0][(l − k1)2 + i0][l2 + i0]

(3.15)
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can be deduced from eq. (120) of [13] with the following replacement rules

p→ p′ − k2, k → k1 . (3.16)

Based upon the argument from the power counting analysis, the leading power contribution

to Πb
µ,V (A)(p, q) can only arise from the hard-collinear region and the resulting contribution

to the jet function is found to be

Πb,hc
µ,V (A)(p, q) = − αs

4π

(

1 +
1

Nc

)

f
(2)
Λb

(µ)ψ4(ω1, ω2)

n̄ · p′ − (ω1 + ω2) + i0
(1, γ5)

/̄n

2
[γ⊥µ + n̄µ] Λb(v)

×
{[

1 + η2
η1

ln
1 + η12
1 + η2

− 3

4

] [

1

ǫ
+ ln

µ2

n · p′(ω2 − n̄ · p′) −
1

2
ln

1 + η12
1 + η2

+
5

8

η1
1 + η2

+ 2

]

+
15

32

η1
1 + η2

− 1

4

}

, (3.17)

where we have defined

ηi = −ωi/n̄ · p′ (i = 1, 2) , η12 = η1 + η2 , (3.18)

and the first relation in eq. (2.27) due to the equations of motion have been implemented.

3.1.3 Wave function renormalization

The hard-collinear contribution from the self-energy correction to the intermediate quark

propagator in figure 2(d) is independent of the Dirac structures of the weak transition

current and the baryonic interpolating current. It is straightforward to write

Πd,hc
µ,V (A)(p, q) =

αsCF

4π

f
(2)
Λb

(µ)ψ4(ω1, ω2)

n̄ · p′ − (ω1 + ω2) + i0
(1, γ5)

/̄n

2
[γ⊥µ + n̄µ] Λb(v)

×
[

1

ǫ
+ ln

µ2

n · p′(ω − n̄ · p′) + 1

]

. (3.19)

The contributions of the wave function renormalization to the external quark fields can be

taken from [13]

Π
bwf,(1)
µ,V (A) − Φ

(1)
bud,bwf ⊗ T (0) =

αsCF

8π

f
(2)
Λb

(µ)ψ4(ω1, ω2)

n̄ · p′ − (ω1 + ω2) + i0
(1, γ5)

/̄n

2
[γ⊥µ + n̄µ] Λb(v)

×
[

3

ǫ
+ 3 ln

µ2

m2
b

+ 4

]

, (3.20)

Π
uwf,(1)
µ,V (A) − Φ

(1)
bud,uwf ⊗ T (0) = Π

dwf,(1)
µ,V (A) − Φ

(1)
bud,dwf ⊗ T (0) = 0 , (3.21)

where Π
qwf,(1)
µ,V (A) (q = b , u , d) stands for the contribution to Πµ,V (A) from the wave func-

tion renormalization of the q-quark field at one loop, and Φ
(1)
bud,qwf denotes the one-loop

contribution to Φbud defined in eq. (2.21) from field renormalization of the q-quark.
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3.1.4 Box diagrams

We proceed to compute the one-loop contributions from the two box diagrams displayed

in figure 2(e) and 2(f). We can readily write

Πe
µ,V (A)(p, q)

= − i

2
g2s

(

1 +
1

Nc

)
∫

dD l

(2π)D
1

[(p′ − k + l)2 + i0][(mbv + l)2 −m2
b + i0][(l − k1)2 + i0][l2 + i0]

ǫijk
[

uTi (k1)C γρ (/k1−/l) γ5 /n dj(k2)
]

(/p
′−/k+/l) γµ (1, γ5) (mb/v+/l+mb) γ

ρ bk(v) . (3.22)

With the isospin symmetry of exchanging the up and down quark fields we can again find

Πf
µ,V (A)(p, q) = Πe

µ,V (A)(p, q) [k1 ↔ k2] . (3.23)

It is evident that no hard contribution can arise from the box diagrams and the contribution

to the jet function from figure 2(e) can be determined by expanding eq. (3.22) in the hard

collinear region systematically

Πe,hc
µ,V (A)(p, q) = i g2s

(

1 +
1

Nc

)
∫

dD l

(2π)D

n · (p′ + l)

[n · (p′ + l) n̄ · (p′ − k + l) + l2⊥ + i0][n · l n̄ · (l − k1) + l2⊥ + i0][l2 + i0]

ǫijk
[

uTi (k1)C γ5 /n dj(k2)
] /̄n

2
γµ (1, γ5) bk(v) . (3.24)

We therefore conclude that the hard-collinear contribution induced by figure 2(e) is in-

dependent of the spin structure of the weak current, given the fact that only the Taylor

expansion of the integrand in eq. (3.22) at leading power in Λ/mb and the equation of

motion for the effective b-quark are needed in obtaining eq. (3.24).

The loop integral entering the hard collinear contribution of figure 2(e) can be deduced

from eq. (128) of [13] with the substitution rules

n · p→ n · p′ , n̄ · p→ n̄ ·
(

p′ − k2
)

, n̄ · k → n̄ · k1. (3.25)

Applying the momentum-space projector of the Λb-baryon we find

Πe,hc
µ,V (A)(p, q) =

αs

4π

(

1 +
1

Nc

)

f
(2)
Λb

(µ)ψ4(ω1, ω2)

n̄ · p′ − (ω1 + ω2) + i0
(1, γ5)

/̄n

2
[γ⊥µ + n̄µ] Λb(v)

×
[

1+η12
η1

ln
1+η12
1+η2

] [

1

ǫ
+ln

µ2

n · p′(ω−n̄ · p′)+
1

2
ln

1+η12
1+η2

+1

]

. (3.26)

3.1.5 The NLO hard-scattering kernels

Now we are ready to determine the one-loop hard kernels entering QCD factorization

formulae of the correlation functions Πpar
µ,V (A)(p, q) by collecting different pieces together

Φ
(0)
bud ⊗ T

(1)
V (A) =

[

Πa,h
µ,V (A) +

(

Π
bwf,(1)
µ,V (A) − Φ

(1)
bud,bwf ⊗ T (0)

)

]

(3.27)
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+

[

Πa,hc
µ,V (A)+Πb,hc

µ,V (A)+Πc,hc
µ,V (A)+Πd,hc

µ,V (A)+Πe,hc
µ,V (A)+Πf,hc

µ,V (A)

]

,

where the terms in the first and second square brackets correspond to the hard and jet

functions at O(αs), respectively. Introducing the definition

Πµ,V (A) = (1, γ5)
/̄n

2

[

Π⊥,V (A) γ⊥µ +Πn̄,V (A) n̄µ +Πn,V (A) nµ
]

Λb(v) , (3.28)

we can readily obtain the following factorization formulae for the vacuum-to-Λb-baryon

correlation functions at NLO

Π⊥,V (A) = f
(2)
Λb

(µ)C⊥,V (A)(n · p′, µ)
∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω1 + ω2 − n̄ · p′ − i0

J

(

µ2

n̄ · p′ ωi
,
ωi

n̄ · p′
)

ψ4(ω1, ω2, µ) , (3.29)

Πn̄,V (A) = f
(2)
Λb

(µ)Cn̄,V (A)(n · p′, µ)
∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω1 + ω2 − n̄ · p′ − i0

J

(

µ2

n̄ · p′ ωi
,
ωi

n̄ · p′
)

ψ4(ω1, ω2, µ) , (3.30)

Πn,V (A) = f
(2)
Λb

(µ)Cn,V (A)(n · p′, µ)
∫ ∞

0
dω1

∫ ∞

0
dω2

ψ4(ω1, ω2, µ)

ω1 + ω2 − n̄ · p′ − i0
, (3.31)

where the renormalized hard coefficients are given by

C⊥,V (A)(n · p′, µ) = 1− αs(µ)CF

4π

[

2 ln2
µ

n · p′ + 5 ln
µ

mb
− 2Li2

(

1− 1

r

)

− ln2 r +
3r − 2

1− r
ln r +

π2

12
+ 6

]

, (3.32)

Cn̄,V (A)(n · p′, µ) = 1− αs(µ)CF

4π

[

2 ln2
µ

n · p′ + 5 ln
µ

mb
− 2Li2

(

1− 1

r

)

− ln2 r +
2− r

r − 1
ln r +

π2

12
+ 5

]

, (3.33)

Cn,V (A)(n · p′, µ) = −αs(µ)CF

4π

[

1

r − 1

(

1 +
r

1− r
ln r

)]

, (3.34)

and the renormalized jet function reads

J

(

µ2

n̄ · p′ ωi
,
ωi

n̄ · p′
)

= 1 +
αs(µ)

4π

4

3

{

ln2
µ2

n · p′ (ω − n̄ · p′) − 2 ln
ω − n̄ · p′
ω2 − n̄ · p′ ln

µ2

n · p′ (ω − n̄ · p′)

−1

2
ln

µ2

n · p′ (ω − n̄ · p′) − ln2
ω − n̄ · p′
ω2 − n̄ · p′ + 2 ln

ω − n̄ · p′
ω2 − n̄ · p′

[

ω2 − n̄ · p′
ω1

− 3

4

]

−π
2

6
− 1

2

}

. (3.35)

Several comments on QCD factorization of the correlation functions Πµ,V (A) at NLO

are in order.
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• Since one universal jet function enters the factorization formulae of the correlation

functions at O(αs) and at leading power in Λ/mb, the symmetry breaking effects of

the form factor relations in eq. (2.7) can only arise from the perturbative fluctuations

at mb scale, as reflected by the distinct hard functions for different weak currents. To

determine the hard collinear contribution to the large-energy symmetry violations, we

need to evaluate a specific sub-leading power contribution to the correlation functions

induced by the Λ-baryon current. Technically, this can be achieved by introducing

the vacuum-to-Λb-baryon correlation functions with the “wrong” light-cone projector

acting on the Λ-baryon current as proposed in [2]. The hard-collinear symmetry

breaking effects are shown to be of the same power in Λ/mb as the soft overlap

contributions, despite the fact that they are computed with the sum rules constructed

from the power-suppressed correlation functions. This is by all means not surprising,

because hadronic dispersion relations of the sub-leading correlation functions also

involve an additional power-suppressed factor mΛ/n · p′. However, the numerical

impacts of such hard-collinear symmetry violations defined by a hadronic matrix

element of the “B-type” SCET current turn out to be insignificant from the same

LCSR approach [2], we will therefore not include it in the following analysis. Also,

evaluating hadronic matrix elements from the power-suppressed correlation functions

are less favored from the standard philosophy of QCD sum rules, since the systematic

uncertainty generated by the parton-hadron duality approximation is difficult to be

under control.

• In naive dimension regularization the hard matching coefficients satisfy the relations

C⊥,V = C⊥,A, Cn̄,V = Cn̄,A and Cn,V = Cn,A to all orders in perturbation theory

due to the U(1) helicity symmetry for both massless QCD and SCET Lagrangian

functions [39]. It is then evident that the axial-vector Λb → Λ form factors at large

hadronic recoil will be identical to the corresponding vector form factors within our

approximations.

• Only the weak vertex diagram and the two box diagrams could in principle yield hard-

collinear contributions sensitive to the Dirac structure of the weak current, however,

such sensitivity is shown to disappear at leading power in Λ/mb after expanding

the involved loop integrals in the hard-collinear region, as indicated by eqs. (3.12)

and (3.24). This leads us to conclude that the hard-collinear contributions to the

correlation functions Πµ,a(p, q) are independent of the spin structure of the weak

transition current, at leading power in Λ/mb.

We now turn to consider factorization of the (pseudo)-tensor correlation functions

Πµ,T (T̃ ) at one loop. The hard coefficient functions can be extracted from the matching

calculation of the weak (pseudo)-tensor currents from QCD onto SCET [40]

[q̄(0) (1, γ5) i σµν b(0)]QCD (3.36)

→
∫

dŝ
[

ξ̄Whc

]

(s n) (1, γ5)
{

C̃A
T (T̃ )

(ŝ) [i σµν ] + C̃B
T (T̃ )

(ŝ) [n̄µγν − n̄νγµ]
}

[S†h](0) + . . . ,
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where the ellipses stand for the terms absent at O(αs) as well as the sub-leading power

currents, and we have defined the dimensionless convolution variable ŝ = smb. We have

introduced the hard-collinear and the soft Wilson lines

Whc(x) = P

{

Exp

[

i gs

∫ 0

−∞

dt n ·Ahc(x+ t n)

]}

,

S(x) = P

{

Exp

[

i gs

∫ 0

−∞

dt n̄ ·As(x+ t n̄)

]}

(3.37)

to construct the building blocks invariant under both soft and hard-collinear gauge transfor-

mations. Performing the Fourier transformation from the momentum space to the position

space yields [39, 40]

CA
T (T̃ )

(n · p′, µ) = 1− αs(µ)CF

4π

[

2 ln2
µ

n · p′ + 7 ln
µ

mb
− 2Li2

(

1− 1

r

)

− ln2 r

+
4r − 2

1− r
ln r +

π2

12
+ 6

]

, (3.38)

CB
T (T̃ )

(n · p′, µ) =
αs(µ)CF

4π

[

2 r

1− r
ln r

]

. (3.39)

Decomposing the correlation functions Πµ,T (T̃ ) in terms of Lorenz invariant amplitudes

Πµ,T (T̃ ) = (−1, γ5)
/̄n

2

[

Π⊥,T (T̃ ) γ⊥µ +
Π+,T (T̃ )

2

((

1− n · p′
mΛb

)

n̄µ − nµ

)

]

Λb(v) , (3.40)

it is straightforward to derive the factorization formulae

Π⊥,T (T̃ ) = mΛb
f
(2)
Λb

(µ) CA
T (T̃ )

(n · p′, µ)
∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω1 + ω2 − n̄ · p′ − i0

J

(

µ2

n̄ · p′ ωi
,
ωi

n̄ · p′
)

ψ4(ω1, ω2, µ)

+mΛb
f
(2)
Λb

(µ)CB
T (T̃ )

(n · p′, µ)
∫ ∞

0
dω1

∫ ∞

0
dω2

ψ4(ω1, ω2, µ)

ω1+ω2−n̄ · p′−i0 , (3.41)

Π+,T (T̃ ) = mΛb
f
(2)
Λb

(µ) CA
T (T̃ )

(n · p′, µ)
∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω1 + ω2 − n̄ · p′ − i0

J

(

µ2

n̄ · p′ ωi
,
ωi

n̄ · p′
)

ψ4(ω1, ω2, µ) . (3.42)

3.2 Factorization-scale independence

We are now in a position to verify the factorization-scale independence of the correlation

functions Πµ,a(p, q) explicitly at one loop. Having the one-loop factorization formulae at

hand we can readily write

d

d lnµ
Π⊥,V (A) =

d

d lnµ
Πn̄,V (A)

=
αs(µ)

4π

4

3

∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω1 + ω2 − n̄ · p′ − i0
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u(k1)

b(v)

d(k2)
(a)

(e)

(b) (c) (d)

(f) (g) (h)

(i) (j)

Figure 3. Radiative correction to the Λb-baryon DA ψ4(ω1, ω2, µ) at one loop.

×
[

4 ln
µ

ω − n̄ · p′ − 4 ln
ω − n̄ · p′
ω2 − n̄ · p′ − 6

]

[

f
(2)
Λb

(µ)ψ4(ω1, ω2, µ)
]

+

∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω1+ω2−n̄ · p′−i0
d

d lnµ

[

f
(2)
Λb

(µ)ψ4(ω1, ω2, µ)
]

+O(α2
s) , (3.43)

d

d lnµ
Π⊥,T (T̃ ) =

d

d lnµ
Π+,T (T̃ )

=
d

d lnµ
Π⊥,V (A)−

αs(µ)

4π

8

3
f
(2)
Λb

(µ)

∫ ∞

0
dω1

∫ ∞

0
dω2

ψ4(ω1, ω2, µ)

ω1+ω2−n̄ · p′−i0 , (3.44)

d

d lnµ
Πn,V (A) = O(α2

s) , (3.45)

where the second term in the evolution equation (3.44) is due to renormalization of the

(pseudo)-tensor currents in QCD, since we do not distinguish the factorization and the

renormalization scales in dimensional regularization.

At present the one-loop evolution equation of the Λb-baryon DA ψ4(ω1, ω2, µ) is not

explicitly known in the literature, we will compute the factorization-scale dependence of

the convolution integral

∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω1 + ω2 − n̄ · p′ − i0

d

d lnµ

[

f
(2)
Λb

(µ)ψ4(ω1, ω2, µ)
]

(3.46)

at one loop in detail. This amounts to extract the UV divergence of the amplitude of the

10 diagrams displayed in figure 3.
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Applying the Wilson-line Feynman rules we can compute the effective diagram dis-

played in figure 3(a) as

Φ
(1)
bud,a ⊗ T (0)

= − i

2
g2s

(

1 +
1

Nc

)
∫

dD l

(2π)D
1

[(k1 + l)2 + i0][n̄ · (p′ − k − l) + i0][−v · l + i0][l2 + i0]

ǫijk
[

uTi (k1)C /v (/k1 + /l) γ5 /n dj(k2)
]

(1, γ5)
/̄n

2
γµ (γ⊥µ + n̄µ) bk(v) . (3.47)

Evaluating the loop integral with the standard techniques yields

d

d lnµ

[

Φ
(1)
bud,a ⊗ T (0)

]

= −αs(µ)

2π

(

1 +
1

Nc

)

n̄ · (p′ − k)

n̄ · k1
ln

n̄ · k − n̄ · p′
n̄ · k2 − n̄ · p′ Φ

(0)
bud ⊗ T (0) ,

(3.48)

which cancels the factorization-scale dependence of the QCD amplitude from the dia-

gram 2(e) in eq. (3.26) completely. Based upon the isospin symmetry argument we can

readily obtain

d

d lnµ

[

Φ
(1)
bud,b ⊗ T (0)

]

= −αs(µ)

2π

(

1 +
1

Nc

)

n̄ · (p′ − k)

n̄ · k2
ln

n̄ · k − n̄ · p′
n̄ · k1 − n̄ · p′ Φ

(0)
bud ⊗ T (0) .

(3.49)

Along the same vein, the light-quark-Wilson-line diagram in figure 3(c) can be com-

puted as

Φ
(1)
bud,c ⊗ T (0) = − i g2s CF

n̄ · p′ − n̄ · k + i0

∫

dD l

(2π)D
1

[(k1 + l)2 + i0][n̄ · (p′ − k − l) + i0][l2 + i0]

ǫijk
[

uTi (k1)C /̄n (/k1 + /l) γ5 /n dj(k2)
]

(1, γ5)
/̄n

2
(γ⊥µ + n̄µ) bk(v) . (3.50)

A few comments on evaluating Φ
(1)
bud,c ⊗ T (0) are in order.

• The equation of motion for a soft u-quark field uT(k1)C /k1 = 0 is needed to reduce

the Dirac structure of the light-quark sector

[

uTi (k1)C /̄n (/k1 + /l) γ5 /n dj(k2)
]

=
[

uTi (k1)C /̄n (/k1⊥ + /l⊥) γ5 /n dj(k2)
]

∝ 2 n̄ · k1
[

uTi (k1)C γ5 /n dj(k2)
]

,

where the second step should be understood after performing the integral over the

loop momentum l.

• Since the involved loop integral develops both UV and IR singularities, a fictitious

gluon mass mg will be introduced to regularize the soft divergence for the sake of

separating IR and UV divergences.

• Employing the Georgi parametrization trick leads to

d

d lnµ

[

Φ
(1)
bud,c ⊗ T (0)

]

=
αs(µ)CF

π

[

n̄ · (k2 − p′)

n̄ · k1
ln
n̄ · k2 − n̄ · p′
n̄ · k − n̄ · p′ + 1

]

Φ
(0)
bud ⊗ T (0) ,

(3.51)
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which further implies that under the isospin symmetry

d

d lnµ

[

Φ
(1)
bud,e ⊗ T (0)

]

=
αs(µ)CF

π

[

n̄ · (k1 − p′)

n̄ · k2
ln
n̄ · k1 − n̄ · p′
n̄ · k − n̄ · p′ + 1

]

Φ
(0)
bud ⊗ T (0) .

(3.52)

• Inspecting the amplitudes of the effective diagrams in figure 3(i) and 3(j) yields

Φ
(1)
bud,i ⊗ T (0) = − 1

2CF

(

1 +
1

Nc

)

Φ
(1)
bud,c ⊗ T (0) , (3.53)

Φ
(1)
bud,j ⊗ T (0) = − 1

2CF

(

1 +
1

Nc

)

Φ
(1)
bud,e ⊗ T (0) . (3.54)

We then conclude that the single logarithmic terms in the evolution equations of

d

d lnµ

[(

Φ
(1)
bud,c +Φ

(1)
bud,i

)

⊗ T (0)
]

,
d

d lnµ

[(

Φ
(1)
bud,e +Φ

(1)
bud,j

)

⊗ T (0)
]

(3.55)

cancel against the ones in the QCD amplitudes for the diagrams 2(b) and 2(c) as

presented in (3.17) and (3.14), respectively.

We proceed to evaluate the contribution from the effective diagram displayed in fig-

ure 3(d)

Φ
(1)
bud,d ⊗ T (0)

= − i

2

g2s
n̄ · p′ − n̄ · k + i0

(

1 +
1

Nc

)
∫

dD l

(2π)D
1

[(k1 + l)2 + i0][(k2 − l)2 + i0][l2 + i0]

ǫijk
[

uTi (k1)C γα (/k1 + /l) γ5 /n (/k2 − /l) γα dj(k2)
]

(1, γ5)
/̄n

2
(γ⊥µ + n̄µ) bk(v) . (3.56)

The factorization-scale dependence of Φ
(1)
bud,d ⊗ T (0) can be readily determined as

d

d lnµ

[

Φ
(1)
bud,d ⊗ T (0)

]

=
αs(µ)

4π

(

1 +
1

Nc

)

Φ
(0)
bud ⊗ T (0) . (3.57)

The self-energy correction to the light-cone Wilson lines shown in figure 3(f) vanishes in

Feynman gauge due to n̄2 = 0.

We further turn to compute the contributions from the heavy-quark-Wilson-line dia-

grams shown in figure 3(g) and (h)

Φ
(1)
bud,g ⊗ T (0) = Φ

(1)
bud,h ⊗ T (0)

=
i

2

g2s
n̄ · p′ − n̄ · k + i0

(

1 +
1

Nc

)
∫

dD l

(2π)D
1

[v · l + i0][n̄ · (p′ − k + l) + i0][l2 + i0]

ǫijk
[

uTi (k1)C γ5 /n dj(k2)
]

(1, γ5)
/̄n

2
γµ (γ⊥µ + n̄µ) bk(v) . (3.58)

Evaluating the UV divergent terms of Φ
(1)
bud,g(h) ⊗ T (0) explicitly leads to

d

d lnµ

[

Φ
(1)
bud,g ⊗ T (0)

]

=
d

d lnµ

[

Φ
(1)
bud,h ⊗ T (0)

]
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= −αs(µ)

2π

(

1 +
1

Nc

)

ln
µ

n̄ · k − n̄ · p′ Φ
(0)
bud ⊗ T (0) , (3.59)

which gives the desired cusp anomalous dimension to compensate the corresponding terms

in the QCD amplitude of the diagram in figure 2(a) as presented in eqs. (3.6) and (3.11).

Finally, we need to consider the LSZ term due to renormalization of the external light

quark fields in QCD and of the heavy quark in HQET

Zq = 1− αs(µ)CF

4π

1

ǫ
, ZQ = 1 +

αs(µ)CF

2π

1

ǫ
, (3.60)

which gives rise to
d

d lnµ

[

Zq Z
1/2
Q Φ

(0)
bud ⊗ T (0)

]

= O(α2
s) . (3.61)

Putting all the pieces together we obtain

∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω1 + ω2 − n̄ · p′ − i0

d

d lnµ

[

f
(2)
Λb

(µ)ψ4(ω1, ω2, µ)
]

= −αs(µ)

4π

4

3

∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω1 + ω2 − n̄ · p′ − i0

×
[

4 ln
µ

ω − n̄ · p′ − 4 ln
ω − n̄ · p′
ω2 − n̄ · p′ − 5

]

[

f
(2)
Λb

(µ)ψ4(ω1, ω2, µ)
]

, (3.62)

from which we can readily deduce

d

d lnµ
Π⊥,V (A) =

d

d lnµ
Πn̄,V (A)

= −αs(µ)

4π

4

3
f
(2)
Λb

(µ)

∫ ∞

0
dω1

∫ ∞

0
dω2

ψ4(ω1, ω2, µ)

ω1 + ω2 − n̄ · p′ − i0
. (3.63)

The residual µ-dependence of Π⊥,V (A) in eq. (3.63) stems from the UV renormalization of

the baryonic current as displayed in (2.13). Differentiating the renormalization scales for

the interpolating current of the Λ-baryon and for the weak transition current in QCD from

the factorization scale (see the next section for details), we reach the desired conclusion

that the factorization-scale dependence cancels out completely in the factorized expressions

of the correlation functions Πµ,a(p, q) at one loop.

3.3 Resummation of large logarithms

The objective of this section is to sum the parametrically large logarithms to all orders at

NLL in perturbative matching coefficients by solving RG evolution equations in momentum

space. Following the argument of [13] the characterized scale of the jet function µhc is

comparable to the hadronic scale µ0 entering the initial condition of the Λb-baryon DA

in practice, we will not resum logarithms of µhc/µ0 from the RG running of the hadronic

wave function when the factorization scale is chosen as a hard-collinear scale of order√
n · p′ Λ. Also, the normalization parameter f

(2)
Λb

(µ) will be taken from the HQET sum

rule calculation directly instead of converting it to the corresponding QCD coupling, thus

in contrast to [13] no RG evolution of f
(2)
Λb

(µ) at the two-loop order is in demand.
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Prior to presenting the RG evolution equations of the hard functions we need to distin-

guish the renormalization and the factorization scales which are set to be equal in dimen-

sional regularization. In doing so we introduce ν and ν ′ to denote the renormalization scales

for the baryonic current and the weak current in QCD, respectively. It is evident that the

dependence of ln ν needs to be separated from the jet function, while the ln ν ′ dependence

requires to be factorized from the hard functions CT (T̃ ). Following [41] the distinction

between the renormalization and the factorization scales can be accounted by writing

J

(

µ2

n̄ · p′ ωi
,
ωi

n̄ · p′ , ν
)

= J

(

µ2

n̄ · p′ ωi
,
ωi

n̄ · p′
)

+ δJ

(

µ2

n̄ · p′ ωi
,
ωi

n̄ · p′ , ν
)

, (3.64)

CA
T (T̃ )

(n · p′, µ, ν ′) = CA
T (T̃ )

(n · p′, µ) + δCA
T (T̃ )

(n · p′, µ, ν ′) , (3.65)

where J
(

µ2

n̄·p′ ωi
, ωi

n̄·p′

)

and CA
T (T̃ )

(n · p′, µ) on the right-hand sides refer to the matching

coefficients given by eqs. (3.35) and (3.38). Exploiting the RG evolution equations

d

d ln ν
ln δJ

(

µ2

n̄ · p′ ωi
,
ωi

n̄ · p′ , ν
)

= −
∑

k

(

αs(µ)

4π

)k

γ
(k)
Λ , (3.66)

d

d ln ν ′
ln δCA

T (T̃ )
(n · p′, µ, ν ′) = −

∑

k

(

αs(µ)

4π

)k

γ
(k)

T (T̃ )
, (3.67)

and implementing the renormalization conditions

δJ

(

µ2

n̄ · p′ ωi
,
ωi

n̄ · p′ , µ
)

= 0 , δCA
T (T̃ )

(n · p′, µ, µ) = 0 , (3.68)

we find

δJ

(

µ2

n̄ · p′ ωi
,
ωi

n̄ · p′ , ν
)

= −
(

αs(µ)

4π

)

γ
(1)
Λ ln

ν

µ
+O

(

α2
s

)

, (3.69)

δCA
T (T̃ )

(n · p′, µ, ν ′) = −
(

αs(µ)

4π

)

γ
(1)

T (T̃ )
ln
ν ′

µ
+O

(

α2
s

)

, (3.70)

The anomalous dimensions γ
(k)
Λ are already defined in eq. (2.13), and the renormalization

constants γ
(k)

T (T̃ )
at two loops are given by [41]

γ
(1)

T (T̃ )
= 2CF , γ

(2)

T (T̃ )
= −CF

[

19CF − 257

9
CA +

52

9
nf TF

]

, (3.71)

where nf = 5 denotes the number of active quark flavours.

Now we are ready to present the jet function and the hard function for the weak tensor

current with the renormalization scales distinct from the factorization scale

J

(

µ2

n̄ · p′ ωi
,
ωi

n̄ · p′ , ν
)

= 1 +
αs(µ)

4π

4

3

{

ln2
µ2

n · p′ (ω − n̄ · p′) − 2 ln
ω − n̄ · p′
ω2 − n̄ · p′ ln

µ2

n · p′ (ω − n̄ · p′)
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−1

2
ln

ν2

n · p′ (ω − n̄ · p′) − ln2
ω − n̄ · p′
ω2 − n̄ · p′ + 2 ln

ω − n̄ · p′
ω2 − n̄ · p′

[

ω2 − n̄ · p′
ω1

− 3

4

]

−π
2

6
− 1

2

}

, (3.72)

CA
T (T̃ )

(n · p′, µ, ν ′)

= 1− αs(µ)CF

4π

[

2 ln2
µ

n · p′ + 5 ln
µ

mb
+ 2 ln

ν ′

mb
− 2Li2

(

1− 1

r

)

− ln2 r

+
4r − 2

1− r
ln r +

π2

12
+ 6

]

. (3.73)

Resummation of large logarithms in the hard functions at NLL can be achieved by solving

the RG equations

d

d lnµ
Ci(n · p′, µ, ν ′) =

[

−Γcusp(αs) ln
µ

n · p′ + γ(αs)

]

Ci(n · p′, µ, ν ′) , (3.74)

d

d ln ν ′
CA
T (T̃ )

(n · p′, µ, ν ′) =

[

−
∑

k

(

αs(µ)

4π

)k

γ
(k)

T (T̃ )

]

CA
T (T̃ )

(n · p′, µ, ν ′) , (3.75)

where Ci stands for C⊥,V (A), Cn̄,V (A) and C
A
T (T̃ )

, the cusp anomalous dimension Γcusp(αs)

at the three-loop order and the remaining anomalous dimensions γ(αs) and γ
(k)

T (T̃ )
at two

loops are needed (see [42] for the detailed expressions). Solving eqs. (3.74) and (3.75) yields

C⊥(n̄),V (A)(n · p′, µ) = U1(n · p′/2, µh, µ)C⊥(n̄),V (A)(n · p′, µh) , (3.76)

CA
T (T̃ )

(n · p′, µ, ν ′) = U1(n · p′/2, µh, µ)U2(ν
′
h, ν

′)CA
T (T̃ )

(n · p′, µh, ν ′h) , (3.77)

where U1(n · p′/2, µh, µ) can be deduced from U1(Eγ , µh, µ) in [42] with Eγ → n · p′/2, and
U2(ν

′
h, ν

′) can be read from U2(µh2, µ) in [13] with the following substituent rules

µh2 → ν ′h , µ→ ν ′ , γ̃(k) → −γ(k−1)

T (T̃ )
. (3.78)

Finally we present NLL resummmation improved factorized formulae for the invariant

amplitudes entering the Lorenz decomposition of the correlation functions Πµ,a(p, q)

Π⊥,V (A) = f
(2)
Λb

(µ)
[

U1(n · p′/2, µh, µ)C⊥,V (A)(n · p′, µh)
]

∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω1+ω2−n̄ · p′−i0J
(

µ2

n̄ · p′ ωi
,
ωi

n̄ · p′ , ν
)

ψ4(ω1, ω2, µ) , (3.79)

Πn̄,V (A) = f
(2)
Λb

(µ)
[

U1(n · p′/2, µh, µ)Cn̄,V (A)(n · p′, µh)
]

∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω1+ω2−n̄ · p′−i0J
(

µ2

n̄ · p′ωi
,
ωi

n̄ · p′ , ν
)

ψ4(ω1, ω2, µ) , (3.80)

Π⊥,T (T̃ ) = mΛb
f
(2)
Λb

(µ)
[

U1(n · p′/2, µh, µ)U2(ν
′
h, ν

′)CA
T (T̃ )

(n · p′, µh, ν ′h)
]

∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω1 + ω2 − n̄ · p′ − i0
J

(

µ2

n̄ · p′ ωi
,
ωi

n̄ · p′ , ν
)

ψ4(ω1, ω2, µ)

+ mΛb
f
(2)
Λb

(µ) CB
T (T̃ )

(n · p′, µ)
∫ ∞

0
dω1

∫ ∞

0
dω2

ψ4(ω1, ω2, µ)

ω1 + ω2 − n̄ · p′ − i0
. (3.81)

– 23 –



J
H
E
P
0
2
(
2
0
1
6
)
1
7
9

where µ needs to be taken as a hard-collinear scale of order
√
n · p′ Λ and µh should be set

to a hard scale of order n · p′ ∼ mb. Choosing ν
′
h = mb to eliminate the single logarithmic

term ln (ν ′h/mb) in CA
T (T̃ )

(n · p′, µh, ν ′h), the evolution function U2(ν
′
h, ν

′) can be further

reduced to one provided that ν ′ = mb.

4 The LCSR of Λb → Λ form factors at O(αs)

It is now a straightforward task to derive the NLL resummmation improved sum rules

for the Λb → Λ form factors. Working out dispersion forms of the factorized correlation

functions with the aid of the relations in appendix A and applying the standard strategies

to construct QCD sum rules, we find

fΛ(ν) (n · p′) e−m2
Λ/(n·p

′ ωM )
{

fTΛb→Λ(q
2), gTΛb→Λ(q

2)
}

= f
(2)
Λb

(µ)
[

U1(n · p′/2, µh, µ)C⊥,V (A)(n · p′, µh)
]

∫ ωs

0
dω′e−ω′/ωMψ4,eff(ω

′, µ, ν) , (4.1)

fΛ(ν) (n · p′) e−m2
Λ/(n·p

′ ωM )
{

f0Λb→Λ(q
2), g0Λb→Λ(q

2)
}

= f
(2)
Λb

(µ)
[

U1(n · p′/2, µh, µ)Cn̄,V (A)(n · p′, µh)
]

∫ ωs

0
dω′ e−ω′/ωM ψ4,eff(ω

′, µ, ν)

+ f
(2)
Λb

(µ)

(

1− n · p′
mΛb

)

Cn,V (A)(n · p′, µh)
∫ ωs

0
dω′ e−ω′/ωM ψ̃4(ω

′, µ) , (4.2)

fΛ(ν) (n · p′) e−m2
Λ/(n·p

′ ωM )
{

f+Λb→Λ(q
2), g+Λb→Λ(q

2)
}

= f
(2)
Λb

(µ)
[

U1(n · p′/2, µh, µ)Cn̄,V (A)(n · p′, µh)
]

∫ ωs

0
dω′ e−ω′/ωM ψ4,eff(ω

′, µ, ν)

− f
(2)
Λb

(µ)

(

1− n · p′
mΛb

)

Cn,V (A)(n · p′, µh)
∫ ωs

0
dω′ e−ω′/ωM ψ̃4(ω

′, µ) , (4.3)

fΛ(ν) (n · p′) e−m2
Λ/(n·p

′ ωM )
{

hTΛb→Λ(q
2), h̃TΛb→Λ(q

2)
}

= f
(2)
Λb

(µ)
{[

U1(n · p′/2, µh, µ)U2(ν
′
h, ν

′)CA
T (T̃ )

(n · p′, µh, ν ′h)
]

+ CB
T (T̃ )

(n · p′, µ)
}

×
∫ ωs

0
dω′ e−ω′/ωM ψ4,eff(ω

′, µ, ν) , (4.4)

fΛ(ν) (n · p′) e−m2
Λ/(n·p

′ ωM )
{

h+Λb→Λ(q
2), h̃+Λb→Λ(q

2)
}

= f
(2)
Λb

(µ)
[

U1(n · p′/2, µh, µ)U2(ν
′
h, ν

′)CA
T (T̃ )

(n · p′, µh, ν ′h)
]

×
∫ ωs

0
dω′ e−ω′/ωMψ4,eff(ω

′, µ, ν) , (4.5)

where we need to multiply out all [1 +O(αs)] factors involved in the NLO perturbative

matching coefficients and the RG evolution functions, and drop out O(α2
s) terms beyond the

NLL approximation [42]. The effective “distribution amplitude” ψ4,eff(ω
′, µ, ν) is given by

ψ4,eff(ω
′, µ, ν) = ψ̃4(ω

′, µ) +
αs(µ)

4π

4

3

{
∫ ω′

0
dω

[

2

ω′ − ω
ln

µ2

n · p′ (ω′ − ω)

]

⊕

ψ̃4(ω, µ)
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− 2ω′

∫ ω′

0
dω

[

1

ω′ − ω
ln
ω′ − ω

ω′

]

⊕

φ4(ω, µ)

−ω′

∫ ∞

ω′

dω

[

ω

ω′
ln2

µ2

n · p′ ω′
− 2 ln

µ2

n · p′ ω′
ln
ω − ω′

ω′
− 11

2
ln
ω − ω′

ω′

− π2 + 1

2

ω

ω′
+

(

2π2

3
− 11

2

)]

dφ4(ω, µ)

dω

−
∫ ∞

ω′

[

ln2
µ2

n · p′ ω′
+ 2 ln

ω − ω′

ω
− π2 + 1

2

]

φ4(ω, µ)

−
∫ ω′

0
dω

[

2 ln2
µ2

n · p′ (ω′−ω)+
1

2
ln2

ν2

n · p′ (ω′−ω)

]

dψ̃4(ω, µ)

dω

}

, (4.6)

where ψ4(ω1, ω2, µ) = ψ4(uω, (1−u)ω, µ) is supposed to be independent of the momentum

fraction u as motivated by [2, 15, 19] and will be set to φ4(ω, µ) for brevity, and ψ̃4(ω, µ)

defined in eq. (2.30) can be identified as ψ̃4(ω, µ) = ω φ4(ω, µ) within this approximation.

The ⊕ function is defined as
∫ ∞

0
dω
[

f(ω, ω′)
]

⊕
g(ω) =

∫ ∞

0
dω f(ω, ω′)

[

g(ω)− g(ω′)
]

. (4.7)

The following observations on the structures of the NLL sum rules can be made.

• Due to the integration bounds of ω′ after the continuum subtraction, the scaling

behaviour ω′ ∼ ωs ∼ Λ2/(n · p′) implies that the natural choice for the factorization

scale µ of lnk
[

µ2/ (n · p′ ω′)
]

(k = 1 , 2) in ψ4,eff(ω
′, µ, ν) should be µs ∼ s0 = n·p′ ω′ ∼

Λ2 in contrast to the favored choice µhc ∼ n · p′ Λ in the factorization formulae of the

correlation functions presented in eqs. (3.79), (3.80) and (3.81).

• Due to the power counting ω ∼ Λ determined by the canonical behavious of the Λb-

baryon DA φ4(ω, µ), the logarithmic term ln [(ω − ω′)/ω′] appeared in ψ4,eff(ω
′, µ, ν)

is counted as ln(n · p′/Λ) in the heavy-quark limit. Such enhanced logarithm arises

from the contributions of the Λ-baryon vertex diagrams and the two box diagrams

displayed in figure 2 and it shares the same origin as the rapidity singularities prevent-

ing a complete factorization of heavy-to-light form factors in SCETII (see also [11]).

It is evident that the standard momentum-space resummation technique cannot be

applied to cope with this term which is independent of the factorization scale. Investi-

gating resummation of such logarithm with the rapidity RG evolution equations [43–

46] is apparently of conceptual interest and we will pursue this endeavour in a future

work.

5 Numerical results

Having at hand the NLL resummation improved sum rules for the Λb → Λ form factors

we are ready to explore their phenomenological implications. We will begin the numerical

analysis with specifying the non-perturbative models for the Λb-baryon DA, determining

the “internal” sum rule parameters and evaluating the normalization parameters fΛ(ν) and
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f
(2)
Λb

(µ). Theory predictions for the Λb → Λ form factors at large hadronic recoil will be

further presented and extrapolation of the form factors toward large momentum transfer

will be performed by applying the z-series expansion and matching the calculated form

factors from the LCSR approach at low q2.

5.1 Theory input parameters

Light-cone wave functions of the Λb-baryon at small transverse separations have attracted

renewed attention [15, 19, 20] due to the available measurements of the baryonic Λb →
Λ ℓ+ℓ− decays at the LHC and the Tevatron [47–49]. Improved models of the twist-2 Λb-

baryon DA in compatible with the RG evolution equation at one loop have been discussed

in [19, 20], however, no dedicated study of the twist-4 DA ψ4(ω1, ω2, µ) (or φ4(ω, µ)),

taking into account the QCD constraints, exists in the literature to the best of our knowl-

edge. Motivated by the “on-shell-wave-function” analysis of [19] we consider three different

parameterizations of the Λb-baryon DA φ4(ω, µ0) at a soft scale

φI4(ω, µ0) =
1

ω2
0

e−ω/ω0 ,

φII4 (ω, µ0) =
1

ω2
0

e−(ω/ω1)
2

, ω1 =
√
2ω0 ,

φIII4 (ω, µ0) =
1

ω2
0

[

1−
√

(

2− ω

ω2

)

ω

ω2

]

θ(ω2 − ω) , ω2 =

√

12

10− 3π
ω0 , (5.1)

where φII4 (ω, µ0) and φ
III
4 (ω, µ0) are analogies to the mesonic counterparts proposed in [11]

for the sake of maximizing the model dependence of φ4(ω, µ0) and the normalization con-

stants are determined by
∫ ∞

0
dω ω φ4(ω, µ) = 1 . (5.2)

Applying the equations of motion with the Wandzura-Wilczek approximation yields

ψ2(ω1, ω2, µ0) = ω1 ω2
dψ4(ω1, ω2, µ0)

dω1 dω2
, (5.3)

in analogy to the Wandzura-Wilczek relation for the B-meson DA [50]. We will take

φI4(ω, µ0) as our default model in computing the Λb → Λ form factors from the LCSR

approach and take into account the numerical impact of the alternative parameterizations

φII,III4 (ω, µ0) in the uncertainty analysis. To illustrate the main features of the above-

mentioned three models we present the small ω behaviors of φ4(ω, µ0) in figure 4 with a

reference value ω0 = 280MeV. We remark that these models do not develop the radiative

tail at large ω due to perturbative corrections, and they should be merely treated as an

effective description of φ4(ω, µ0) at small ω where QCD factorization of the correlation

functions is established.

Regarding the determination of the internal sum rule parameters we follow closely the

strategies proposed to explore the sum rules for the B → π form factors [13].
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Figure 4. The small ω behaviors for three different models of φ4(ω, µ0). Solid (red), dotted (blue)

and dashed (green) curves refer to φI4, φ
II
4 and φIII4 , respectively.

• To reduce the sysmematic uncertainty induced by the parton-hadron duality ap-

proximation, the continuum contributions to the dispersion forms of the correlation

functions, displayed in eqs. (3.79), (3.80), (3.81), (3.31) and (3.42) need to be under

reasonable control, i.e., less than 40 %.

• The sum rule predictions should be stable with respect to the variation of the Borel

mass parameter ωM . More concretely, we impose the following condition on the

logarithmic derivative to a given form factor

∂ lnF i
Λb→Λ

∂ lnωM
≤ 40% , (5.4)

where F i
Λb→Λ stands for a general Λb → Λ form factor.

The allowed regions of the Borel parameter and the effective duality threshold are found

to be

M2 ≡ n · p′ ωM = (2.6± 0.4)GeV2 , s0 ≡ n · p′ ωs = (2.56± 0.10)GeV2 , (5.5)

where the obtained interval of s0 is in agreement with that adopted in [2, 24].

The coupling f
(2)
Λb

(µ0) will be taken from the NLO HQET sum rule calculation [51]

f
(2)
Λb

(1GeV) = (3.0± 0.5)× 10−2GeV3 . (5.6)

In order to reduce the theory uncertainty induced by the Borel mass parameter ωM we will

employ the two-point QCD sum rules of the normalization parameter fΛ(ν) [52]

f2Λ e
−m2

Λ/M
2
=

1

640π4

∫ s0

m2
s

ds e−s/M2
s

(

1− m2
s

s

)5
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− 1

192π2

〈αs

π
GG
〉

∫ s0

m2
s

ds e−s/M2 m2
s

s2

(

1− m2
s

s

) (

1− 2m2
s

s

)

(5.7)

at tree level, where the gluon condensate density 〈αs/πGG〉 =
(

1.2+0.6
−1.2

)

× 10−2 GeV4 will

be used in the numerical analysis.

We now turn to discuss the choices of the renormalization and the factorization scales

entering the NLL sum rules. The renormalization scale ν of the baryonic current and the

factorization scale µ will be varied in the interval 1GeV ≤ µ, ν ≤ 2GeV around the default

value µ = ν = 1.5GeV. The renormalization scale ν ′ of the weak (pseudo)-tensor currents

and the hard scale µh in the hard matching coefficients will be taken as µh = ν ′ = mb with

the variation in the range [mb/2 , 2mb]. In addition, we adopt the MS bottom-quark mass

mb(mb) = 4.193+0.022
−0.035 GeV determined from non-relativistic sum rules for the inclusive

e+ e− → b b̄ production cross section at next-to-next-to-next-to-leading order [53].

5.2 Predictions for the Λb → Λ form factors

After specifying all the necessary input parameters we will first turn to determine the shape

parameter ω0 of the Λb-baryon DA φ4(ω, µ0). Given the sizeable uncertainty of ω0 estimated

from the sum rule analysis in [15], we prefer to, following [13], extract this parameter by

matching the LCSR prediction of the form factor f+Λb→Λ(q
2) at zero momentum transfer

to that determined from an alternative method. In doing so, we apply the SU(3) flavour

symmetry relation between the Λb → Λ and the Λb → p form factors

f+Λb→Λ(0)

f+Λb→p(0)
≃ fΛ
fN

, (5.8)

motivated by an analogous relation for the B-meson decay form factors

f+B→K(0)

f+B→π(0)
≃ fK
fπ

, (5.9)

which turns out not to be a poor approximation2 when confronted with the predictions

from both the LCSR [54, 55] and the TMD factorization [56, 57] approaches. Employing

the prediction of f+Λb→p(0) from the LCSR with the nucleon DA [31] and the result of fΛ/fN
computed from QCD sum rules [34] yields f+Λb→Λ(0) = 0.18 ± 0.04. Proceeding with the

above-mentioned matching procedure we then find

ω0 = 280+47
−38 MeV , (Model I)

ω0 = 386+45
−37 MeV , (Model II)

ω0 = 273+38
−29 MeV . (Model III) (5.10)

2It needs to point out that the SU(3) symmetry breaking effects can be generated by different sources

in addition to the decay constants. Hence, the extracted value of f+
Λb→Λ(0) may suffer from systematic

uncertainties due to the yet unconsidered SU(3) symmetry violation. However, we only aim at predicting

the shape of Λb → Λ helicity form factors, with the normalization f+
Λb→Λ(0) taken as an input. The strategy

presented here can be further applied to update the predictions for the shape parameters of form factors

displayed in table 2 and table 3 when more precision determinations of f+
Λb→Λ(0) are available from different

non-perturbative QCD approaches.
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The apparent dependence of the extracted values of ω0 on the specific parametrization of

φ4(ω, µ0) implies that the Λb → Λ form factors cannot be determined by the shape parame-

ter ω0 satisfactorily to a reasonable approximation and the detailed information of the small

ω behaviours of φ4(ω, µ0) is in demand to have a better control on the form factors from

the sum rule analysis. Having this in mind, our main purpose is to predict the momentum-

transfer dependence of all the ten Λb → Λ form factors in anticipation of the reduced model

dependence of φ4(ω, µ0) in the form factor ratios. Anatomy of the sum rules numerically

indeed indicates the expected insensitivity of the form-factor shapes as displayed in figure 5.

To demonstrate some important numerical features of the LCSR predictions, we show

the dependencies of fTΛb→Λ(0) on the sum rule parameters M2 and s0 and on the factoriza-

tion scale µ in figure 6 as an illustrative example and analogous profiles are also observed

for the remaining Λb → Λ form factors. It is evident that the sum rules of fTΛb→Λ(0) exhibits

extraordinary mild dependence on the Borel mass parameter due to a strong cancellation

of the sysmematic uncertainty between the LCSR of fTΛb→Λ(0) and the QCD sum rules

of the coupling fΛ. One can further find that both the leading-logarithmic (LL) and the

NLL resummation improved sum rules are insensitive to the factorization scale µ in the

allowed interval and resummation of parametrically large logarithms in the hard matching

coefficients only induces a minor impact on the sum rules for fTΛb→Λ(0) numerically com-

pared with the one-loop fixed-order correction. More importantly, the perturbative O(αs)

correction is found to reduce the tree-level sum rule prediction by a factor of 1/2, implying

the importance of QCD radiative effect in baryonic sum rule applications (see also [58]

for a similar observation on the perturbative spectral function of the vacuum-to-vacuum

correlation function defined with two baryonic currents in HQET).

To develop a better understanding of the origin of the significant perturbative correc-

tion, we break the complete one-loop contribution to the sum rules of fTΛb→Λ(0) down into

the hard and the hard-collinear corrections, which are defined as replacing ψ4,eff(ω
′, µ, ν)

in eq. (4.1) by ψ̃4(ω
′) for the former and as replacing

[

U1(n̄ · p′/2, µh, µ)C⊥,V (A)(n · p′, µh)
]

by one for the latter. In figure 7 (left panel) we plot the separate perturbative contri-

butions from hard and hard-collinear fluctuations as functions of the momentum transfer

squared. We can readily find that the dominant αs correction at one loop is from the

NLO jet (hard-collinear) function instead of the NLO hard function and this highlights the

importance of the perturbative matching calculations at the hard-collinear scale performed

in this paper. The q2-dependence of the ratio
[

fTΛb→Λ(q
2)
]

NLL
/
[

fTΛb→Λ(q
2)
]

LL
with the

theory uncertainty estimated from varying both the renormalization and the factorization

scales in the acceptable ranges are displayed in the right panel of figure 7.

We now turn to investigate the Λ-baryon energy dependence of the form factor

fTΛb→Λ(q
2), from the sum rules at LL and at NLL accuracy, which is of particular con-

ceptual interest in that the soft overlap contributions and the hard-spectator scattering

effects in the heavy-to-light baryonic form factors differ in the scaling of 1/EΛ at large

hadronic recoil. For this purpose, we introduce the following ratio originally proposed
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Figure 5. The momentum-transfer dependence of the Λb → Λ form factors computed from LCSR

with the fitted values of ω0 parameter presented in (5.10) for three different models of φ4(ω, µ0).

Solid, dotted and dashed curves correspond to the sum rule predictions with the Λb-baryon DA

φI4(ω, µ0), φ
II
4 (ω, µ0) and φ

III
4 (ω, µ0), respectively.
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Figure 6. Dependence of fTΛb→Λ(0) on the Borel parameter (top left), on the threshold parameter

(top right) and on the factorization scale (bottom left). Solid, dashed and dotted curves are obtained

from the NLL sum rules with s0 = 2.56GeV2, 2.66GeV2, 2.46GeV2 (top left) and M2 = 2.6GeV2,

3.0GeV2, 2.2GeV2 (top right) while all the other input parameters are fixed at their central values.

The curves labelled by “LL”, “NLO” and “NLL” (bottom) correspond to the sum rule predictions

at LL, NLO and NLL accuracy.
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Figure 7. Breakdown of the one-loop contribution to the sum rules of fTΛb→Λ(q
2) from the NLO

hard and the NLO jet functions (left panel) and the momentum transfer dependence of the ratio
[

fTΛb→Λ(q
2)
]

NLL
/
[

fTΛb→Λ(q
2)
]

LL
with theory uncertainties from varying the renormalization and

the factorization scales (right panel).

in [11]

R1(EΛ) =
fTΛb→Λ(n · p′)
fTΛb→Λ(mΛb

)
, (5.11)

where we have switched the argument of the form factor from q2 as used in the remainder

of this paper to n · p′ ≃ 2EΛ. As shown in figure 8, the predicted energy dependence of

fTΛb→Λ from the LL sum rules exhibits a scaling behaviour in between 1/E2
Λ and 1/E3

Λ for

the default choices of theory input parameters, while the NLL sum rule prediction favors

evidently a 1/E3
Λ behavior in consistent with the power counting analysis. We have also

verified that such observation can be made for the energy dependence of all the other

Λb → Λ form factors.

Since the light-cone operator-product expansion of the correlation functions Πµ,a(p, q)

can only be justified at low q2, we need to extrapolate the sum rule predictions for the

Λb → Λ form factors at q2 ≤ q2max = 8GeV2 toward large momentum transfer q2. To

this end, we apply the simplified z-series parametrization [59] based upon the conformal

mapping of the cut q2-plane onto the disk |z(q2, t0)| ≤ 1 in the complex z-plane with the

standard transformation

z(q2, t0) =

√

t+ − q2 −√
t+ − t0

√

t+ − q2 +
√
t+ − t0

. (5.12)

The parameter t+ is determined by the threshold of the lowest continuum state which

can be excited by the weak transition current in QCD. It is evident that all the channels

|BK〉, |Bsπ〉 and |Λb Λ̄〉 can be produced by the s̄ Γµ,a b current, the form factors can be
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Figure 8. Dependence of the ratio R1(EΛ) on the Λ-baryon energy EΛ. The blue (left panel) and

the black (right panel) curves are obtained from the LL and NLL sum rule predictions, respectively.

The two green curves refer to a pure 1/E2
Λ and a pure 1/E3

Λ dependence.

analytical functions in the complex q2-plane cut along the real axis for

q2 ≥ min
{

(mBs +mπ)
2 , (mB +mK)2 , (mΛb

+mΛ)
2
}

= (mBs +mπ)
2 , (5.13)

in addition to the potential resonances below the branch cut. We theretofore need to set

t+ = (mBs +mπ)
2 for all the Λb → Λ form factors. The auxiliary parameter t0 determines

the q2 point that will be mapped onto the origin of the complex z-plane, and in practice we

will choose t0 = (mΛb
−mΛ)

2 following [60]. Since the helicity form factors are constructed

from the hadronic matrix elements of weak transition currents with definite spin-parity

quantum numbers by projecting on the polarization vector for a spin-one particle with

the four-momentum qµ, we collect some fundamental information of the lowest resonances

produced by the helicity-projected weak currents in table 1.

Since the lowest resonances of the scalar and the axial-vector channels are above the

continuum threshold
√
t+, it is therefore not necessary to introduce a pole factor in the

z-series parameterizations of the corresponding form factors. Keeping the series expansion

of the form factors to the first power of z-parameter we propose the following parameteri-

zations

F
(I), i
Λb→Λ(q

2) =
F i
Λb→Λ(0)

1− q2/m2
B∗

s

{

1 + bi1
[

z(q2, t0)− z(0, t0)
]}

(5.14)

for the form factors f+,T
Λb→Λ(q

2) and h+,T
Λb→Λ(q

2),

F
(II), i
Λb→Λ(q

2) =
F i
Λb→Λ(0)

1− q2/m2
Bs

{

1 + bi1
[

z(q2, t0)− z(0, t0)
]}

(5.15)
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form factor Bs(J
P ) Mass (GeV) ref.

f+,T
Λb→Λ(q

2), h+,T
Λb→Λ(q

2) B∗
s (1

−) 5.42 [61]

f0Λb→Λ(q
2) Bs0 (0

+) 5.72 (our estimate)

g+,T
Λb→Λ(q

2), h̃+,T
Λb→Λ(q

2) Bs1 (1
+) 5.83 [61]

g0Λb→Λ(q
2) Bs (0

−) 5.37 [61]

Table 1. Summary of the masses of low-lying resonances produced by the helicity-projected weak

currents s̄Γµ,a b in QCD. Since the scalar Bs0 meson has not been observed experimentally yet,

we estimate its mass using an approximate SU(3) symmetry relation mBs0
−mBs

= mBd0
−mBd

,

which is found to be comparable to that predicted by the heavy quark/chiral symmetry [62].

for the form factor g0Λb→Λ(q
2), and

F
(III), i
Λb→Λ(q

2) = F i
Λb→Λ(0)

{

1 + bi1
[

z(q2, t0)− z(0, t0)
]}

(5.16)

for the form factors f0Λb→Λ(q
2), g+,T

Λb→Λ(q
2), and h̃+,T

Λb→Λ(q
2). The shape parameters bi1 can

be determined by matching the z-series parameterizations to the NLL sum rule predictions

at large hadronic recoil, i.e., 0 ≤ q2 ≤ q2max = 8GeV2. The resulting form factors in the

allowed kinematical region 0 ≤ q2 ≤ t0 are displayed in figures 9 and 10, where independent

calculations of these QCD form factors from Lattice determinations of the two HQET form

factors at low hadronic recoil [22] are also presented for a comparison.

To facilitate such a comparison we first need to perform the perturbative matching of

the heavy-to-light currents from QCD onto HQET [63]

s̄ γµ (1, γ5) b = cγ s̄ γµ (1, γ5) h+ cv s̄ vµ (1,−γ5) b+ . . . ,

s̄ σµν (1, γ5) b = cσ s̄ σµν (1, γ5) h+ . . . , (5.17)

at leading power in Λ/mb, where the matching coefficients at one loop are given by

cγ = 1− αsCF

4π

[

3 ln
µ

mb
+ 4

]

+O(α2
s) ,

cv =
αsCF

2π
+O(α2

s) ,

cσ = 1− αsCF

4π

[

5 ln
µ

mb
+ 4

]

+O(α2
s) . (5.18)
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Figure 9. The Λb → Λ form factors induced by the (axial)-vector currents computed from the

LCSR approach at NLL accuracy and fitted to the z-series parameterizations. The pink (solid)

and the blue (solid) curves refer to the predictions from the LCSR with an extrapolation and from

the Lattice calculations [22], respectively, and the uncertainty bands are obtained by adding all

separate theory uncertainties in quadrature.
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Figure 10. The Λb → Λ form factors induced by the (pseudo)-tensor currents computed from the

LCSR approach at NLL accuracy and fitted to the z-series parameterizations. Same conventions

as in figure 9.

The HQET matrix element defined with an arbitrary Dirac structure of the leading-power

effective current can be expressed by two Isgur-Wise functions at low hadronic recoil [63–65]

〈Λ(p′, s′)|s̄Γh|Λb(v, s)〉 = Λ̄(p′, s′)
[

F1(v · p′) + F2(v · p′) /v
]

ΓΛb(v, s) , (5.19)

due to the heavy-quark spin symmetry. It is then straightforward to write

fTΛb→Λ = cγ (F1 − F2) ,

f0Λb→Λ = (cγ + cv) (F1 + F2) ,

f+Λb→Λ = cγ (F1 − F2) ,

gTΛb→Λ = cγ (F1 + F2) ,

g0Λb→Λ = (cγ + cv) (F1 − F2) ,

g+Λb→Λ = cγ (F1 + F2) ,

h+,T
Λb→Λ = cσ (F1 − F2) ,

h̃+,T
Λb→Λ = cσ (F1 + F2) , (5.20)
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at low recoil. Inspection of figures 9 and 10 indicates that the LCSR calculations with the

aid of an extrapolation inspired by the z-series expansion and the Lattice determinations

in HQET reach a reasonable agreement in general at low hadronic recoil. However, the

Lattice calculations [22], on the other hand, reveal faster growing form factors of f0Λb→Λ,

g+,T
Λb→Λ and h̃+,T

Λb→Λ but slower increasing form factors of f+,T
Λb→Λ, g

0
Λb→Λ and h+,T

Λb→Λ at high

momentum transfer squared when confronted with the LCSR-assisted z-parametrization

predictions. The observed shape discrepancies might be attributed to the unaccounted

power-enhanced but αs-suppressed hard scattering effects, and to the yet unknown higher

order/power corrections, to the sysmematic uncertainties induced by the parton-hadronic

quality approximation and truncations of the z-series expansion in our calculations, as well

as to the power-suppressed contributions and to the uncounted systemical uncertainties in

the Lattice determinations.

We now collect the calculated form factors at zero momentum transfer F i
Λb→Λ(0) and

the fitted shape parameters bi1 in tables 2 and 3, where the numerically important uncer-

tainties due to variations of the theory input parameters are also displayed.

Several comments on the numerical results obtained above are in order.

• The dominant theory uncertainty for the form factors at q2 = 0 computed from

the NLL LCSR is due to the variation of the ω0 parameter entering the Λb-baryon

DA φ4(ω, µ0), while the most significant sources of the theory errors for the shape

parameters bi1 are from the different parameterizations of φ4(ω, µ0) and from the

variations of the renormalization scale µ and of the factorization scale ν.

• Large-recoil symmetry violation effects for the Λb → Λ form factors are found to be

relatively small, at the level of 20 %, albeit with the observed substantial perturbative

QCD corrections to the form factors themselves. This can be readily understood from

the fact that the NLO perturbative contributions to the Λb → Λ form factors are

dominated by the hard-collinear corrections which preserve the large-recoil symmetry

in the heavy quark limit.

• Large discrepancies of the slope parameters are observed for the two form factors

defined by the matrix elements of the two weak currents with the same helicity

projections but with the opposite space-time parities, e.g., fTΛb→Λ and gTΛb→Λ. This

is in a nutshell due to the distinct analytical structures of two types of form factors

below the branch cut in the complex-q2 plane which lead to the different z-series

parameterizations adopted in the fitting programmes.

6 Phenomenological applications

In this section we aim at exploring phenomenological applications of the calculated Λb →
Λ form factors which serve as fundamental ingredients for the theory description of the

electro-weak penguin induced Λb → Λ ℓ+ℓ− decays. QCD dynamics of the hadronic Λb →
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Parameter Central value φ4(ω) ω0 {µ, ν} {µh, ν
′} M2 s0

fTΛb→Λ(0) 0.20 − −0.04
+0.04

−0.03
−0.02

+0.02
−0.01

+0.01
−0.01

+0.00
−0.00

b
fT

Λb→Λ

1 −6.82 −2.93
−1.87

−1.16
+1.02

+0.12
+2.22

−0.30
+0.48

+0.22
−0.34

+0.25
−0.28

b
gT

Λb→Λ

1 −13.66 −3.72
−2.36

−1.46
+1.30

+0.15
−2.81

−0.38
+0.61

+0.28
−0.42

+0.32
−0.35

f0Λb→Λ(0) 0.18 − −0.04
+0.04

−0.03
+0.02

+0.02
−0.01

+0.01
−0.01

+0.00
−0.00

b
f0
Λb→Λ

1 −14.59 −3.91
−2.51

−1.61
+1.40

+0.11
−3.51

−0.36
+0.60

+0.33
−0.51

+0.35
−0.40

b
g0
Λb→Λ

1 −7.43 −3.06
−1.97

−1.26
+1.11

+0.10
−2.75

−0.28
+0.48

+0.26
−0.40

+0.28
−0.31

f+Λb→Λ(0) 0.18 − −0.04
+0.04

−0.03
−0.02

+0.02
−0.01

+0.01
−0.01

+0.00
−0.00

b
f+

Λb→Λ

1 −7.17 −3.07
−1.97

−1.24
+1.09

+0.09
−2.53

−0.29
+0.49

+0.25
−0.38

+0.28
−0.31

b
g+

Λb→Λ

1 −14.10 −3.88
−2.48

−1.56
+1.38

+0.11
−3.19

−0.36
+0.62

+0.32
−0.47

+0.35
−0.38

Table 2. Summary of the calculated form factors induced by the (axial)-vector weak transition

currents at q2 = 0 and the fitted shape parameters bi1 with the uncertainties from the variations of

various input parameters.

Λ ℓ+ℓ− decay amplitude is, however, more complicated due to the non-factorizable strong

interaction effects which arise from QED corrections to the matrix elements of the four-

quark operators and the gluonic penguin operator in the weak effective Hamiltonian. Some

typical non-factorizable contributions to the Λb → Λ ℓ+ℓ− matrix elements at O(αs) are

presented in figure 11, in analogy to the counterpart B → K∗ ℓ+ℓ− decays discussed in [12].

It is evident that the spectator interaction effects displayed in the diagrams (b) and (d) and

the weak annihilation contributions shown in (e) and (f) cannot be computed with QCD

factorization formalism described in [12] and some non-perturbative QCD approaches are

in demand to deal with such non-local hadronic matrix elements. We will restrict ourselves

to the factorizable contributions to the Λb → Λ ℓ+ℓ− decay amplitude, at O(α0
s), in this

work, and leave a systematic treatment of the non-form-factor corrections for a future work.
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Parameter Central value φ4(ω) ω0 {µ, ν} {µh, ν
′} M2 s0

hTΛb→Λ(0) 0.18 − −0.04
+0.04

−0.03
−0.01

+0.00
+0.01

+0.01
−0.01

+0.00
−0.00

b
hT

Λb→Λ

1 −8.26 −3.08
−1.99

−1.31
+1.14

+0.53
−3.52

−0.60
+0.76

+0.28
−0.44

+0.29
−0.33

b
h̃T

Λb→Λ

1 −15.49 −3.90
−2.52

−1.66
+1.45

+0.67
−4.45

−0.76
+0.97

+0.36
−0.56

+0.37
−0.41

h+Λb→Λ(0) 0.21 − −0.05
+0.05

−0.00
−0.00

+0.00
+0.01

+0.01
−0.01

+0.00
−0.00

b
h+

Λb→Λ

1 −7.51 −2.84
−1.81

−1.15
+1.03

+0.52
−2.81

−0.50
+0.66

+0.23
−0.35

+0.26
−0.28

b
h̃+

Λb→Λ

1 −14.53 −3.61
−2.29

−1.46
+1.30

+0.65
−3.57

−0.64
+0.84

+0.29
−0.45

+0.32
−0.36

Table 3. Summary of the calculated form factors induced by the (pseudo)-tensor weak transition

currents at q2 = 0 and the fitted shape parameters bi1 with the uncertainties from the variations of

various input parameters.

(a)

Λb Λ

b s

(b)

B̄

(c) (d)

(e) (f)

Figure 11. Various non-factorizable diagrams contributed to the Λb → Λ ℓ+ℓ− decays. The crossed

circles indicate possible insertions of the virtual photon line and the black squares stand for the

hadronic operator vertices. Taken from [66].
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The double differential decay distribution of Λb → Λ ℓ+ℓ− in terms of the momentum

transfer squared q2 and the angle θ between the positively changed lepton and the Λ-baryon

in the rest frame of the lepton pair is given by [2]

dΓ(Λb → Λ ℓ+ℓ−)

dq2 d cos θ
=

3

8

[

HT (q
2)
(

1 + cos2 θ
)

+ 2HA(q
2) cos θ + 2HL(q

2)
(

1− cos2 θ
) ]

,

(6.1)

where in the factorization limit the helicity amplitudes can be computed as

HT (q
2) = N q2

λ1/2(m2
Λb
,m2

Λ, q
2)

96π3m3
Λb

[

s−

(∣

∣

∣

∣

Ceff
9 (q2) fTΛb→Λ +

2mΛb
(mΛb

+mΛ)

q2
Ceff

7 hTΛb→Λ

∣

∣

∣

∣

2

+
∣

∣C10 f
T
Λb→Λ

∣

∣

2
)

+ s+

(∣

∣

∣

∣

Ceff
9 (q2) gTΛb→Λ +

2mΛb
(mΛb

−mΛ)

q2
Ceff

7 h̃TΛb→Λ

∣

∣

∣

∣

2

+
∣

∣C10 g
T
Λb→Λ

∣

∣

2
)]

, (6.2)

HA(q
2) = −N q2

λ(m2
Λb
,m2

Λ, q
2)

48π3m3
Λb

Re

[(

Ceff
9 (q2) fTΛb→Λ +

2mΛb
(mΛb

+mΛ)

q2
Ceff

7 hTΛb→Λ

)∗
(

C10 g
T
Λb→Λ

)

+

(

Ceff
9 (q2) gTΛb→Λ +

2mΛb
(mΛb

−mΛ)

q2
Ceff

7 h̃TΛb→Λ

)∗
(

C10 f
T
Λb→Λ

)

]

, (6.3)

HL(q
2) = N λ1/2(m2

Λb
,m2

Λ, q
2)

192π3m3
Λb

[

s− (mΛb
+mΛ)

2

(∣

∣

∣

∣

Ceff
9 (q2) f+Λb→Λ +

2mΛb

mΛb
+mΛ

Ceff
7 h+Λb→Λ

∣

∣

∣

∣

2

+
∣

∣C10 f
+
Λb→Λ

∣

∣

2
)

+s+(mΛb
−mΛ)

2

(∣

∣

∣

∣

Ceff
9 (q2)g+Λb→Λ+

2mΛb

mΛb
−mΛ

Ceff
7 h̃+Λb→Λ

∣

∣

∣

∣

2

+
∣

∣C10g
+
Λb→Λ

∣

∣

2
)]

, (6.4)

with

N =
G2

F α
2
em

8π2
|Vts Vtb|2 , λ(a, b, c) = a2 + b2 + c2 − 2 ab− 2 a c− 2 bc . (6.5)

The detailed expressions for the effective Wilson coefficients Ceff
9 (q2) and Ceff

7 in the NDR

scheme with anti-commuting γ5 can be found in [12].

Evaluating the helicity amplitudes with the form factors computed from the NLL

LCSR obtained in the above yields the differential branching fraction of Λb → Λ ℓ+ℓ− as

a function of q2 plotted in figure 12 and the partially integrated decay rate over the q2

intervals from [48] displayed in table 4. The theory predictions are also confronted with

the experimental measurements from CDF [67] and LHCb [48]. The LHCb data except for

the first q2-bin are found to be systematically lower than the theory predictions at large

hadronic recoil, while the sizeable uncertainties of the CDF measurements prevent us from

drawing a definite conclusion.

Following [48] we further consider the forward-backward asymmetry and the longitu-

dinal polarization fraction of the di-lepton system

AFB(q
2) =

∫ 1
0 d cos θ dΓ(Λb→Λ ℓ+ℓ−)

dq2 d cos θ
−
∫ 0
−1 d cos θ dΓ(Λb→Λ ℓ+ℓ−)

dq2 d cos θ

dΓ(Λb → Λ ℓ+ℓ−)/dq2
,
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Figure 12. The differential branching fraction, the leptonic forward-backward asymmetry and the

longitudinal polarization fraction of the di-lepton system for Λb → Λ ℓ+ℓ− as functions of q2 in the

factorization limit. The solid (pink) curve corresponds to the NLL sum rule predictions with the

central input and the shaded region (pink) indicates the theory uncertainties from the calculated

form factors. The experimental data bins are taken from LHCb [48] (purple squares) and CDF [67]

(blue full circles).
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[q2min, q
2
max] dBR/dq2 (10−7 GeV−2) AFB fL

(

GeV2
)

this work LHCb this work LHCb this work LHCb

[0.1, 2.0] 0.45+0.28
−0.26 0.36+0.14

−0.13 −0.10+0.01
−0.01 −0.37+0.48

−0.37 0.57+0.08
−0.10 0.56+0.24

−0.57

[2.0, 4.0] 0.37+0.23
−0.21 0.11+0.12

−0.09 −0.06+0.04
−0.04 − 0.86+0.02

−0.03 −

[4.0, 6.0] 0.48+0.31
−0.27 0.02+0.09

−0.01 0.05+0.03
−0.04 − 0.80+0.00

−0.00 −

[1.1, 6.0] 0.41+0.26
−0.23 0.09+0.06

−0.05 −0.02+0.03
−0.04 − 0.83+0.02

−0.02 −

Table 4. Summary of the theory predictions for the binned distributions of the branching fraction,

the forward-backward asymmetry and the longitudinal polarization fraction. We also present the

experimental data bins from LHCb [48] for a comparison, where various experimental uncertainties

are added in quadrature.

fL(q
2) =

HL(q
2)

HL(q2) +HT (q2)
, (6.6)

where the definition of AFB(q
2) differs from [48] due to the distinct convention of the θ

angle. We plot the q2 dependence of the differential forward-backward asymmetry and the

longitudinal polarization fraction in figure 12, and collect the theory predictions for the

binned distributions of these two observables in table 4.

Several comments on the numerical results computed in the above are in order.

• In contrast to the B → K∗ ℓ+ℓ− decays, the theory uncertainty of the leptonic

forward-backward asymmetry at the zero crossing point is not reduced compared

to that at a different value of q2. This can be readily understood from the fact that

AFB is not an optimized observable which is insensitive to the soft form factors in the

former case, while it becomes an optimized observable in the latter case due to a single

soft form factor governing the strong interaction dynamics of the Λb → Λ form factors

in the SCET limit. The location of the zero-crossing point of AFB is determined as

q20 = 4.1+0.9
−0.7GeV2 .

• The uncertainty band of the longitudinal polarization fraction fL(q
2) shown in fig-

ure 12 indicates rather interesting features of the different dominant mechanisms

contributing to fL(q
2) at different momentum transfer. At very large hadronic recoil

q2 ≪ 1GeV2 the longitudinal helicity amplitude HL is strong suppressed compared

to the transverse amplitude HT which receives a large contribution from the photon

pole. This indicates that fL(q
2) at very large recoil receives a suppression factor of
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q2/m2
Λb

and the resulting theory uncertainty is also negligible. In the vicinity of the

zero-crossing point of AFB, both helicity amplitudes HL and HT will be dominated by

the contribution from the semileptonic operator O10. The longitudinal polarization

fraction fL(q
2) is then, to a large extent, determined by a unique form-factor ratio

f+Λb→Λ(q
2)/fTΛb→Λ(q

2) which suffers from a much smaller theory uncertainty com-

pared to the other two ratios hTΛb→Λ(q
2)/fTΛb→Λ(q

2) and h+Λb→Λ(q
2)/fTΛb→Λ(q

2) that

will also play an essential role in determining the value of fL(q
2) for generical mo-

mentum transfer. The most significant uncertainty of the latter two ratios is induced

by the variation of the renormalization and the factorization scales. Based upon

the above discussion, we conclude that the theory prediction of fL(q
2) will involve a

sizeable uncertainty only in the region 1GeV2 < q2 < q20 displayed in figure 12.

• The theory prediction of the differential q2 distribution shown in figure 12 involves

a large uncertainty due to the sensitivity to the Λb → Λ form factors. To reduce the

most important theory uncertainty from the poorly known shape parameter ω0 in the

Λb-baryon DA φ4(ω, µ0), one can introduce an optimized observable, the normalized

differential q2 distribution, in analogy to that in B → πℓν [13]. It is however not

the main objective of this work to explore the rich phenomenology encoded in the

angular distributions of Λb → Λ ℓ+ℓ− emphasizing on the implications of optimized

observables for new physics hunting.

7 Concluding discussion

In this paper we have performed, for this first time, perturbative QCD corrections to the

Λb → Λ form factors from the LCSR with the Λb-baryon DA at NLL accuracy. Applying the

method of regions we have extracted both the hard coefficients and the jet functions entering

the factorization formulae for the vacuum-to-Λb-baryon correlation functions at one loop.

In particular, we have verified a complete cancellation of the factorization-scale dependence

for the factorized expressions of the considered correlation functions by computing the one-

loop corrections to the Λb-baryon DA in QCD manifestly. Also, we demonstrated at the di-

agrammatic level that QCD factorization of the vacuum-to-Λb-baryon correction functions

with an arbitrary weak vertex can only depend on a universal jet function at leading power

in Λ/mb. Employing the RG evolution equations in momentum space and distinguishing

the renormalization and the factorization scales, we further achieved the NLL resummation

improved factorization formulae for the correlation functions defined with both the (axial)-

vector and the (pseudo)-tensor weak currents. Making use of the parton-hadron duality

approximation and implementing the continuum subtraction, we further obtained the NLL

QCD sum rules of the Λb → Λ form factors at large hadronic recoil. Since we concentrate

on factorization of the correlation functions at leading power in Λ/mb, we do not take into

account the numerically insignificant contribution corresponding to the matrix element of

the “B-type” SCET current, which can be computed with LCSR constructed from the

same correlation functions at sub-leading power or from the correlation functions with the

“wrong” light-cone projector acting on the interpolating current of the Λ-baryon [2].
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Proceeding with the obtained NLL sum rules on the light cone, we carried out an

exploratory numerical analysis of the Λb → Λ form factors, putting an emphasis on the

various sources of perturbative and systematic uncertainties. To gain a better control of

the shape parameter ω0 for the Λb-baryon DA φ4(ω, µ0), the prediction of Λb → p form

factor f+Λb→p(0) from the LCSR with the nucleon DA and the SU(3) flavour symmetry

relation were taken as theory input in the matching determination of ω0. In analogy to the

B → π form factors, the sum rules of Λb → Λ form factors are not only sensitive to the

shape parameter ω0 but also to the specific behavior of φ4(ω, µ0) at small ω. Of particular

phenomenological interest are that the perturbative O(αs) corrections result in a signifi-

cant (∼ 50%) reduction of the tree-level sum rule predictions and the dominant one-loop

correction is from the NLO jet function instead of the NLO hard functions entering the sum

rules of the Λb → Λ form factors. Such observations evidently highlight the importance of

the perturbative matching calculation at the hard-collinear scale as accomplished in this

work. Employing the z-series expansion, we extrapolated the LCSR predictions of the form

factors toward large momentum transfer where our predictions are already confronted with

the Lattice determinations of two HQET form factors. Expressing the QCD transition form

factors in terms of the Isgur-Wise functions at low hadronic recoil, we observed a reasonable

agreement for the predicted form factors at large momentum transfer between two indepen-

dent calculations, albeit with the perceivable discrepancies on the q2 shapes of the Λb → Λ

form factors. In addition, the large-energy symmetry breaking effects for the form factors

were found to be relatively small at one loop, since the NLO QCD corrections to the sum

rules are dominated by the hard-collinear corrections preserving the symmetry relations.

Having at our disposal the theory predictions for the Λb → Λ form factors, we investi-

gated their phenomenological applications to the electro-weak penguin decays Λb → Λ ℓ+ℓ−

in the factorization limit. The calculated differential q2 distribution in Λb → Λ ℓ+ℓ− turned

out to be systematically lower than the LHCb measurements, except for the first data bin.

We further computed the forward-backward asymmetry and the longitudinal polarization

fraction for the di-lepton system which are comparable to the LHCb data for the low-

est q2 bin. The longitudinal polarization fraction fL(q
2) was found to be of particular

phenomenological interest due to a large cancellation of the theory uncertainties for the

Λb → Λ form factors.

The heavy-to-light baryonic form factors are apparently not sufficient to provide a

complete description of the strong interaction dynamics involved in Λb → Λ ℓ+ℓ− due to

the non-factorizable contributions induced by the QED corrections to the matrix elements

of hadronic operators in the weak Hamiltonian. The techniques developed in this work can

be readily applied to evaluate the non-form-factor effects induced by the hard spectator

interaction and the weak annihilation as displayed in figure 11. Since both the factoriz-

able and the non-factorizable contributions to the Λb → Λ ℓ+ℓ− decay amplitude will be

parameterized by the Λb-baryon DA without introducing any additional non-perturbative

quantities, we are expected to have more opportunities to construct optimized observables

insensitive to the hadronic uncertainties, provided that the systematic uncertainty of the

sum rule approach is also cancelled to a large extent for these observables. We postpone a

systematic treatment of such non-factorizable contribution as well as a detailed discussion

of the angular observables in Λb → Λ ℓ+ℓ− for a future work.
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The strategies of computing the heavy-to-light baryonic form factors at O(αs) pre-

sented here can be further extend to study the topical Λb → p ℓν decays [68], which pro-

vide an alternative approach to determine the CKM matrix element |Vub|. To this end,

a comprehensive analysis of the evolution equations for all the DA defined in eqs. (2.25)

and (2.26) at one loop are in demand, since the spin structure of the light di-quark system

in the Λb-baryon is distorted in the decay product, i.e., the nucleon. In this respect, the

techniques developed in [21] based upon the spinor formalism and the conformal symmetry

can be applied to facilitate the construction of the renormalization kernels in coordinate

space. To summarize, we believe that the present work serves as an essential step towards

understanding the strong interaction dynamics in various exclusive Λb-baryon decays and

interesting extensions of the present calculations into different directions are expected, es-

pecially under the encouragement of the considerable progress on the beauty baryon decays

from the experimental side.
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A Spectral representations

In this appendix we will collect the dispersion representations of convolution integrals

appeared in the NLL resummation improved factorization formulae shown in (3.79), (3.80)

and (3.81). As already mentioned in section 4, the spectral representations derived in the

following are reduced with the assumption that ψ4(ω1, ω2, µ0) only depends on the sum of

two momentum variables ω = ω1 + ω2 as inspired from [2, 15, 19].

1

π
Imω′

∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω − ω′ − i0
ln2

µ2

n · p′ (ω − ω′)
ψ4(ω1, ω2, µ)

=

∫ ω′

0
dω

[

2

ω−ω′
ln

µ2

n · p′(ω′−ω)

]

⊕

ψ̃4(ω, µ)+

[

ln2
µ2

n · p′ω′
−π2

3

]

ψ̃4(ω
′, µ) , (A.1)

1

π
Imω′

∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω−ω′ − i0
ln

ω−ω′

ω2−ω′
ln

µ2

n · p′(ω−ω′)
ψ4(ω1, ω2, µ)

= ω′

∫ ω′

0
dω

[

1

ω − ω′
ln
ω′ − ω

ω′

]

⊕

φ4(ω, µ) +

∫ ω′

0
dω ln

µ2

n · p′ (ω′ − ω)

dψ̃4(ω, µ)

dω

+
ω′

2

∫ ∞

ω′

dω

[

ln2
µ2

n · p′ (ω − ω′)
− ln

µ2

n · p′ ω′
+
π2

3

]

dφ4(ω, µ)

dω
, (A.2)

1

π
Imω′

∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω − ω′ − i0
ln2

ω − ω′

ω2 − ω′
ψ4(ω1, ω2, µ)

= −ω′

∫ ∞

ω′

dω

[

ln2
ω − ω′

ω′
+ 2 ln

ω − ω′

ω′
− π2

3
+ 2

]

dφ4(ω, µ)

dω
, (A.3)

1

π
Imω′

∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω − ω′ − i0

ω2 − ω′

ω1
ln

ω − ω′

ω2 − ω′
ψ4(ω1, ω2, µ)
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=

∫ ∞

ω′

dω

[

ln
ω

ω − ω′
+ ω′

(

ln
ω − ω′

ω′
+ 1

)

d

dω

]

φ4(ω, µ) , (A.4)

1

π
Imω′

∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω − ω′ − i0
ln

ω − ω′

ω2 − ω′
ψ4(ω1, ω2, µ)

= −ω′

∫ ∞

ω′

dω

[

ln
ω − ω′

ω′
+ 1

]

dφ4(ω, µ)

dω
, (A.5)

1

π
Imω′

∫ ∞

0
dω1

∫ ∞

0
dω2

1

ω − ω′ − i0
ln

µ2

n · p′ (ω − ω′)
ψ4(ω1, ω2)

=

∫ ω′

0
dω ln

µ2

n · p′ (ω′ − ω)

dψ̃4(ω, µ)

dω
, (A.6)

where we have defined

φ4(ω, µ) = ψ4 (uω , (1− u)ω, µ) , ψ̃4(ω, µ) = ω φ4(ω, µ) . (A.7)
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